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This deliverable describes the prototype multi-simulation framework, as
well as the result of first experiments. The focus is on describing the sim-
ulation of high-level models using the ProB animator and measuring how
well the implemented enhancements to this technology meets the perfor-
mance requirements for high-level simulation. A roadmap for implementing
the full-blown multi-simulation framework is also presented, detailing further
enhancements to ProB and the requirements for Event-B model code gen-
eration to enable high-performance simulation of Event-B models at a more
detailed level. [month 12]
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Chapter 1

Introduction

1.1 Introduction
As described in the ADVANCE Deliverable 4.1, simulation is the dominant
technology for the industrial verification of digital hardware and embedded
systems. The use of the Verilog and VHDL modelling languages is widespread
in simulation-based digital hardware verification and SystemVerilog and Sys-
temC are used increasingly for the design and simulation of systems. The
design and verification of cyber-physical systems, however, introduce new
challenges which cannot be easily addressed by existing simulation frame-
works. First, it is necessary in a cyber-physical system to model and simu-
late in the continuous as well as the digital domain. Second, the complexity
of highly-concurrent systems cannot be addressed by simulation techniques
alone. Refinement-based formal methods, such as Event-B help considerably
to manage this complexity and to verify that the implemented system meets
its specification.

It is not feasible to contemplate developing a single simulation language
and verification environment that can meet all the requirements for cyber-
physical development and verification. Legacy designs must be re-used and
the specialised expertise of developers with existing tool chains leveraged.
The primary objective of the ADVANCE multi-simulation framework is to
address the needs for different design and verification tools, both discrete and
continuous, test-based and formal to co-operate within a single development
and verification framework.

1.1.1 Approaches to Cyber-physical System Simulation

No one approach to simulation will meet the needs for cyber-physical devel-
opment and verification. In the digital hardware verification domain, cycle-
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based simulation is the dominant technology. However, where delays and
deadlines need to be modelled accurately, discrete time simulation will be
needed. For systems where an accurate, continuous model of the environ-
ment is required, continuous time simulation must be used. For many cyber-
physical systems, a hybrid approach to simulation, which employs all of the
cycle-based, discrete and continuous time simulation techniques, is required.

Cycle-based Simulation

Synchronous digital hardware can be synthesised directly from a Register
Transfer Level (RTL) model description where it is assumed that all combi-
national logic will settle between clock edges and therefore the fundamental
unit of time is the clock tick. In a cyber-physical development where a high-
level description of a system is refined so that hardware is separated from
software, the hardware description will then be further refined to a cycle-
based description which can be translated directly into an RTL hardware
description language model for synthesis. In ADVANCE, it will be possible
to simulate and model check the cycle-based description before translation.

Discrete Time Simulation

For hardware/software systems which combine synchronous and asynchronous
behaviour, or have safety requirements concerning delays and deadlines, it is
necessary to model time more accurately and introduce the notion of actual
time and time units. Different components of a system may be modelled with
time units of different granularity; the system must therefore be simulated
at the time unit of finest granularity.

Continuous Time Simulation

Where no discrete approximation of a system component’s behaviour can be
realistically modelled, it is necessary to simulate the component in the contin-
uous domain. Simulink and Modelica provide well-established tools for con-
tinuous simulation, together with significant libraries of models. ADVANCE
plans, through co-simulation, to leverage these simulators and libraries.

Hybrid Simulation

To provide a complete approach to cyber-physical system simulation, a hy-
brid approach will be required where cycle-based components interact with
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discrete and continuous time components within a single simulation envi-
ronment. Modelica provides a hybrid simulation capability within its lan-
guage and toolset, but does not support the notion of formal refinement. We
therefore intend to combine the advantages of Event-B refinement with the
continuous modelling capabilities of Simulink/Modelica in the ADVANCE
multi-sim environment.

1.1.2 Multi-sim: the first phase of development

In this first stage of development we focus on cycle-based and discrete time
modelling and simulation. We concentrate on the modelling and refinement
method for the development and verification of hardware/software systems
in an environment that can be modelled using discrete time and the tools
that are needed to support this method.

1.1.3 Formalising Simulation

A goal of ADVANCE is to use a formal approach to developing the simulation
framework. In a commercial simulator, the semantics of a given simulation
is determined by the descriptions of each component model in the design
hierarchy to be simulated, as defined in the simulation language reference
manual and also the implementation of the synchronisation and communica-
tion mechanisms, used by those component models, in the simulator kernel.
In ADVANCE, we will develop and refine simulation models which define,
formally, not only the components but also the synchronisation and commu-
nication mechanisms themselves. The model description itself will therefore
define, completely the simulation semantics of that model in the formal lan-
guage, Event-B. This will enable the ADVANCE user to start with an un-
timed, high-level model of the system and, using systematic Event-B formal
refinement, introduce incrementally more and more timing and synchronisa-
tion detail and prove formally that, at each step, the more detailed model
is a correct refinement of its abstract parent. At each step it will also be
possible to simulate and model check the model description.

1.1.4 Structure of the deliverable

The remainder deliverable is structured as follows

• Chapter 2 describes and formalises various important aspects of simu-
lation and multi-simulation, as well as various ways of modelling time.
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• In Chapter 3 we present first preliminary experiments in simulating
hybrid systems using Rodin and Event-B.

• The Sim-B approach to multi-simulation of cyber-physical systems is
described in Chapter 4. This chapter presents first prototypes on how to
effectively simulate cyber-physical systems composed of multiple com-
ponents.

• Various requirements for simulation quickly arose during the initial
phases of the case studies of the project. This led us to realise that we
had to re-design part of ProB, and provide a scripting interface. This
scripting architecture will also provide the foundation for developing
FMI multi-simulation masters and Model testing. This architecture is
described in Chapter 5, where a new Groovy-based scripting language
for ProB is developed.

• The studies and experiments have led to the roadmap for a multi-
simulation framework described in Chapter 6. Led by industrial needs,
we decided to build on the industry standard FMI (Functional Mockup
Interface).

• The application of the scripting language to Model testing is described
in Chapter 7.

• Chapter 8 presents how one can now generate an FMU (Functional
Mockup Unit) using code generation for simulation.

• In Chapter 10 we then present first experiments with Modelica and an
outlook on the rest of the project.

• Various other ProB tool developments were made in the project, driven
by the requirements of the industrial case studies. The final Chap-
ter 9 describes those extensions of ProB and the associated BMotion-
Studio, in the context of the case studies and the requirements of, e.g.,
Chapter 4.
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Chapter 2

Formalising Simulation

2.1 Motivation

As described in the ADVANCE Deliverable 4.1, simulation is the dominant
technology for the industrial verification of digital hardware and embedded
systems. The use of the Verilog and VHDL modelling languages is widespread
in simulation-based digital hardware verification and SystemVerilog and Sys-
temC are used increasingly for the design and simulation of systems. The
design and verification of cyber-physical systems, however, introduce new
challenges which cannot be easily addressed by existing simulation frame-
works. First, it is necessary in a cyber-physical system to model and simu-
late in the continuous as well as the digital domain. Second, the complexity
of highly-concurrent systems cannot be addressed by simulation techniques
alone. Refinement-based formal methods, such as Event-B help considerably
to manage this complexity and to verify that the implemented system meets
its specification.

It is not feasible to contemplate developing a single simulation language
and verification environment that can meet all the requirements for cyber-
physical development and verification. Legacy designs must be re-used and
the specialised expertise of developers with existing tool chains leveraged.
The primary objective of the ADVANCE multi-simulation framework is to
address the needs for different design and verification tools, both discrete and
continuous, test-based and formal to co-operate within a single development
and verification framework.

A further goal of ADVANCE is to use a formal approach to developing the
simulation framework. In a commercial simulator, the semantics of a given
simulation is determined by the descriptions of each component model in
the design hierarchy to be simulated, as defined in the simulation language
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reference manual and also the implementation of the synchronisation and
communication mechanisms, used by those component models, in the sim-
ulator kernel. In ADVANCE, we will develop and refine simulation models
which define, formally, not only the components but also the synchronisation
and communication mechanisms themselves. The model description itself will
therefore define, completely the simulation semantics of that model in the
formal language, Event-B. This will enable the ADVANCE user to start with
an untimed, high-level model of the system and, using systematic Event-B
formal refinement, introduce incrementally more and more timing and syn-
chronisation detail and prove formally that, at each step, the more detailed
model is a correct refinement of its abstract parent. At each step it will also
be possible to simulate and model check the model description.

2.2 Formalising Simulation with Event-B

In ADVANCE, we will develop and refine simulation models which define,
formally, not only the components but also the synchronisation and commu-
nication mechanisms themselves. The model description itself will therefore
define, completely the simulation semantics of that model in the formal lan-
guage, Event-B.

2.2.1 Temporal Modeling in Cyber-physical systems

The following areas will need to be properly addressed by the temporal mod-
elling capabilities provided by ADVANCE.

Distributed Function and Control

In traditional embedded systems where a single controller interacts with its
environment, it is possible to model temporal interaction with the introduc-
tion of two modes, controller mode and plant mode. The system model first
evaluates in plant mode, switches to controller mode to deal with any inputs
from the plant and then switches back to plant mode so that the plant can
respond to the controller outputs. For modern cyber-physical systems with
distributed function and control, as shown in Figure 2.1, it is necessary to
model the Communication and Synchronisation of the Concurrent Processes
in a more general way.
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Figure 2.1: Distributed Function and Control

Managing Safety Hazards

In cyber-physical system modelling it is necessary to deal with the safety
requirements as well as the functional requirements.

In a simple embedded system, this can be done by introducing two extra
modes to the plant/controller mode cycle. In the detection mode the con-
troller can model, non-deterministically, the presence of a safety hazard in the
system and manage the hazard appropriately. In the prediction mode, the
controller can model what it thinks the plant’s response to a given controller
input should be. The controller can then compare the predicted response to
the actual response received in plant mode.

Again, this modal approach will not work with more complex cyber-
physical systems such as that shown in Figure 2.1.

