A Concise Summary of the Event B mathematical toolkit ¹

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the ASCII form that is used for input to Rodin.

In the following: P, Q and R denote predicates;

- x and y denote single variables;
- z denotes a single or comma-separated list of variables;
- p denotes a pattern of variables, possibly including \mapsto and parentheses;
- S and T denote set expressions;
- U denotes a set of sets;
- m and n denote integer expressions;
- f and g denote functions;
- r denotes a relation;
- E and F denote expressions;
- E, F is a recursive pattern, ie it matches e_1, e_2 and also $e_1, e_2, e_3 \dots$; similarly for x, y;

Freeness: The meta-predicate $\neg free(z, E)$ means that none of the variables in z occur free in E. This meta-predicate is defined recursively on the structure of E, but that will not be done here explicitly. The base cases are: $\neg free(z, \forall z \cdot P \Rightarrow Q)$, $\neg free(z, \exists z \cdot P \land Q)$, $\neg free(z, \{z \cdot P \mid F\})$, $\neg free(z, \lambda z \cdot P \mid E)$, and free(z, z).

In the following the statement that P must constrain z means that the type of z must be at least inferrable from P.

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is no confusion.

Note: Event-B has a formal syntax and this summary does not attempt to describe that syntax. What it attempts to do is to *explain* Event-B *constructs*. Some words like *expression* collide with the formal syntax. Where a syntactical entity is intended the word will appear in *italics*, *e.g. expression*, *predicate*.

false

1 Predicates

- 1. False \perp
- 2. True ⊤ true
- 3. Conjunction: $P \wedge Q$ Left associative.
- 4. Disjunction: $P \lor Q$ P or \mathbb{Q} Left associative.
- 5. Implication: $P \Rightarrow Q$ P => Q Non-associative: this means that $P \Rightarrow Q \Rightarrow R$ must be parenthesised or an error will be diagnosed.
- 6. Equivalence: $P \Leftrightarrow Q$ P $\iff Q = P \Rightarrow Q \land Q \Rightarrow P$ Non-associative: this means that $P \Leftrightarrow Q \Leftrightarrow R$ must be parenthesised or an error will be diagnosed.
- 7. Negation: $\neg P$ not P
- 9. Existential quantification: $\exists z \cdot P \wedge Q \qquad \qquad \texttt{\#z.P \& Q} \\ \text{Strictly, } \exists z \cdot P \text{, but usually a conjunction.} \\ \textit{There exist values of } z, \textit{ satisfying } P, \textit{ that satisfy } \\ \textit{Q}. \\ \text{The type of } z \text{ must be inferrable from the } \textit{predicate } \\ P \end{aligned}$

11. Inequality: $E \neq F$

2 Sets

- 1. Singleton set: $\{E\}$
- 2. Set enumeration: $\{E, F\}$ See note on the pattern E, F at top of summary.
- 3. Empty set: \emptyset
- 4. Set comprehension: $\{z \cdot P \mid F\}$ $\{z \cdot P \mid F\}$ General form: the set of all values of F for all values of z that satisfy the *predicate* P. P must constrain the variables in z.
- 5. Set comprehension: $\{F \mid P\}$ Special form: the set of all values of F that satisfy the *predicate* P. In this case the set of bound variables z are all the free variables in F. $\{F \mid P\} = \{z \cdot P \mid F\}$, where z is all the variables in F.
- 6. Set comprehension: $\{x \mid P\}$ $[\{x \mid P\}]$ A special case of item 5: the set of all values of x that satisfy the *predicate* P. $\{x \mid P\} = \{x \cdot P \mid x\}$
- 7. Union: $S \cup T$ S $\backslash \! /$ T
- 8. Intersection: $S \cap T$

^{10.} Equality: E = F

 $^{^1\}mathrm{Version}$ October 7, 2010©1996-2010 Ken Robinson

- 9. Difference: $S \setminus T$ $S \setminus T = \{ x \mid x \in S \land x \notin T \}$
- S \ T
- 10. Ordered pair: $E \mapsto F$ $E \mapsto F \neq (E, F)$

E |-> F

- Left associative. In all places where an ordered pair is required, $E \mapsto F$ must be used. E, F will not be accepted as an ordered pair, it is always a list. $\{x,y\!\cdot\! P\mid x\mapsto y\}$ illustrates the different usage.
- 11. Cartesian product: $S \times T$ $S \times T = \{ x \mapsto y \mid x \in S \land y \in T \}$

