
INSTITUT FÜR INFORMATIK
Lehrstuhl für Softwaretechnik und

Programmiersprachen

Universitätsstr. 1 D–40225
Düsseldorf

A Visualisation Plugin for ProB2-UI

Michelle Angela Werth

Bachelorarbeit

Beginn der Arbeit: 21. März 2019
Abgabe der Arbeit: 21. Juni 2019
Gutachter: Prof. Dr. Leuschel

Dr. Bendisposto

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig verfasst habe. Ich
habe dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Düsseldorf, den 21. Juni 2019
Michelle Angela Werth

Abstract

The modern economy depends on safety-critical systems daily. These systems ought to
work autonomously and have to undergo a lot of verification in development. For this,
formal methods experts create models based on real-world machines and systems.

Most of the time, a requirement for the development of formal models is that domain
experts and formal methods experts work together. Visualisations simplify the work
with formal models, e.g. developed with the B-Method. B models can be developed
without a visualisation, but using visualisation can improve the communication be-
tween formal methods experts and domain experts. Additionally, the B model can be
visualised similarly to the real-world situation. That makes it easier to imagine the
specification of the B model.

ProB is an animator and model checker for formal models and has been developed to
simplify the work with B models. But the usability of ProB itself can be improved. That
is why ProB2-UI was built on top of it. ProB2-UI gives B developers the possibility to
animate, model check, and constraint solve their B models in a user-friendly interface.

This thesis presents VisB, a visualisation plugin for ProB2-UI. This plugin enables the
user to create simple visualisations for B models. VisB is based on Java, JavaFX, and
JavaScript. The tool uses an SVG image and a visualisation specification file, in short,
VisB file to generate a visualisation for the B model.

Moreover, the thesis investigates the goals of usability, maintenance, and capability
of creating a broad range of visualisations for VisB. Additionally, it is shown how VisB
was developed and why it is useful for ProB2-UI.

It is then presented how the user interface is made user-friendly while considering
the extensiveness of the plugin.

Later on, the thesis examines how to create a visualisation with VisB in two simple
visualisation examples. The visualised B models are a lift and the n-queens problem.
This thesis also contains use cases for each of these examples.

There have been several visualisation tools for ProB in the past. The ANIMA-
TION_FUNCTION [21], BMotionWeb [18] and the visualisation mechanism [13] are
investigated in regards to the focus of this thesis. It is explored why these tools either
cannot be maintained, are not user-friendly enough or cannot visualise a broad range
of B models.

CONTENTS 1

Contents

1 Introduction and Motivation 3

2 Fundamentals 4

2.1 B-Method . 4

2.2 ProB2 and ProB2-UI . 5

3 Architecture 5

3.1 Development of the Architecture . 5

3.1.1 Approach with JavaFX and SVGPath 5

3.1.2 Approach with JavaScript . 7

3.1.3 Approach with JavaFX and JavaScript 8

3.2 Input Files . 9

3.2.1 VisB file . 10

3.2.2 SVG file . 11

3.3 Implementation of VisB . 11

4 VisB-UI Layout 15

4.1 Development of the VisB-UI Layout . 16

4.2 Current VisB-UI Layout . 18

5 Visualisation Examples 20

5.1 Lift . 20

5.2 N-Queens . 26

6 Related Work 32

6.1 Animation Function . 32

6.2 BMotion Studio and BMotionWeb . 33

6.3 Visualisation Mechanism . 34

7 Conclusion 35

8 Future Work 36

A List of B Models used in this Thesis 37

B Complete VisB File Examples 41

2 CONTENTS

C Additional Examples 46

C.1 Use Case for Lift Visualisation . 46

C.2 Use Case for N-Queens Visualisation . 46

C.3 Additional B Model Code Examples . 54

List of Figures 59

List of Tables 59

List of Listings 59

3

1 Introduction and Motivation

Our modern society fully depends on machines and autonomous systems. Most big
companies rely on those machines and systems to produce their goods, transport their
products to sellers, and even manage their employees. To make all of that possible,
those systems need to be reliable. They have to undergo a lot of testing and verifi-
cation before one can think of fabricating or implementing them. But how does one
verify that something is working correctly if it cannot be manually tested, yet?