Verifying the relationships between Inputs and Outputs

In the aerospace standard, DO 178C, the formal methods supplement states
that, for a system verified using formal methods, the certifying authority
must be convinced that

• The Outputs fully satisfy the Inputs

• Each Output data item is necessary to satisfy some Input data item
(No unintended behaviour)
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• The Input/Output specification is preserved by chosen implementation
architecture

The DO 178C standard pioneers the introduction of formal methods to
complement traditional test-based verification techniques for system certifi-
cation, describing a method that is applicable to cyber-physical systems in
general.

2.2.2 Simulating Formal Models

In ADVANCE the user may start with an untimed, high-level model of the
system and, using systematic Event-B formal refinement, introduce incre-
mentally more and more timing and synchronisation detail. It will then be
possible to prove formally that, at each step, the more detailed model is a
correct refinement of its abstract parent.

Whereas the abstract model(s) may be untimed, the refined models rep-
resent concurrent, communicating processes. It will therefore be necessary
to introduce the notion of a tick in the formal model.

Cycle-based execution

In cycle-based simulation, there is no notion of modelling the actual time in
units. There is just the notion of time advancing periodically. In Event-B
terms we can therefore differentiate between a sequence of events that occur
before the tick and a sequence of events that occur after the tick. This has
implications for the ADVANCE toolset. For instance, ProB has the notion
of the next state, X, in it’s LTL implementation, which corresponds to the
next event evaluation. We need the notion of the next tick.

Timed execution of Delays and Deadlines

In the cases where it is necessary to model delays and deadlines to meet the
system requirements, time will need to be modelled properly in integer time
units.

2.2.3 Modeling Timing Cycles with Event-B

Component Modes

As described above, for simple models with a single controller, it is sufficient
in Event-B to introduce a Plant mode and a Controller mode. The Plant
evaluates, the Controller then evaluates and the next tick begins when the

13



Plant evaluates again. For more complex systems with multiple controllers
and distributed plant, the number of modes proliferate and it is necessary to
define an ordering on these modes to ensure correct evaluation of the model
events. If there is any feedback in the model, as introduced by the connection
C3 in Figure 2.1 above, it will not be possible to define an ordering. A further
problem with using component modes is that typically components evaluate
at different rates, but all components must be evaluated at the fastest rate
whether they need to or not.

Generalised Update/Evaluation Modes

To overcome the need for defining an ordering on Component modes, com-
mercial simulators use a two list algorithm which has two, generalised modes:
Update and Evaluate. The algorithm, which is described in detail in deliver-
able D4.1, supports arbitrary topology complexity. No zero-delay communi-
cation is allowed between components which prevents race and means that
components can be evaluated in any order. Components suspend between
wake-ups and will be evaluated again when a value change is received on an
input port or a self wake matures. Components can therefore evaluate at
different rates. The two-list algorithm supports Discrete Time modelling of
delays and deadlines, Cycle-based modelling or a combination of both. The
algorithm is also therefore suitable for modelling Safety Hazards.

2.2.4 A Simple Arithmetic Example

The Abstract Specification

We first write the abstract specification in Event-B, defining the Output as
a function of its Inputs as shown in Figure 2.2.

event AddInc 
    any p 
    where 
      @grd1 p ∈ Inputs 
      @grd2 In1(p) ∈ � 
      @grd3 In2(p) ∈ � 
    then 
      @act1 v ≔ In1(p) + In2(p) + 1 
  end 

Figure 2.2: The Abstract Specification
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At this level, the model is untimed. The whole arithmetic operation is
performed atomically. The single event AddInc takes two natural numbers
as inputs, adds them together, adds one to the result and stores this result
in the variable v The Inputs are defined in the Event-B context as shown
in Figure 2.3. Inputs is a subset of the set Parameters. In1 and In2 define
mappings from Inputs to the Natural numbers.

constants Inputs In1 In2 
 
sets Parameters 
 
axioms 
  @axm1 Inputs ⊆ Parameters 
  @axm2 In1 ∈ Inputs → � 
  @axm3 In2 ∈ Inputs → � 
end 
 

Figure 2.3: The Input Specification

The First Refinement

In this refinement, we introduce the implementation architecture. We wish
to implement the arithmetic operation as a pipeline. The first stage of the
pipeline is represented by a component which adds the two input values
together and writes the result to the channel. The second component reads
the value from the channel when it arrives, adds one to it and stores the value
in v. We model the abstract channel as having a delay of two time units, as
shown in Figure 2.4.

Does the chosen Architecture Implement the Abstract Specification? Can
we verify that the relationship between the Output and the Inputs, is pre-
served, as required by DO-178C?
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event AddInc 
    any p 
    where 
      @grd1 p ∈ Inputs 
      @grd2 In1(p) ∈ � 
      @grd3 In2(p) ∈ � 
    then 
      @act1 v ≔ In1(p) + In2(p) + 1 
  end 

⊆ 

Add# Increment#
Channel: sum 

Delay = 2 

Figure 2.4: The Pipelined Architecture

Modelling Channels with Delay in Event-B

We model a Channel as a Set of Schedules. A Schedule comprises a Delay, a
Value (optional) and the Input Values that correspond to the Output Value
(optional)as shown in Figure 2.5. The Input Values are used to prove that
the input/output relationship is preserved by the implementation. A channel
with schedules that have Delay only no Values can be used for synchronisation
purposes.
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Figure 2.5: The Channel

Writing to a Channel

A Channel write is accomplished by creating a new schedule with a delay of
at least one as shown in Figure 2.6. Multiple Schedules may be added to a
Channel. If more than one schedule is present for a given time, one is chosen
non-deterministically. It is the subject of future work to explore other options
to match the semantics of different commercial simulators. For instance, it
would be possible to prevent a component writing multiple schedules to a
channel for same time.
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Figure 2.6: Writing to a Channel

The Update/Evaluate Cycle

Update is modelled using a single Event-B event. Evaluate is represented by
one or more enabled Component Events.
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In Evaluation Mode, all Components, where one or more of their Input
Channels has a schedule with delay 0, as shown in Figure 2.7, resume. One
or more Component events are enabled and the Update event is disabled.
A Component may change local state and create new Schedules on Output
Channels. It must then suspend.
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"
"
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Inputs", , 

Figure 2.7: Evaluation Mode

When all of the enabled Components have been evaluated, all the Compo-
nent evaluation events will be disabled and the Update event enabled. Sched-
ules with 0 delay are deleted and all other schedule delays are decremented
as shown in Figure 2.8. The current tick is therefore complete The Update
Event is re-enabled if no schedule has 0 delay, resulting in another tick.
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0"
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Figure 2.8: Update Mode
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Modelling the First Refinement in Event-B

We model the Adder and Incrementer Components as shown in Figure 2.9.

event Add 
    any p s 
    where 
      @grd1 p ∈ Inputs 
      @grd2 In1(p) ∈ � 
      @grd3 In2(p) ∈ � 
      @grd4 s ∉ dom(sum_delay) 
      @grd5 adder_evaluated = FALSE 
    then 
      @act1 sum_value(s) ≔ In1(p) + In2(p) 
      @act2 sum_delay(s) ≔ 2 
      @act3 sum_inputs(s) ≔ p 
      @act4 adder_evaluated ≔ TRUE 
  end 
 

event Increment refines AddInc 
    any s 
    where 
      @grd1 s ∈ dom(sum_delay) 
      @grd2 sum_delay(s) = 0 
      @grd3 incrementer_evaluated = FALSE 
    with 
      @p p = sum_inputs(s) 
    then 
      @act1 v ≔ sum_value(s) + 1 
      @act2 inc_sum ≔ sum_value(s) 
      @act3 incrementer_evaluated ≔ TRUE 
  end 
 
 

  @inv3 sum_value ∈ Schedule ⇸ � 
  @inv4 sum_delay ∈ Schedule ⇸ � 
  @inv5 sum_inputs ∈ Schedule ⇸ Inputs 
 

Figure 2.9: The Add and Increment Components

The channel is modelled as three functions, sum_value, sum_delay and
sum_inputs which represent the records in the schedule.

The event Add is a new event which refines Skip. It takes the Inputs and
a fresh schedule as parameters, adds the input values together and writes
the result to the value record of the schedule, writes a delay of 2 to the
delay record, and writes the Input parameter to the inputs record. The
adder_evaluated flag is set to FALSE to indicate that the adders has com-
pleted its evaluation. The Increment event refines the abstract eventAddInc.
It is enabled when there is a schedule on the channel which has a delay of 0. It
takes the value from the schedule using the sum_value function, adds 1 to it
and writes the result to the variable v. It then sets the incrementer_evaluated
flag to FALSE.
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When both Components have evaluated, the Update event, shown in Fig-
ure 2.10, is enabled.

 event Update 
    where 
      @grd1 adder_evaluated = TRUE 
      @grd2 0 ∉ ran(sum_delay) ∨ incrementer_evaluated = TRUE 
    then 
      @act1 adder_evaluated ≔ FALSE 
      @act2 incrementer_evaluated ≔ FALSE 
      @act3 sum_delay ≔ λi·i ∈ dom(sum_delay) ∧ sum_delay(i) > 0 ∣ sum_delay(i) − 1 
      @act4 sum_value ≔ λi·i ∈ dom(sum_value) ∧ i ∈ dom(sum_delay) ∧ sum_delay(i) > 0 ∣ sum_value(i) 
      @act5 sum_inputs ≔ λi·i ∈ dom(sum_inputs) ∧ i ∈ dom(sum_delay) ∧ sum_delay(i) > 0 ∣ sum_inputs(i) 
  end 
 

Figure 2.10: The Update Event

The component evaluation flags are set to FALSE and all schedules in
the channel which have a delay greater than 0 have their delays decremented
using a lambda function. All schedules with a delay of 0 are removed from
the channel.

The Update event is now disabled and the event Add enabled. The In-
crement is also enabled if there is a schedule with delay 0 on the channel.