8. Partition: partition(S, x, y) | partition(S,x,y) x and y partition the set S, ie $S = x \cup y \land x \cap y = \emptyset$ Specialised use for enumerated $partition(S, \{A\}, \{B\}, \{C\}).$ $S = \{A, B, C\} \land A \neq B \land B \neq C \land C \neq A$

finite(S)

INT

NAT

- Left-associative.
- S ** T

12. Powerset: $\mathbb{P}(S)$ $\mathbb{P}(S) = \{ s \mid s \subseteq S \}$

- POW(S)
- 13. Non-empty subsets: $\mathbb{P}_1(S)$ $\mathbb{P}_1(S) = \mathbb{P}(S) \setminus \{\emptyset\}$
- POW1(S)
- 14. Cardinality: card(S)Defined only for finite(S).
- card(S)
- 15. Generalized union: union(U)union(U) The union of all the elements of U. $\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$ $\mathrm{union}(U) = \{x \mid x \in S \land \exists s \cdot s \in U \land x \in s\}$
- where $\neg free(x, s, U)$
- 16. Generalized intersection: inter(U) inter(U) The intersection of all the elements of \overline{U} . $U \neq \emptyset$, $\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$ $inter(U) = \{x \mid x \in S \land \forall s \cdot s \in U \Rightarrow x \in s\}$ where $\neg free(x, s, U)$
- 17. Quantified union:

UNION z.P | S $\cup z \cdot P \mid S$

P must constrain the variables in z. $\forall z \cdot P \Rightarrow S \subseteq T \Rightarrow$ $\cup (z \cdot P \mid E) = \{x \mid x \in T \land \exists z \cdot P \land x \in S\}$ where $\neg free(x, z, T)$, $\neg free(x, P)$, $\neg free(x, S)$, $\neg free(x,z)$

18. Quantified intersection:

 $\cap z \cdot P \mid S$

INTER z.P | S

P must constrain the variables in \overline{z} , $\{z \mid P\} \neq \emptyset,$

 $(\forall z \cdot (P \Rightarrow S \subseteq T)) \Rightarrow$

 $\cap z \cdot P \mid S = \{x \mid x \in T \land (\forall z \cdot P \Rightarrow x \in S)\}$

where $\neg free(x, z)$, $\neg free(x, T)$, $\neg free(x, P),$ $\neg free(x, S)$.

2.1Set predicates

- 1. Set membership: $E \in S$
- E:S
- 2. Set non-membership: $E \notin S$
- E /: S

3. Subset: $S \subseteq T$

- S <: T
- 4. Not a subset: $S \not\subseteq T$
- S /<: T
- 5. Proper subset: $S \subset T$
- S <<: Т
- 6. Not a proper subset: $s \not\subset t$
- S /<<: Т

BOOL and bool 3

7. Finite set: finite(S)

 $finite(S) \Leftrightarrow S \text{ is finite.}$

BOOL is the enumerated set: {FALSE, TRUE} and bool is defined on a predicate P as follows:

- 1. P is provable: bool(P) = TRUE
- 2. $\neg P$ is provable: bool(P) = FALSE

Numbers 4

The following is based on the set of integers, the set of natural numbers (non-negative integers), and the set of positive (non-zero) natural numbers.

- 1. The set of integer numbers: \mathbb{Z}
- 2. The set of natural numbers: \mathbb{N}
- 3. The set of positive natural numbers: \mathbb{N}_1 NAT1 $\mathbb{N}_1 = \mathbb{N} \setminus \{0\}$
- 4. Minimum: $\min(S)$ min(S) $S \subset \mathbb{Z}$ and finite(S) or S must have a lower bound.
- 5. Maximum: $\max(S)$ $S \subset \mathbb{Z}$ and finite(S) or S must have an upper bound.
- 6. Sum: m+nm + n
- 7. Difference: m-nm - n n < m
- 8. Product: $m \times n$ m * n
- 9. Quotient: m/nm / n $n \neq 0$
- 10. Remainder: $m \mod n$ m mod n $n \neq 0$
- 11. Interval: $m \dots n$ m .. n $m \dots n = \{ i \mid m \le i \land i \le n \}$

Number predicates 4.1

- 1. Greater: m > nm > n
- m < n2. Less: m < n
- 3. Greater or equal: $m \geq n$ m >= n
- 4. Less or equal: $m \leq n$ m <= n

5 Relations

A relation is a set of ordered pairs; a many to many mapping.