Proving that the Timed Implementation is a correct Refinement of
the Abstract Specification

To prove that this is, indeed, a correct refinement it is necessary to introduce
a Gluing Invariant. Because of the way the channels have been modelled as a
set of schedules, the Gluing Invariant is readily described as the relationship
between inputs and outputs in each schedule, as shown in Figure 2.11.

 
@inv9 ∀s·s ∈ dom(sum_value) ⇒ sum_value(s) = In1(sum_inputs(s)) + In2(sum_inputs(s)) 
 

Figure 2.11: The Gluing Invariant

With this invariant, all proof obligations that have been generated are
discharged automatically by the Rodin tool. The invariant also performs the
role of demonstrating that the relationship between inputs and outputs, as
required for DO 178C certification, is preserved by the implementation.
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The Second Refinement: Removing reference to Input Values

Once the Gluing Invariant has been proved, a further refinement is introduced
in which all reference to the input values are removed as they will have no
place in the final implementation.

An alternative, Cycle-Based Implementation

In a cycle-based implementation, there can only two schedules on a channel
at any time. The schedule representation can be simplified; the delay is repre-
sented by two boolean variables, msg_sent_on_sum and msg_rcvd_on_sum,
the value by integer variables sum and sum_prime and the inputs by the
variables inputs and inputs_prime. Two gluing invariants are needed as
shown in Figure 2.12.

  
  @inv9 msg_rcvd_on_sum = TRUE ⇒ sum = In1(sum_inputs) + In2(sum_inputs) 
  @inv10 msg_sent_on_sum = TRUE ⇒ sum_prime = In1(sum_inputs_prime) + In2(sum_inputs_prime) 
 

Figure 2.12: The Cycle-Based Gluing Invariant

The second refinement, where the input variables have been removed, is
shown below. Figure 2.13 shows the cycle-based Update event,

 event Update refines Update 
    where 
      @grd1 adder_evaluated = TRUE 
      @grd2 msg_rcvd_on_sum = FALSE ∨ incrementer_evaluated = TRUE 
    then 
      @act1 msg_rcvd_on_sum ≔ msg_sent_on_sum 
      @act2 sum ≔ sum_prime 
      @act3 msg_sent_on_sum ≔ FALSE 
      @act4 adder_evaluated ≔ FALSE 
      @act5 incrementer_evaluated ≔ FALSE 
  end 

Figure 2.13: The Cycle-Based Update Event

Figure 2.14 shows the cycle-based Add event,
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 event Add refines Add 
    any p 
    where 
      @grd1 p ∈ Inputs 
      @grd2 In1(p) ∈ � 
      @grd3 In2(p) ∈ � 
      @grd4 adder_evaluated = FALSE 
    then 
      @act1 sum_prime ≔ In1(p) + In2(p) 
      @act2 msg_sent_on_sum ≔ TRUE 
      @act3 adder_evaluated ≔ TRUE 
  end 

Figure 2.14: The Cycle-Based Add Event

and Figure 2.15 shows the cycle-based Increment event,

 event Increment refines Increment 
    where 
      @grd1 msg_rcvd_on_sum = TRUE 
      @grd2 incrementer_evaluated = FALSE 
    then 
      @act1 v ≔ sum + 1 
      @act2 incrementer_evaluated ≔ TRUE 
  end 

Figure 2.15: The Cycle-Based Increment Event

2.2.5 Formalising Simulation: Summary

• Update/Evaluate Simulation semantics can be formalised in Event-B

• Event-B component models can be simulated/co-simulated with third
party simulators

• Event-B refinement supports naturally the DO-178C requirement to
verify the relationship between Inputs and Outputs at Specification
and Implementation Level

• Update/Evaluate modes provides a suitable basis for a Formal Safety
Analysis
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Chapter 3

First Experiments on Simulating
Hybrid Systems using ProB

We have experimented with several case studies, notably those from [ASZ12].
We present two of them below.

3.1 Train Controller
It was relatively straightforward to take the train controller from [ASZ12]
and animate it using ProB, even without real number support. The model
itself came from the book [Pla10].

Basically, axiom 5 (8x, y.¬y = 0 ) y ⇤ (x/y) = x) was marked as a
theorem rather than an axiom.

Animation with ProB has revealed the following issues with the model:

• Visualization shows that train 1 and 2 can get the same position (in-
variant 6 of the model is z � z2 >= 0, but it should be z � z2 > 0 or
better z � z2 > train_length).

• The constant sl must be set to at least a value of 4 so that the trains
can be moved at all.

3.2 Collision Avoidance Protocol
We have managed to animate the first level of the collision avoidance protocol
model from [ASZ12] (see Figure 3.2). The second level of refinement requires
access to the trigonometric functions. We have already made such functions
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Figure 3.1: ProB and BMotion Studio animation of the hybrid train con-
troller

available within ProB but thus far this only works for classical B models.
We are in the process of making these functions available as a mathematical
extension (a theory for the theory plug-in).

Figure 3.2: ProB and BMotion Studio animation of the hybrid collision
avoidance protocol model

3.3 Related Work: DESTECS
DESTECS [BLV+10] (Design Support and Tooling for Embedded Control
Software) is a tool platform and method for developing embedded control
software. It combines continuous-time (CT) models of physical systems
with discrete-event (DE) models of controllers through co-simulation and
co-modeling. The modeling and simulation of the discrete time-event part
takes place in the Overture tool [LBF+10]. Overture is an integrated devel-
opment environment for modeling and simulating VDM [Jon90] models. The
modeling and simulation of the physical part of the system takes place in the

24



20-sim tool. 20-sim allows to simulate the behavior of dynamic systems, such
as electrical, mechanical and hydraulic systems. Since, 20-sim and Overture
are in principle two independent tools, the task of the DESTECS platform
is to bring both tools together by orchestrating their simulators. Similar to
the DESTECS platform, the aim of the ADVANCE project is to combine
separate simulation tools in a seamless way. Beside a closely-coupled inter-
face with ProB, the ADVANCE project will also support links with external
simulators.
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Chapter 4

Sim-B

4.1 Overview
The ADVANCE project aims to facilitate the modelling and simulation of
hybrid systems. That is, systems that involve software and hardware interac-
tion. Event-B [Abr10] makes use of modelling concepts based on set-theory,
predicate logic, and refinements for step-wise development of formal models.
System properties are specified in the form of invariant predicates. The Rodin
tool [ABHV06] generates proof obligations which have to be discharged in
order to show that invariants hold after update actions have been performed.
Event-B is a state-based approach, rather than process-based, but we are
still able to gain a good understanding of behavioural aspects of the system
using the ProB animator [LB03]. The ProB animator can be used to view
a model’s behaviour in a step-by-step fashion, by manually selecting which
event should update the state. ProB can also be used as a model-checker,
to perform state-space exploration, looking for deadlocks and invariant vio-
lations, and to perform LTL model-checking. To achieve this, the animator
randomly selects from a list of enabled states, to updates the state.

4.2 Simulating Cyber-Physical Systems
In the ADVANCE project, we plan to introduce the ability to animate a
number of machines with ProB. We also aim to facilitate interaction with
external software; be it in the form of 3rd party simulators, our own gener-
ated simulation code, or the generated deployable code [EB11]. As a first
step we are performing some experiments, and developing a GUI, as part
of a simulation plug-in that we call Sim-B. The Sim-B GUI will provide an
interface for driving simulations, and for making visible a meaningful subset
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of the available information. We are aware of the potentially large amount
of information that will be available for presentation to the user, obtaining
(by filtering) a meaningful subset will assist in being able to understand and
manage the simulations. It is envisaged that we will be able to provide filters
for some of this information, such as providing tables to display a subset
of each machine’s state, similar to Fig. 4.1. (First developments have al-
ready been achieved; see Section 9.1.) Here we see four machines, M1 to M4,
where information is displayed about their state-machines’ current states.
However, the choice of what to display at any time is likely best left to the
user, so a configuration menu with choice of whether to display a machines
state-machines’ current states, and/or to select a watch on particular vari-
able, would be most useful. We would also wish to apply breakpoints, to
events, so that a simulation will run until a breakpoint event has completed.
This feature should be reasonably easy to add to Sim-B. But an interesting
issue, that requires further exploration, is what happens to tasks/processes,
running in 3rd party simulators and other executables, when a breakpoint is
hit. This will be explored in future work, as will be the issue of interfacing
with external programs, in general.

In our approach, we can model the environment, and the deployable sys-
tem in a modular fashion. We can begin with a single all-encompassing
model, which is later decomposed [But09] using the decomposition plug-
in [SPHB10]; or, it can be done by combining machines, using the composed
machine plug-in [Sil11]. Either way, it results in the use of a composed ma-
chine component. A composed machine can be viewed as a container for a
number of machines; it describes how the machines interact, by recording

M2
M1

roomdoor

ansm
sm

M1 M2

M3 M4

Figure 4.1: A Mock-up GUI for SimB
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the synchronizations of events. See the following:

COMPOSED MACHINE Sys0

INCLUDES b1, P rod1, Cons1

COMPOSES EVENTS
INITIALISATION ,
COMBINES EVENT b1.INITIALISATION k
Prod1.INITIALISATION k Cons1.INITIALISATION

Put ,
COMBINES EVENT Prod1.Put k b1.Put

Get ,
COMBINES EVENT b1.Get k Cons1.Get

Produce ,
COMBINES EVENT Prod1.P roduce

Consume ,
COMBINES EVENT Cons1.Consume

END

We see here that the composed machine Sys0 contains three machines b1,
Prod1, and Cons1. Each machine models a buffer, producer, and consumer,
respectively. We can see that the producer Prod1 and buffer b1 synchro-
nize by combining the events Prod1.Put and b1.Put. The net effect is real-
ized by conjoining guards of the individual events, and parallel composition
of the actions, to insert a value into a non-full buffer. Similarly the Get
event models the read and removal of the value from a non-empty buffer.
Although the machines remain as individuals in the project workspace, a
single, statically-checked model is produced, which contains all of the state
and events composed as described above. When working downstream of the
composed machine, we therefore have the choice whether to make use of the
individual models or the single statically checked model.