1. Relations: $S \leftrightarrow T$ $S \leftrightarrow T = \mathbb{P}(S \times T)$ S <-> T

Associativity: relations are right associative: $r \in X \leftrightarrow Y \leftrightarrow Z = r \in X \leftrightarrow (Y \leftrightarrow Z)$.

- 2. Domain: $\operatorname{dom}(r)$ $\forall r \cdot r \in S \leftrightarrow T \Rightarrow$ $\operatorname{dom}(r) = \{x \cdot (\exists y \cdot x \mapsto y \in r)\}$
- dom(r)
- 3. Range: $\operatorname{ran}(r)$ $\forall r \cdot r \in S \leftrightarrow T \Rightarrow$ $\operatorname{ran}(r) = \{ y \cdot (\exists x \cdot x \mapsto y \in r) \}$
- 4. Total relation: $S \leftrightarrow T$ if $r \in S \leftrightarrow T$ then dom(r) = S
- 6. Total surjective relation: $S \Leftrightarrow T$ if $r \in S \Leftrightarrow T$ then dom(r) = S and ran(r) = T
- 7. Forward composition: p; q $\forall p, q \cdot p \in S \leftrightarrow T \land q \in T \leftrightarrow U \Rightarrow p$; $q = \{x \mapsto y \mid (\exists z \cdot x \mapsto z \in p \land z \mapsto y \in q)\}$
- 8. Backward composition: $p \circ q$ p circ q $p \circ q = q$; p
- 9. Identity: id $S \lhd \operatorname{id} = \{x \mapsto x \mid x \in S\}.$ id is generic and the set S is inferred from the context.
- 10. Domain restriction: $S \triangleleft r$ $S \triangleleft r = \{x \mapsto y \mid x \mapsto y \in r \land x \in S\}.$
- 11. Domain subtraction: $S \triangleleft r$ $S \triangleleft r = \{x \mapsto y \mid x \mapsto y \in r \land x \notin S\}.$
- 12. Range restriction: $r \rhd T$ $r \rhd T = \{x \mapsto y \mid x \mapsto y \in r \land y \in T\}.$
- 13. Range subtraction: $r \triangleright T$ $r \triangleright T = \{x \mapsto y \mid y \in r \land y \notin T\}.$
- 14. Inverse: r^{-1} $r^{-1} = \{ y \mapsto x \mid x \mapsto y \in r \}.$
- 15. Relational image: r[S] $r[S] = \{y \mid \exists x \cdot x \in S \land x \mapsto y \in r\}.$
- 16. Overriding: $r_1 \Leftrightarrow r_2$ $r_1 \Leftrightarrow r_2 = r_2 \cup (\text{dom}(r_2) \Leftrightarrow r_1)$.
- 17. Direct product: $p \otimes q$ p > < q p > < q p > < q $p \otimes q = \{x \mapsto (y \mapsto z) \mid x \mapsto y \in p \land x \mapsto z \in q)\}.$
- 18. Parallel product: $p \parallel q$ $p \parallel q = \{x, y, m, n \cdot x \mapsto m \in p \land y \mapsto n \in q \mid (x \mapsto y) \mapsto (m \mapsto n)\}.$

- 19. Projection: prj_1 prj_1 is generic. $(S \times T) \lhd \operatorname{prj}_1 = \{(x \mapsto y) \mapsto x \mid x \mapsto y \in S \times T\}.$
- 20. Projection: prj_2 prj_2 is generic. $(S \times T) \operatorname{\triangleleft} \operatorname{prj}_2 = \{(x \mapsto y) \mapsto y \mid x \mapsto y \in S \times T\}.$

5.1 Iteration and Closure

Iteration and closure are important functions on relations that are not currently part of the kernel Event-B language. They can be defined in a Context, but not polymorphically.

Note: iteration and irreflexive closure will be implemented in a proposed extension of the mathematical language. The operators will be non-associative.

- 1. Iteration: r^n $r \in S \leftrightarrow S \Rightarrow r^0 = S \lhd \operatorname{id} \wedge r^{n+1} = r \; ; r^n$. Note: to avoid inconsistency S should be the finite base set for r, ie the smallest set for which all $r \in S \leftrightarrow S$. Could be defined as a function $iterate(r \mapsto n)$.
- 2. Reflexive Closure: r^* $r^* = \bigcup n \cdot (n \in \mathbb{N} \mid r^n)$. Could be defined as a function rclosure(r). Note: $r^0 \subseteq r^*$.
- 3. Irreflexive Closure: r^+ $r^+ = \cup n \cdot (n \in \mathbb{N}_1 \mid r^n)$.