4.3 Handling Heterogeneity
During preliminary investigations the Düsseldorf team have made some deci-
sions about how the ProB tool will be engineered. As described in Chapter 5,
the tool will make use of the Groovy language [KGK+07]. However, we are ex-
ploring alternative approaches to driving the simulation. For instance, when
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ProB + Event-B Models + (Tasking EB)

(Tasking)
Machines
t1, ..

(Shared)
Machines
p1, ...

(Environ)
Machines
e1,e2 ...

ProB + Event-B

e1

e2

t1

p1

synch synch

synch

call

rv
call

Simulation Deployable

GenCode or 3rd Party Sim

??

??

??

Figure 4.2: SimB Simulation - Artefacts

generating all of the code from the formal model, we can perform simulation
using the generated environment simulation-code and the actual deployable-
code [ACB12], without the need for ProB at all. The pro’s and cons of the
approach need to be explored, as is the possibility of integrating ProB with
generated code (both environment simulation-code and deployable-code), to-
gether with 3rd party simulators such as simulink. The artefacts involved in
simulation can be seen in Fig.4.2.

The diagram in Fig.4.2 shows an abstract development, at the top-left,
containing various components that are modelled, and animated, totally
within Event-B and the ProB environment. The bottom right is a repre-
sentation of some more concrete artefacts used in simulation. The task t1,
and the protected object p1, on the right side of the vertical line, are de-
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ployable components, generated by the code generation plug-in. On the left
of the vertical line we have simulation components, the environment simu-
lation module e2 could be generated by the code generation plug-in (or in
fact e2 may be a 3rd party simulator), while e1 remains animated by ProB.
Note that the synchronized event model of communication, in the abstract
model, is replaced by concrete subroutine calls, and rendezvous (rv) style
communication, in the simulation. So, at some stage of the abstract de-
velopment it is likely that one or more of the modelled components will be
replaced, with something that more accurately represents the actual system
being developed. We will need to understand how these artefacts interface
with ProB, and the other parts of the simulation to achieve this. The best
way to proceed, from the top-left animation of the abstract development, to
the bottom-right simulation, the way of interfacing with each of the simu-
lation components, and the method of driving the simulation itself, is the
subject of future work.

An overview of the issues relating to cyber-physical systems can be found
in [DLV12]. Of particular relevance, is their approach to modelling of het-
erogeneous systems; that is, modelling with a variety of discrete-event based
models and continuous-time models which they refer to as models of compu-
tation. This work has its roots in an approach described as a framework for
models of computation [LSV98]. The paper describes a model with processes,
signals and connections. The semantics of the approach are denotational, set-
based and involve named events (tags). Signals are defined by a set of events
e 2 T ⇥ V where T is a set of tags and V is a set of values. Signals can be
combined into a set of tuples, and the tuples can be used to define processes.
Processes may be composed using connections, where some signals become
hidden. Discrete-event systems are described, based on a timed tag system.
This means event tags are used as time-stamps that are used to define or-
dering between process, and synchronizations are based on equivalent event
names. A later paper [LLEL05] describes how the heterogeneous systems,
which make up cyber-physical systems, can be combined, using a formal ap-
proach. The realisation of the theory is to be found in the Vergil tool, of
the Ptolemy project [Thec]. The tool makes use of a graphical modelling
interface (among others) for simulating cyber-physical systems. The features
of the tool are quite extensive, but deal mainly with simulation; code gen-
eration is only an experimental feature. It has a port to Eclipse but does
not seem to follow the Eclipse plug-in style, so would be of limited use for
quick integration with Rodin; however, the aims of Ptolemy and Advance
seem quite similar.
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Chapter 5

ProB Scripting Approach

5.1 Current state of the implementation

The current version of the ProB Plug-in for Rodin consists of a component
written in Prolog which is wrapped in a Java layer. The Java layer can be
extended to enable third-party developers to use ProB within in their own
tools. This has been done successfully by several projects. For instance,
SAP built a tool on top of ProB [RKW+10] and the UML-B Statemachine
Animation plug-in [SS] is also based on ProB. Central to the architecture
is a variation of the command pattern [GHJV95]. A command represents a
particular calculation that we want to perform in ProB. Examples for com-
mands are “load a model" or “check the invariant for state X". The command
implementation has methods to produce a call to the Prolog core and it is
also used as a container for the results of the computation. To perform a
command, it is sent to a particular object, the animator. The animator is
responsible for transmitting the Prolog queries to ProB and extracting the
answers to the query.

A third-party developer can combine the provided commands to build up
tools or invent new commands by extending both the Java and the Prolog
component. However, sometimes this fine grained approach becomes cum-
bersome. Having a notion of states, events and a state space on the Java
side would simplify many tasks.

The new Java API [BCK12] introduces several higher level constructs such
as the state space, states, events, formulas (i.e. expressions and predicates
that can be evaluated in a given state) and history. The state space is a
graph whose vertices are states and edges are events. It is transparently
and lazily expanded as new vertices are explored. The state space does not
incorporate a notion of a current state. This is captured in the history. A
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history is a tuple of a path through the state space and a current state that
lies on the path. Basically it behaves like a history in a web browser. The
new core supports having multiple histories on the same state space. The
implementation is, however, still based on the extensible command approach.
This means that if the abstractions that are provided are not sufficient it is
always possible to access the commands directly.

The new API also provides a development REPL interface (see Fig. 5.1)
using the Groovy scripting language. The interface is web based and sup-
ports most features that one expects from a modern console such as code
completion and a history of commands.

Figure 5.1: ProB Groovy REPL

To give a feeling of how the console can be used we will show a small
script that we can run interactively.

// Load an EventB model of the 8-puzzle
// http://en.wikipedia.org/wiki/Fifteen_puzzle

32



ProB> model = api.eventb_load(’/Puzzle8/MPuzzle8.bum’)
([MPuzzle8, CPuzzle8], [SEES=(MPuzzle8,CPuzzle8)])

// Extract the Machine from the model
ProB> mch = model.getComponent(’MPuzzle8’)
de.prob.model.eventb.EventBComponent@15ab7626

// Find out which Events are defined in the machine
ProB> mch.getChildrenOfType(BEvent.class)
[INITIALISATION, MoveDown, MoveUp, MoveRight, MoveLeft]

// Find out which variables are defined in the machine
ProB> mch.getChildrenOfType(Variable.class)
[board, count]

// Retrieve the model’s state space
ProB> s = model.getStatespace()
([root], [])

// Get the root state of the state space
ProB> r = s.root
root

// Call a sequence of two arbitrary Events.
ProB> v1 = r.anyEvent().anyEvent()
1

// Get the value of the model’s variable called count.
ProB> v1.value("count")
0

// Find out which events are enabled in state v1
ProB> s.getOutEdges(v1)
[3=[1,3], 2=[1,2]]

// Execute the MoveDown event
v2 = v1.MoveDown()
2

// Get the value of count in a different state
ProB> v2.value("count")
1

Using meta programming in Groovy, we can turn events into methods.
The methods take an extra argument, a predicate string that can be used
to restrict the parameters in case of non-determinism. If we leave out the
predicate, ProB will use TRUE. ProB will try to find parameters such that
the guard and the additional predicate are true and will execute the event
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with some arbitrary solution it finds. We can also use the anyEvent method
to randomly execute an event. The method enables the restriction of the ran-
dom choices by providing either a list of event names or a regular expression
that is matched against the event names.

The state space is a graph that saves the information about the different
states and events that have been calculated. In the example script, we di-
rectly used the state space. In the context of animation, we require another
abstraction, a history. A history stores the trace of the different events that
are executed during an animation process. To begin the animation process it
is only necessary to specify the desired state space, and then animation can
take place by adding the desired transition from the current state.

A first attempt at synchronizing components (using B-style composition)
is also in place. This is accomplished by combining histories over the compo-
nent’s state spaces into a synchronized history. If an event is synchronized,
it can only be added to the synchronized history if it is possible to execute
the event with the same parameters in all the underlying components. Non-
synchronized events can take place arbitrarily. Basically, the synchronized
history defines a single valid interweaving of the components but it can also
be used in principle to model check the system.

5.2 Ongoing activities
Currently, functionality for the Classical B and CSP formalisms are available
in a stand-alone webconsole. This web console is also integrated into an
Rodin plug-in so that the Event-B specification is also supported.

It seems reasonable that Groovy is well suited for generating test cases if
we can lift the constraint solving capabilities of ProB into the scripting lan-
guage. This will allow the specification of algorithms for test case generation
without deep knowledge of the Prolog engine. This will allow third-party
contributors to define their own test case generators.

A detailed description of the requirements for the new ProB version is
available from http://goo.gl/v9j9u. Note that the requirements document
includes many features that are not related to the Advance project. It also
does not yet include all requirements imposed by Advance.
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Chapter 6

Roadmap for multi-simulation
framework based on FMI

6.1 Functional Mock-up Interface
We decided to use the Functional Mock-up Interface (FMI) Standard [Mod]
for our implementation of a multi-simulation framework. This will allow us
to integrate artefacts called Functional Mockup Units (FMU) into Event-
B simulations. These FMUs can be generated by any tool that supports
this standard. Many simulation tools1 such as MATLAB/Simulink or even
Microsoft Excel support the FMI standard, as it ensures flexibility and cross-
platform execution.

FMUs are coordinated by an FMI master. An individual FMU is a zip
archive that contain at least a shared library which implements the Func-
tional Mock-up Interface and an XML document describing the communica-
tion ports of the model and the capabilities of the simulator.