 Could be defined as a function iclosure(r).

 Note: $r^0 \not\subseteq r^+$ by default, but may be present depending on r.

5.2 Functions

A function is a relation with the restriction that each element of the domain is related to a unique element in the range; a many to one mapping.

- 1. Partial functions: $S \to T$ $S \to T = \{r \cdot r \in S \leftrightarrow T \land r^{-1} : r \subseteq T \lhd id\}.$
- 2. Total functions: $S \to T$ $S \to T = \{f \cdot f \in S \to T \land \text{dom}(f) = S\}.$
- 3. Partial injections: $S \rightarrow T$ $S \rightarrow T = \{f \cdot f \in S \rightarrow T \land f^{-1} \in T \rightarrow S\}.$ One-to-one relations.
- 4. Total injections: $S \rightarrow T$ $S \rightarrow T = S \rightarrow T \cap S \rightarrow T$.
- 5. Partial surjections: $S \nrightarrow T$ $S \nrightarrow T = \{f \cdot f \in S \nrightarrow T \land \operatorname{ran}(f) = T\}.$ Onto relations.
- 6. Total surjections: $S \to T$ $S \to T = S \to T \cap S \to T$.
- 7. Bijections: $S \rightarrowtail T$ $S \rightarrowtail T = S \rightarrowtail T \cap S \twoheadrightarrow T.$ One-to-one and onto relations.

8. Lambda abstraction:

 $(\lambda p \cdot P \mid E)$

(%p.P|E)

P must constrain the variables in p. $(\lambda p \cdot P \mid E) = \{z \cdot P \mid p \mapsto E\}, \text{ where } z \text{ is a list of }$

variables that appear in the pattern p.

9. Function application: f(E)f(E) $E \mapsto y \in f \Rightarrow E \in \text{dom}(f) \land f \in X \rightarrow Y, \text{ where}$ $type(f) = \mathbb{P}(X \times Y).$

Note: in Event-B, relations and functions only ever have one argument, but that argument may be a pair or tuple, hence $f(E \mapsto F) | f(E \mid -> F)$ f(E,F) is never valid.

6 Models

1. Contexts: contain sets and constants used by other contexts or machines.

CONTEXT Identifier

Machine_Identifiers **EXTENDS**

Identifiers SETS CONSTANTS Identifiers AXIOMS **Predicates**

END

Note: theorems can be presented in the AXIOMS part of a context.

2. Machines: contain events.

MACHINE Identifier

REFINES Machine_Identifiers SEES Context_Identifiers

VARIABLES Identifiers INVARIANT Predicates VARIANT Expression **EVENTS Events**

END

Note: theorems can be presented in the INVARI-ANT section of a machine and the WHERE part of an event.

6.1**Events**

Event_name

REFINES Event_identifiers

Identifiers ANY WHERE **Predicates** WITH Witnesses THEN Actions

END

There is one distinguished event named INITIALISA-TION used to initialise the variables of a machine, thus establishing the invariant.

6.2Actions

Actions are used to change the state of a machine. There may be multiple actions, but they take effect concurrently, that is, in parallel. The semantics of events are defined in terms of substitutions. The substitution [G]Pdefines a predicate obtained by replacing the values of the variables in P according to the action G. General substitutions are not available in the Event-B language.

Note on concurrency: any single variable can be modified in at most one action, otherwise the effect of the actions would, in general, be inconsistent.

- 1. skip, the null action: skip denotes the empty set of actions for an event.
- 2. Simple assignment action: z := Ex := E:= = "becomes equal to": replace free occurrences of x by E.
- 3. Choice from set: $x :\in S$ x :: $:\in =$ "becomes in": arbitrarily choose a value from the set S.
- 4. Choice by predicate: z : | Pz :| P : = "becomes such that": arbitrarily choose values for the variable in z that satisfy the predicate P. Within P, x refers to the value of the variable x before the action and x' refers to the value of the variable after the action.
- 5. Functional override: f(x) := Ef(x) := ESubstitute the value E for the function/relation fat the point x.

This is a shorthand:

 $f(x) := E = f := f \Leftrightarrow \{x \mapsto E\}.$

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and corrections at various stages of the evolution of this summary.