The interface that is defined by the standard mainly consists of the fol-
lowing functions:

fmiComponent fmiInstantiateSlave(fmiString instanceName,
fmiString fmuGUID,
fmiString fmuLocation,
fmiString mimeType,
gmiReal timeout,
fmiBoolean visible,
fmiBoolean interactive,
fmiCallbackFunctions functions,
fmiBoolean loggingOn);

1
A list is available at https://www.fmi-standard.org/tools.
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fmiStatus fmiInitializeSlave(fmiComponent c,
fmiReal tStart,
fmiBoolean StopTimeDefined,
fmiReal tStop);

fmiStatus fmiTerminateSlave(fmiComponent c);
fmiStatus fmiResetSlave(fmiComponent c);
void fmiFreeSlaveInstance(fmiComponent c);
fmiStatus fmiSetReal (fmiComponent c,

const fmiValueReference vr[],
size_t nvr,
const fmiReal value[]);

fmiStatus fmiSetInteger(fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
const fmiInteger value[]);

fmiStatus fmiSetBoolean(fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
const fmiBoolean value[]);

fmiStatus fmiSetString (fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
const fmiString value[]);

fmiStatus fmiGetReal(fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
fmiReal value[]);

fmiStatus fmiGetInteger(fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
fmiInteger value[]);

fmiStatus fmiGetBoolean(fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
fmiBoolean value[]);

fmiStatus fmiGetString(fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
fmiString value[]);

fmiStatus fmiDoStep(fmiComponent c,
fmiReal currentCommunicationPoint,
fmiReal communicationStepSize,
fmiBoolean newStep);
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Our approach is to use a generic implementation that loads a given FMU
and provides an API that is more idiomatic for the usage inside Java ap-
plications. Indeed, within Advance, the multi-simulation masters will be
written in Java or Groovy and run on the JVM (usually within hte Eclipse
IDE provided by Rodin). A functional mock-up unit is wrapped in a class
called FMU. It is created by instantiating the class providing the name of
the zip file. This will automatically load the description file, setup the na-
tive functions and start the FMU using the fmiInitializeSlave function.
After loading the native library the user can initialize the FMU providing
the simulation duration as specified in the FMI standard, the Java method
is similar to the C version. We have decided to make the getter and setter
functions more idiomatic. For each of the types that can be read or written
we created a getter method (getInt, getBoolean, getDouble and getString)
that takes a variable name as its parameter and returns the value at the cur-
rent point in time. We also provide a set method that takes a variable name
and a value and writes the value back to the FMU. Computation steps are
executed using the doStep method that calls the fmiDoStep function of the
FMU. Finally tearing down the FMU is done using the terminate method.
The terminate function will not only stop the computation but also free the
memory. It combines the fmiTerminateSlave and fmFreeSlaveInstance
functions from the FMI specification. The FMU wrapper has been imple-
mented and is included in the ProB 2.0 integration builds. It uses a modified
version of the JFMI wrapper from the Ptolemy project [Thec].

FMI does not impose many restrictions on the master algorithm, the
master has to be rewritten from scratch for each system. Using the Groovy
scripting language this can be done already in the current implementation.
We want to provide the user with a more pleasant experience by supporting a
generic master that can be configured from the UI and customized using the
scripting language. Such a master needs to know about all the units involved
in co-simulation and connections between them. In the FMI parlance this
information is called component connection graph and is used to validate
assembled units, derive a suitable co-simulation algorithm depending on the
topology and other properties of the graph and coordinate co-simulation
process.

We are planning to develop a component diagram editor and co-simulation
driver as part of the Rodin platform that would enable users to import and
instantiate existing FMUs and Event-B machines as components and visually
construct a graph model that can be used by the master. Each component
on the diagram will have a configurable number of input and outputs ports,
compatible with FMI standard types, which can be connected to the corre-
sponding ports of other components via connectors. The diagram will provide
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controls for running the master and display the simulation state with time,
including exchanged signal values between ports and internal state variables
of components.

The metamodel of connection graph and the editor will be based on the
existing open-source frameworks provided by Eclipse and Rodin and will
make use of the Event-B metamodel.

The component diagram tool will support both FMI components, bun-
dled as .fmu archives, and Event-B components. An Event-B component
may represent a single Event-B machine or a hierarchy of machines with a
composed machine as a root element and multiple nested machines that con-
stitute the composition. Each nested machine can be a composed machine
itself. We are aiming at supporting such complex compositional structures
at the diagram level, so the users will be able to import composed machines
and their constituent elements and link them with other components. The
interaction between the elements of composed machines may also be part of
the visual notation and displayed during the simulation.

6.2 Co-simulation demonstrator
As a demonstrator we implemented a version of a watertank system. For
co-simulation the system consists of a FMU written in C that models the
continuous part of the system and a controller written in classical B that
models the decision computation. The FMU is being loaded using the pre-
viously described wrapper class.

waterTank.fmu

xml dll

FMU Instance

getDouble(...)

initialize(...)

set(…)

doStep(…) watertankCtrl

mch

ProB Animation
value(…)

initialize()

fmiReadInputs(...)

fmiWriteOutputs(…)

decide()

readLevel()

writePump()

Li
fte

d 
fro

m
 M

od
el

Figure 6.1: FMU and Animation instance in ProB

Figure 6.1 shows the two entities that are used in the co-simulation. On
the left we see the waterTank.fmu model wrapped in an instance of the FMU
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class. The class provides generic methods to access variables, initialize the
simulation and perform simulation step. The figure only shows the methods
we actually use in the simulation. On the right we see the B model loaded
into the ProB animator. The animator provides a generic method to access
variables and model-specific methods that were lifted from the model using
Groovy meta-programming. For each event of the model ProB creates a
method that can be called from Java.

The controller algorithm is shown in figure 6.2. We begin by reading the
port values. This step is not part of the decision process, it is a representation
of the fact that the current value from the sensor arrives at the port of the
controller. Then we read the value from the port into the controller, the
controller decides if the pump should be switched on or off and the result is
written to the outgoing port of the controller. These three steps that model
the controller making a decision do consume some time. Finally the values
are written into the port without consuming time.

fmiReadInputs make decision fmiWriteOutputs

read water level decide set pump switch

Figure 6.2: Controller algorithm

We developed a master written as a Groovy script shown in figure 6.3 that
coordinates the two components and implements the wiring. The outline of
the algorithm is shown in figure 6.5. The master initialized both components
(1) and then sets the values of the input ports (2). It then executes the
decision making process on the controller which will take some time �t and
then simulates the environment for �t time units (3). The reason is that
during the time the computation takes water will continue to flow into or out
of the tank. Finally the master retrieves the output of the controller (4) for
the next cycle that starts at point (2).

The master script also converts between the types used in the C imple-
mentation (double) and the B controller (integer). For the sake of simplicity
we decided that we stick to fixed precision values and we multiply each dou-
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import de.prob.cosimulation.FMU

master = { dir ->
ctrl = api.b_load(dir+"/waterTankCtrl.mch") as History
ctrl = ctrl.anyEvent(); // setup constants
ctrl = ctrl.anyEvent(); // initialize machine

fmi = new FMU(dir+"/waterTankEnv.fmu")
fmi.initialize(0.0, 10.0)

time = 0.0

while(time < 10) {
// Transfer initial values to ports
level = fmi.getDouble("level")
pump = ctrl.getCurrentState().value("fmiPump")=="TRUE";
blevel = (level*1000) as int
fmi.set("pump",pump)

println "Setting inputs. pump="+pump+" level="+blevel

ctrl = ctrl.fmiReadInputs("l="+blevel)

// Let controller decide what action it should perform
println "Controller decides"
ctrl = ctrl.readLevel().decide().writePump()

ctrltime = (ctrl.getCurrentState().value("time") as int)/1000

// Read time from Controller and simulate environment
// Side effect: new value of level is available
time = fmi.doStep(time,ctrltime-time);

// Store Controller’s decision on wire
ctrl = ctrl.fmiWriteOutputs()

}
}

Figure 6.3: Groovy code of the FMI master
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time=0.0 pump=false level=1000
time=0.14 pump=false level=761
time=0.28 pump=true level=481
time=0.42 pump=true level=579
time=0.56 pump=true level=719
time=0.7 pump=true level=859
time=0.84 pump=true level=1000
time=0.98 pump=true level=1140
time=1.12 pump=true level=1280
time=1.26 pump=true level=1420
time=1.4 pump=true level=1560
time=1.54 pump=true level=1700
time=1.68 pump=true level=1840
time=1.82 pump=true level=1980
time=1.96 pump=true level=2119
time=2.1 pump=false level=2260
time=2.24 pump=false level=2022
time=2.38 pump=false level=1742
time=2.52 pump=false level=1462
time=2.66 pump=false level=1182
time=2.8 pump=false level=902
time=2.94 pump=false level=622
time=3.08 pump=true level=342
time=3.22 pump=true level=440
time=3.36 pump=true level=580
time=3.5 pump=true level=720
time=3.64 pump=true level=860
time=3.78 pump=true level=1000
time=3.92 pump=true level=1140
time=4.06 pump=true level=1280
time=4.2 pump=true level=1420
time=4.34 pump=true level=1560
time=4.48 pump=true level=1700
time=4.62 pump=true level=1840
time=4.76 pump=true level=1980
time=4.9 pump=true level=2120

Figure 6.4: Output of the co-simulation run
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ble by 1000 and cast them to integer. Vice versa we divide each integer from
the B controller by 1000.

The output of our co-simulaton demonstrator is shown in figure 6.4. The
water tank starts at a level of 1000, the pump is turned on. The controller
should establish that the level is between 800� 2✏

out

and 2000 + 2✏
in

where
✏
out

and ✏
in

are the maximal water flow rates.

create and initialize

create and initialize

Master Script FMU InstanceProB Animation

v := getDouble("level")

p := value("pump")

set("pump",p)

fmiReadInputs(v)

t := make_decision()

t' := doStep(t',t)

fmiWriteOutputs(v)

1

2

3

4

Figure 6.5: Communication between master and slaves

6.3 Plan

A first prototype for FMI-based multi-simulation has actually already been
implemented (as described above). The plan for the coming year is as follows:

42



• Within the next months, by June 2013, the ProB-driven console based
multi-simulation will be available first internally to project participants
and then later in 2013 in the official release of ProB.

• a prototype of editor for Component wiring and simple generic master
will be developed alongside, and will be ready by late summer 2013.

• By fall 2013 we expect feedback from the industrial case studies, which
will enable us to improve the generic simulation master. In particular,
we will provide support for coordinating timed and continuous compo-
nents (without having to hard-code these aspects into the master).
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Chapter 7

Model Testing

The scripting approach can also be useful for model testing and testcase
generation. For model testing, we can save and replay execution traces.
Saving a trace is done by generating a groovy script and replaying is done
by executing that script. In contrast to previous approaches [Elb09] this
scripting approach is not limited to simple linear traces because we have the
full expressivity of the host language at our hands.

The new ProB plug-in has a built in JUnit4 test runner. There is also
built in support for the Spock test framework 1. This means that users can
write JUnit4 or Spock tests using the ProB abstractions. Tests are written
within groovy scripts. In order to use the BUnit test runner, the user has to
write a test class that is compatible with JUnit4 or Spock and then create an
new instance of the test class in the last line of the script. Then, when the
script is run, the groovy engine will recognize the class and run it through
the test runner. An example of a model test for the watertank example from
chapter 6 written as a Spock specification could look like this

import spock.lang.Specification
import de.prob.scripting.Api

class WaterTankTest extends Specification {
static Api api
def ctrl

def setup() {
ctrl = api.b_load("waterTankCtrl.mch") as History
ctrl = ctrl.anyEvent(); // setup constants
ctrl = ctrl.anyEvent(); // initialize machine

1
http://www.spockframework.org
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}

def "Initially the pump is turned on"() {
expect:
// This test will fail! The value is FALSE
assert ctrl.getCurrentState().value("pump") == "TRUE"

}

def "If we get below low level, pump is turned on"() {
when:
ctrl = ctrl.fmiReadInputs("l=799") // set level < Low
ctrl = ctrl.readLevel().decide().writePump() // decide

then:
assert ctrl.getCurrentState().value("pump") == "TRUE"

}

}

WaterTankTest.api = api
new WaterTankTest()

When the test cases have been created, the user can use the BUnit Test
View in the ProB plug-in to select the directory that contains the test cases.
Then all tests within the directory will be run. The view will show whether a
test succeeded, failed, or produced an error (see Fig. 7.1). When an error or a
failure is produced, a stacktrace or explanation with the desired information
is also displayed. Using the specification for BUnit tests, it should not be
difficult for users to generate test cases.
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Figure 7.1: Model Testing UI

46



Chapter 8

Simulation using Tasking
Event-B’s Generated Code

8.1 Abstract

One way to produce FMUs from a B component is via code generation:
instead of simulating a B component we generate code from it and use that
code within an FMU unit. The advantage of this is obviously performance.

The RODIN, and DEPLOY projects have laid solid foundations for fur-
ther theoretical, and practical (methodological and tooling) advances with
Event-B; we investigated code generation for embedded, multi-tasking sys-
tems. This work describes activities from a follow-on project, ADVANCE;
where our interest is co-simulation of cyber-physical systems. We are work-
ing to better understand the issues arising in a development when modelling
with Event-B, and animating with ProB, in tandem with a multi-simulation
strategy. With multi-simulation we aim to simulate various features of the
environment separately, in order to exercise the deployable code. This work
has two main contributions, the first is the extension of the code generation
work of DEPLOY, where we add the ability to generate code from Event-
B state-machine diagrams. The second describes how we may use code,
generated from state-machines, to simulate the environment, and simulate
concurrently executing state-machines, in a single task. We show how we
can instrument the code to guide the simulation, by controlling the relative
rate that non-deterministic transitions are traversed in the simulation.
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8.2 Introduction
Event-B [Abr10], and supporting tools have been developed during the RODIN
and DEPLOY [Theb] projects, and continues in ADVANCE [Thea]. Some in-
dustrial partners were interested in the formal development of multi-tasking,
embedded control systems. We developed an approach for automatic code
generation, from Event-B models, for these type of systems [EB11]. Event-B
uses set-theory, predicate logic and refinement to model discrete systems.
The basic structural elements of Event-B models are contexts and machines.
Contexts describe the static aspects of a system, using sets, constants, and
axioms. The contents of a Context can be made visible to a machine. Ma-
chines describe the dynamic aspects of a system, in the form of state variables,
and guarded events, which update state. Required properties are specified
using the invariants clause. The invariants give rise to proof obligations.

State-machine diagrams [Eve] can be added to a machine. Each con-
tains an initial state, typically contains one or more transitions, one or more
other states, and possibly a final state. A transition ’elaborates’ one or
more events; that is, a transition describes the atomic state updates that
occur during the change from one state to the next. We use an example
of an automotive engine stop-start controller, loosely based on [GLG+11],
to illustrate our approach. The system aims to save fuel by switching the
engine off when the car is stationary. Fig. 8.1 is an example of a state-
machine diagram, EngMode. Initially the state-machine is in the ENG_OFF
state, and may go the ENG_CRANKING state via transitions s1 or user-
Start, and so on. In the properties we define ‘translation type’ as Enumer-
ation. The underlying Event-B model, uses a set-partition of the states, as
shown below. The current state of the state-machine is recorded in a vari-
able EngMode 2 EngMode_STATES, where EngMode_STATES is a
partition of the states of the EngMode state-machine,

partition(EngMode_STATES, {ENG_STOPPING},
{ENG_CRANKING}, {ENG_RUNNING}, {ENG_OFF})

(8.1)

In this paper we describe how we extend the code generation work of DE-
PLOY; we add the ability to generate code from Event-B state-machine
diagrams. We then describe how we may use code, generated from state-
machines, to simulate the environment, and simulate concurrently executing
state-machines, in a single task. We describe how we guide the simulation,
that is, control the relative rate that non-deterministic transitions are tra-
versed, using additional guards on the transition implementations.
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Figure 8.1: EngMode State-machine

TaskBody ::=
  TaskBody ; TaskBody
  | if EventName
    (elseif EventName)*
     else EventName
  | while EventName
  | output String VariableName

EventName ::= String

VariableName ::= String

Figure 8.2: Task Body Syntax

8.3 Tasking Event-B
Tasking Event-B [EB11, ERB12] is an extension to the Event-B; where Event-
B elements are restricted to implementable types. If required we use decom-
position [SPHB10, SB10] to separate the system into sub-components. At an
appropriate stage we introduce implementation specific constructs to guide
code generation. These constructs are underpinned by Event-B operational
semantics; Tasking Event-B introduces three main constructs:- AutoTask,
Environ, and Shared Machines. AutoTask Machines model controller tasks
(in the implementation). Environ Machines model the environment, and
Shared Machines provide a protected resource for sharing data between tasks.

Tasks bodies are specified using the syntax shown in Fig. 8.2. We can use
(;) sequence , (if-elsif-else) branching, (do) looping, and text output to the
console.

8.4 Translation of a Task Body
To simplify the discussion, our example uses a single tasking approach. We
will not consider here the issue of multi-tasking. We therefore need only
to give a brief overview of AutoTask Machine translation, since it will not
be synchronized with a Shared Machine. Given an event E , g ! a, we
map action a to a program statement a0, and guard g to a condition g0, if g
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exists. The guard should be > for events used in sequences, but may be any
implementable predicate for use in branching and looping statements. An
example translation of branching follows, where events e1 , g1 ! a1 and
e2 , g2 ! a2, are used in the task body,

if e1 else e2 endif
 
if g01 then a01 else a02 end if;

The branching construct of the task body contains events e1 and e2, and
translates to a branching construct in the program code. The guard g02 does
not appear in the code, but a proof obligation can be generated to ensure that
g2 = ¬g1. The code generator could be augmented to automatically generate
proof obligations to show that branch guards are disjoint and complete.

8.5 The Automotive Stop-Start Model

A typical approach to multi-tasking in hybrid systems, relies on a write-read-
process protocol. The shared variable store, shown in Fig. 8.3, is used by the
various modules; to write to, then read from. In such a system, each task
keeps a local copy of the parts of the state that it needs to deal with. In
the write-read-process protocol, all tasks write to the store, all tasks then
read from the store. Only when all tasks have updated their local copies of
shared state, can processing take place. The task iterates these steps in a
loop. In our tool we simulate the concurrent implementation using sequential
code generated from a single AutoTask Machine. The deployable modules of
Fig. 8.3 can be implemented in a multi-tasking environment if the execution
order of the protocol is preserved.

In our sequential simulation, we use a single AutoTask Machine, which
contains both controller and environment state-machines; and define write
and read behaviour in the machine’s task-body construct. We have already
seen the Stop-Start (SSE ) system’s EngMode state-machine, in Fig. 8.1.
In addition to this we have Clutch, Gear and Steering environment state-
machines. There are three controller modules, the SSE Module which decides
whether to issue stop or start commands based on the engine state. It receives
output from the HMI Controls module. HMI Controls monitors the clutch,
gear, and steering controls to see if automatic stop or start should be enabled.
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Figure 8.3: Overview of the Stop-Start Architecture

8.6 The IO Architecture
We have defined the state-machines of the system and we can now specify
the IO between the modules via the shared variable store. The store contains
a copy of all of the variables involved in IO between modules. Each of the
modules may send data and receive data from the variable store. If we take,
as an example, the engine’s IO, we output the engine state and speed to
the shared variable store. All variables in the store are prefixed ‘STO_’,
and variables in the engine module (other than state names) are prefixed
‘ENG_’, so the following event updates the shared variable store’s copies of
the engine state. Each state-machine has a send (write) and receive (read)
event which has the state-machine name and send or recv as a suffix.

Eng_send , STO_EngMode := EngMode

k STO_EngineSpeed := ENG_EngineSpeed

8.6.1 Modelling Starting and Stopping the Engine

The EngMode state-machine keeps track of the engine mode, i.e. off, running,
cranking, or stopping. The engine is initially in the ENG_OFF state. We
model the ultimate task of the SSE system, the automatic engine start, with
the s1 event. This is enabled after receiving an engine start order from the
Stop-Start Controller module (the SSE Module’s SSEMode state-machine,
introduced later). The s1 event follows,

s1 , when EngMode = ENG_OFF ^ ENG_Start_Order = TRUE

then EngMode := ENG_CRANKING

end
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The predicate and action involving EngMode are automatically generated in
the translation from the state-machine diagram. The guard,

ENG_Start_Order = TRUE

is added by the developer to indicate that the engine should enter the crank-
ing state when a Start Order has been received. The engine may also be
started manually, as modelled by the userStart event. When the engine is
running at a sufficient rate s3 sets the engine state to ENG_RUNNING,

s3 , when EngMode = ENG_CRANKING

^ Eng_EngineSpeed >= Eng_Idle_Speed

then EngMode := ENG_RUNNING

end

When the engine is running it can be stopped automatically by the SSE mod-
ule. The HMI_Controls module checks to see if it is in neutral gear, steering
not-used, and clutch released. If it is, HMI_Stop_EnaT sets HMI_Stop_Ena
to true. This eventually gets passed to the SSEMode module via the shared
store.

HMI_Stop_EnaT ,
when HMI_Gear = NEUTRAL ^HMI_Steer = NOT_USED

^HMI_Clutch = RELEASED

^HMI_ControlsSM = HMI_OPERATION

then HMI_Stop_Ena := TRUE kHMI_Strt_Req := FALSE

end

Event t7, of the SSE Module, updates its SSE_Stop_Order and
SSE_Start_Order if SSE_Stop_Ena, and the other guards, are satisfied.
It is then copied to the variable store, and subsequently read by the engine
module.

t7 ,
when SSEMode = SSE_OPERATION ^ SSE_Stop_Req = TRUE

^ SSE_EngMode = ENG_RUNNING ^ SSE_Stop_Ena = TRUE

then SSEMode := SSE_STOPPING k SSE_Stop_Order := TRUE

k SSE_Start_Order := FALSE

end
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Figure 8.4: The Task Body Specification

8.7 The Task Body
We specify the sequence of events in the Task Body in the ‘usual’ Tasking
Event-B style, seen in Fig. 8.4. We have specified that send events occur
before the read events. This is necessary to ensure the latest state is made
available for the state-machine evaluation. The Task Body is periodic, and
generates a loop in the implementation. The order of processing is as follows:
1) Initialisation of state. 2) Evaluate state-machines. 3) Send updated values
to the variable store. 4) Read updated values from the variable store; then
go to 2, and repeat. The sequence {3,4,2}, in the task body, corresponds
to the write-read-process protocol, which follows initialisation. Fig. 8.4 also
shows the output clause, for text output to the console. The next section
provides details of the translation to Ada code.

8.8 Translating State-Machines to Code
To illustrate the translation process we show a pseudo-code implementation
in the Ada style. We have seen how state-machine states are modelled by an
enumeration partition, and we use this in the implementation. The partition
of Equation 8.1 is translated to the following pseudo-code.

type EngMode_STATES = (

ENG_STOPPING, ENG_CRANKING,

ENG_RUNNING, ENG_OFF ); . . .

We store the global constants and types, where the type EngMode_STATES
is an enumeration of the state-machine states. Recall also, that we generate a
state variable EngMode which is typed as EngMode 2 EngMode_STATES,
to keep track of the state; it has the initial value Eng_OFF. We use the di-
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agram and the initialisation event to generate the following code:

EngMode : EngMode_STATES := ENG_OFF ;

The main program invokes the state-machine implementations in a loop,
once per cycle. Each state-machine diagram maps to a procedure. State-
machine procedures are called exactly once before the sends to, and reads,
from the variable store. The evaluation of each state-machine procedure is
independent of the others state-machines, since each keeps a local copy of the
state, copied from the variable store. Each state-machine procedure has a
state variable v, states s

i

, and implemented actions a
i

. To each state-machine
procedure, we add to a case statement,

case v when s1 => a1;

when s2 => a2; . . .

when s
n

=> do� nothing;

Translation of our example gives rise to the following pseudo-code,

procedure EngModestateMachine

case EngMode

when ENG_STOPPING =>

if ((ENG_EngineSpeed = 0)) then
EngMode := ENG_OFF ;

elsif ((ENG_Start_Order = true)) then
EngMode := ENG_CRANKING;

else do� nothing;

end if;
when ENG_CRANKING =>

if ((ENG_EngineSpeed = 0)) then
EngMode := ENG_OFF ;

elsif ((ENG_EngineSpeed >= Eng_Idle_Speed)) then
EngMode := ENG_RUNNING;

else do� nothing;

end if;
when ENG_RUNNING => . . .

end case;

We can see that each of the case’s when statements contains a branching
statement. This is because each state of the state-machine has at least two
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branches; a do-nothing transition, plus one or more outgoing transitions.
The do-nothing transition is not explicitly shown on the diagram. A do-
nothing transition can be added to each state, since adding a skip event is a
valid refinement. It is implemented by the else do-nothing; branch. Other
branches are translated from states with more than one outgoing transition.
This may be seen in the ENG_STOPPING case in the example. The branch
conditions are mapped from the guards of the events (s5 and s6) that elab-
orate the outgoing transitions.

8.9 Manipulating State Machine Transitions
The generated code from our example is compiled to an executable file and
run. In essence we have generated implementable code for the controller
state-machines, and a simulation of the environment from the environment
state-machines. When we run the code we find that most of the state remains
unexplored, and this is due to the non-determinism in the state-machines.
This section identifies how we can guide a simulation, by reducing the non-
determinism in the state-machines.

For the controller state-machines, each state’s outgoing transitions are
disjoint and complete; in other words, a transition is always taken in the sim-
ulation. However, in the environment, it is unlikely that the clutch changes
state so frequently. We do have the implicit do-nothing transition on envi-
ronment state-machine states, but we need this to happen more often than
the other transitions. We must have some control over the relative rate that
non-deterministic transitions are traversed in the simulation. As it stands,
any outgoing transition is equally likely to occur. To solve this in the sim-
ulation, we introduce an enabling variable q 2 0 .. n and a random variable
r 2 0 .. n, and use the random variable in a case-statement’s branch condi-
tions. Variable q is calculated once at the beginning of the simulation, but a
new random variable r is calculated at each state-machine evaluation. The
event g 7! a in Event-B terms is implemented as a branch g ^ r = q 7! a in
a case-statement.

We now suggest how we may generate, and use the variables q and r in
simulation. This aspect is work in progress, but we believe the approach will
be useful for generating test scenarios, and therefore will help to achieve full
test coverage. By adding a guard to the branch condition we can influence the
path taken through the code during simulation. In effect, we reduce the non-
determinism in the state-machines, which allows us to guide the simulation,
and therefore the exploration of the state-space.

One question is, how to choose a value of n? We could base it on the
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total number of outgoing transitions of the state involved, but this would
not give a large enough value. A typical state may have four transitions so
a random number r 2 0 .. 4 could be used. However, we wish to manipulate
the probability of a branch being taken, so that a branch is very unlikely to
be taken; therefore, a much larger value for n is required. So, we calculate
n based on the number of tests that would be required, for test coverage
of all transitions, in all states. Likewise, the value of q must be unique
within the case-statement; we just allocate an arbitrary, but unique value,
close to n. In future work we will investigate how we could modify n during
simulation runs, and use this value to reduce the probability of a simulation
traversing previously explored state. In the code fragment below, we add
the probabilistic condition to the branch of the case-statement, where r =
StartStop01b_random (StartStop01b_random is a random variable in the
implementation code) and q = 3990.

case EngMode is
when ENG_STOPPING =>

if ((ENG_EngineSpeed = 0)) and (StopStart01b_random = 3990) then
EngMode := ENG_OFF ; . . .

Adding the branch condition gives us control over the likelihood that a partic-
ular transition from a state will be taken when the state-machine is evaluated.
We manually modify the conditions, to affect the behaviour of the simula-
tion. We may wish to focus on exploring the state in a particular region.
For instance, to test an engine-stop scenario, we require that the engine is
in the ENG_ RUNNING state, the gear is in NEUTRAL, the clutch is in
the RELEASED state, and the steering NOT_USED. Fig. 8.5 shows that
we want large probabilities of transitions leading to the states that we want,
and small ones departing.

For a given simulation run we can define attracting and repelling states.
Here, ENG_RUNNING is an attracting state; that is, we want the state-
machine to be in that state or moving towards it most of the time. To
achieve this we can adjust the branch conditions, to increase the probability
of the transitions that lead to that state, being taken. For instance to increase
the probability of the engine going from ENG_OFF to ENG_CRANKING
we can modify the statement to read (StopStart01b_random <= 3990). In
addition to this, we propose to record the navigated transitions, for transi-
tion coverage analysis. So, we will be able to use the data also, to guide the
simulation. We show two simulation runs here, with the text output defined
in the Task Body, Run1 uses the ‘unmodified’, generated code; it simply
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Figure 8.5: Controlling the Simulation

loops and never reaches the ENG_RUNNING state. With the branch con-
ditions modified, as described, Run 2 shows the simulation cycling from
ENG_RUNNING to ENG_OFF ; and with the indicator lamp changing
to inform the driver of the situation.

Run 1

.ENG_Start_Order FALSE
..ENG_Stop_Order FALSE
...EngMode ENG_OFF
....SSE Lamp OFF . . .

Run 2

.ENG_Start_Order FALSE
..ENG_Stop_Order TRUE
...EngMode ENG_RUNNING
....SSE Lamp OFF
.ENG_Start_Order FALSE
..ENG_Stop_Order TRUE
...EngMode ENG_STOPPING
....SSE Lamp ORANGE_STOP
.ENG_Start_Order FALSE
..ENG_Stop_Order TRUE
...EngMode ENG_OFF . . .

8.10 Conclusions
We have shown how we generate code from State-machines, and illustrated
the approach with a case study based on an automotive engine controller,
automatic stop-start system. We describe how we simulate the environment,
and a multi-tasking implementation. We gain an insight into how we adjust
the conditions to provide meaningful simulation runs. In future work we
intend to record the transition coverage, and feed this back to the simulator,
to ensure all transitions are covered. We will also investigate the interaction
between the generated code, environment simulations, and ProB.
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Chapter 9

Outlook on Continuous Time and
Hybrid Systems

Although the current focus of research is on cycle-based and discrete time
systems, we have started to investigate the implications of continuous and
hybrid modelling for ADVANCE.

We have carried out a range of modelling and simulation experiments
with Modelica language [A+05] to evaluate its applicability to proposed idea
of co-simulation framework with Event-B. One of the advantages of Mod-
elica is the ability to mix natural description of continuous-time physical
processes, defined by differential-algebraic equations, with discrete-time be-
haviour, specified by when clause, which can be periodic, time- or event-
triggered. This aspect in particular has captured our attention as a possible
linking point between discrete-time simulation and its counterpart in Event-
B. In addition, openness and large support by simulation tool community
suggested Modelica as a suitable technology.

9.1 Modelling a Water Tank
For our simulation experiment we took a classical example of a water tank
that must maintain its water level within two bounds. There are many
variations of this system in the literature. One of the most common versions
consists of a water tank that has a constant water outflow (leakage) rate v2,
and a water pump that can be turned on or off. When the pump is on it
pours the water in the tank with a constant rate v1. Water tank has some
capacity and two water level thresholds 0 < L < H. The goal of the system
is to keep the water level within the interval [L, M ]. The dynamics of the
water level is described by the following equations:
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'
in

=

(
v1 if pump is on
0 if pump is off

(9.1)

'
out

= v2 (9.2)
l̇evel(t) = '

in

� '
out

(9.3)
where '

in

is the incoming water flow rate from the pump and '
out

is the
outgoing water flow rate, caused by leakage. Schema of the water tank is
shown below.

Figure 9.1: Water tank model

As a hybrid system this example has the following components: water
pump that represents the plant; water tank with water flow as the environ-
ment (and plant); sensors that allow to monitor the water level; and controller
that controls the pump. Water pump has two modes of operation: on and
off. In addition, it has activation delay t

act

s, which defines the time between
it being switched on or off and the actual result in terms of changes in the
water flow. Water level is described by means of sensors, which have sensing
period t

sen

s. The controller follows a simple strategy: when the pump is
off and water level drops to lower bound, the controller turns the pump on;
when the pump is on and water reaches upper bound, the controller turns
it off again; in between the bounds same mode (on or off) is preserved by
controller.

For implementation of controller we adopted a predictive strategy, where
control decision is based on predicted water level at the next reading of the
sensor, taking into account activation time of the pump [SAZ12]. Supervi-
sory controller has four modes that correspond to pump status: two modes
represent the physical pump state (PumpOn and PumpOff ) and the other
two define control states (ControlOn and ControlOff ), where the pump is
switched on or off, but not yet activated/deactivated. Two-level controller is
described by the following hybrid automaton:

The control automaton in Figure 10.2 has several important aspects.
States PumpOff and ControlOff have domain restriction (constraint level �
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Figure 9.2: Hybrid automaton of the water tank controller

0), which is necessary to guarantee that water level never gets negative. State
transitions are guarded by predicted water level signal from the sensor. In
addition, the control is using time variable t

change

to model the reaction of
the pump, i.e. activation delay. Thus, for instance, when the pump is off
and water level is decreasing (state PumpOff ) the controller can predict the
next water level reading from the sensor: level� t

sen

⇥ v2. Due to activation
delay of the pump this prediction needs to be adjusted by t

act

⇥ v2. When
predicted level tells controller that the lower threshold L will be crossed
(guard level(t

sen

+ t
act

) ⇥ v2 < L is satisfied), the controller switches to
state ControlOn, setting time variable t

change

to time when the pump will
actually be activated (t

change

:= time + t
act

). After activation time elapses
(t

change

= time) physical pump state is switched to on (pump := on) and
controller moves to state PumpOn.

The following code models the system. Notice that in this case state ma-
chine is modelled by two discrete variables: control_state and pump_state.
State logic is not using the algorithm block anymore, but instead is done
within a periodic when block that is also modelling the sensor reading. As
an outcome, this makes the controller and the sensor synchronised, which
was not originally in the specification. Other when blocks are used to model
the delay, as there are no language constructs for this purpose in Modelica.
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class WT3
parameter Real H = 14;
parameter Real L = 1;
parameter Real v1 = 3;
parameter Real v2 = 2;
parameter Real t_sen = 5;
parameter Real t_act = 6;
Real level(start = 1);
discrete Real detected_level;
Boolean pump(start = true);
Boolean control_state(start = true);
Boolean pump_state(start = true);
discrete Real t_change;
annotation(experiment(StartTime = 0.0, StopTime = 30.0, Tolerance = 1e-06));

equation
// water tank level dynamics
der(level) = if pump then v1-v2 elseif level > 0 then -v2 else 0;

// sampling: sensor and controller
when sample(0, t_sen) then

detected_level = level;
control_state = not pre(pump_state) and level - (t_sen + t_act) * v2 < L

or not level + (t_sen + t_act) * (v1 - v2) > H and pre(pump_state);
end when;

// setting activation timer
when change(control_state) then

t_change = time + t_act;
end when;

// activating pump
when time >= pre(t_change) then

pump = control_state;
pump_state = control_state;

end when;
end WT3;

The simulation plot is shown in Figure 10.3, where both continuous-time
(physical) and discrete-time (sensed) signal of the water level is displayed.

Figure 9.3: Water tank simulation plot: L = 1, H = 14, v1 = 3, v2 = 2,
t
sen

= 5, t
act

= 2
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9.2 Summary
A water tank has been modelled using the Modelica hybrid modelling capabil-
ity using a predictive control approach with promising results. In particular,
we have shown the potential for using the Modelica when clause as a pos-
sible linking point between discrete-time simulation and its counterpart in
Event-B.
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Chapter 10

Improvements to ProB and
BMotion Studio based on
Requirements from Case Studies

In this chapter we present a few developments that were undertaken in re-
sponse to requirements coming from the case studies.

10.1 BMotion Studio Developments

10.1.1 Introduction

An object of the ADVANCE project is to develop new visualization tech-
niques to aid humans understand of large-scale simulations. The ProB ani-
mator [LB03] already allows to check the presence of desired functionality and
to inspect the behaviour of a specification by “clicking through” the states of
the specification. Several views like the state view, which displays values for
variables and constants of the current state supports humans understand of
simulations. However, ProB requires still knowledge about the mathematical
notation to understand the meaning of a specific state. In particular, large-
scale simulations becomes quickly unclear and sometimes a developer and a
domain expert desires a different point of view of the model. To overcome
this problem, it is useful to create domain specific visualisations.

BMotion Studio [LBL09] is a visual editor which enables the developer
of a formal model to set-up easily a domain specific visualisation. BMotion
Studio comes with a graphical editor that allows to create a visualisation
within the modeling environment. Also, it does not require to use a different
notation for gluing the state and its visualisation. Although, BMotion Studio
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comes with a number of default visualization elements that are sufficient for
most visualisations, it can be extended for specific domains.

10.1.2 Table view control

Since, large-scale simulations may become large and the amount of infor-
mation that will be available for presentation to the user increases, it is
important to obtain a meaningful subset of the information and to display it
in a way to aid humans understand of the simulation.

In the ADVANCE project we developed a new control for displaying
information of the simulation using tables. The table control comes in form
of an add-on for BMotion Studio and is fully customizable, which means
that the user is able to create individual tables to display subsets of each
machine’s state. As a consequence, the table control left the choice of what
to display at any time to the user.

Figure 10.1: Application of the table control in BMotion Studio

For instance, Fig. 9.1 shows the application of the table control in a
simulation of a train network using BMotion Studio. We see five different
tables with different subsets of information about the current state in dif-
ferent fashions. For instance, the “ ‘Reserved tracks (rsrtbl)” table gives the
user an overview of the reserved blocks (first column) and the corresponding
route of the reserved block (second column). Furthermore, the user sees at a
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glance the set of reserved routes in the top right cell. As already mentioned,
the table control is fully customizable. The user is able to equip every cell,
every column as well the entire table with information. For instance, the
user can display a set or a relation in the table. This is done with simple
observer and easy to use wizards in order to configure the observer. The user
stays within a single notation, since BMotion Studio uses Event-B predicates
and expressions as gluing code. For example, Fig. 9.2 shows the observer of
the column “Red” of the “Lights” table. The observer defines the expres-
sion ran(SIG)\GRN where the result is the set of red lights. The observer
arranges automatically the column of the table as shown in Fig. 9.1.

Figure 10.2: Column observer wizard

10.2 Other ProB Developments
When modelling cyber-physical systems it is often important to have access
to a variety of mathematical functions, such as sine or cosine. These functions
are not available “out-of-the-box” in either B or Event-B. However, ProB

now supports externally defined functions, whose implementation can be
provided in Prolog code. As such, one can provide an axiomatization of the
required function for proving along with an executable version for simulation.
This feature has, already been used in the Alstom interlocking case study of
the Advance project. A screenshot of ProB simulating this case-study is
shown in Figure 9.3. (It uses the Tk graphical visualization feature; a light-
weight counter part of BMotion Studio for classical B which has also been
improved during the course of the project).

In principle, this feature could also be used to call other simulators under
the control of ProB.
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Figure 10.3: Animation of Alstom Interlocking Case Study

An important extension for Rodin is the Theory plug-in which allows the
creation of extensions for the mathematical language. It supports new opera-
tors as well as datatypes. Using the theory plug-in, we can introduce concepts
such as sequences or trees into the Event-B language. The theories are inte-
grated into the proving infrastructure but not yet into other tools like ProB.
We are currently working on an improved translation to support animation
of user defined theories within ProB. The mathematical extensions are par-
ticularly important for modelling hybrid systems, as they enable Event-B
models to access, both for proving and animation with ProB, to:

• real numbers or floating point numbers

• mathematical functions such as trigonometric functions

• they provide a way to access external functions in the ProB kernel,
which could provide a link to other simulators.

Another important development is the support for recursive functions in
ProB; these enable to provide animatable definitions for other kinds of math-
ematical theories.

The external and recursive functions were initially developed outside of
the Advance project (direct funding by Alstom), but are now maintained,
extended and integrated into Event-B as part of Advance.
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