One can do that by constructing a formal model of these real-life problems, which can
be verified virtually. This can be done with the B-Method [3], in which those models
are called B machines. Visualisation and animation tools are needed because it is
hard to imagine, what a formal construct would act like in a real-world situation and
some properties of such models are easier explored with visualisation and animation.

Visualisation of a model is very important for formal methods experts and domain ex-
perts. Domain experts do not need knowledge of formal methods to understand their
domain. Formal methods experts can visualise models and discuss the correctness
of a model with domain experts in that way. In this thesis, a visualisation plugin for
ProB2-UI is implemented, with which one can create visualisations for B models.

Because the ProB2 team consists of students, doctors, and professors, its members
inevitably change over time. Furthermore, students often have not a lot of experi-
ence in developing software. Therefore, one has to construct maintainable software.
Hence, in this thesis, the focus lays on how the project can be maintained easily.

An intuitive user interface is very important for this project. The ProB2 team has
been working with companies and organisations, like Thales [12], Alstom [8] and
more. That means, for this plugin to be helpful, it should enable the user, the formal
methods expert, to visualise B models easily. In section 4, it is further explained, how
one can achieve an intuitive design.

A visualisation tool should cover a broad range of B models which can be visualised
with it. How this plugin is covering almost everything the user needs for constructing
a visualisation for most models, is explained in section 5.

ProB2-UI has already a lot of features, which allow developers to specify and verify
their B model in a comprehensible way. In this thesis, VisB is introduced, a new
visualisation plugin for ProB2-UI and it is shown how and why VisB is an improvement
for ProB2-UI.

One goal for VisB is to build something similar to BMotionWeb [18], which is further
explained in subsection 6.2. BMotionWeb is a very sophisticated visualisation tool
for B machines which additionally allows validation of these visualisations [18]. It is
based on web-technologies, like JavaScript, HTML and SVG [18]. Because BMotion-
Web is not maintained any longer, one of the goals of this thesis is to build a likewise
intuitive and extensive visualisation tool that can be maintained more easily.

Next, VisB should have more unrestricted visualisation possibilities than the ANIMA-

4 2 FUNDAMENTALS

TION_FUNCTION [21]. The ANIMATION_FUNCTION is implemented in ProB and to
use it one directly writes in the B model code. This tool is explained in more detail in
subsection 6.1.

Finally, it should be easier to construct a working visualisation for ProB2 users, with-
out a broad knowledge of other programming languages. This is a problem when
using the visualisation mechanism [13]. This visualisation mechanism is a tool, with
which a formal methods expert has to write Java and JavaFX code to construct a visu-
alisation [13]. The subsection 6.1 explains this tool as well.

In short, the three goals of this thesis are to build a visualisation plugin which is easy
to use, easy to maintain, and enables the user to visualise a wide range of B models.
Additionally, it is a set requirement to use SVG images as a base for the visualisation,
because this file format is easy to understand and use.

VisB uses JavaScript to interact with an image file and a visualisation specification
file to create a visualisation for a B model. Different approaches to the development
of the architecture will be demonstrated. Moreover, this thesis explains how VisB is
made more maintainable than BMotionWeb. Additionally, it describes why this plugin
is useful for B developers and domain experts. It is answered, how one can achieve
an intuitive user interface with simple design choices. After that, it is shown how
VisB can be used for visualising B models in two examples. Finally, VisB is compared
to previous visualisation possibilities for ProB and ProB2-UI, in consideration of the
previously mentioned goals.

2 Fundamentals

This section describes the B-Method [3], ProB2 [17], and ProB2-UI [22]. These are
three significant keywords that have to be understood when reading further into this
thesis.

2.1 B-Method

In 1980 Jean-Raymond Abrial developed the B-Method [3]. The B-Method is a formal
method to specify and verify hardware and software systems with the B language.
Models created by the B language are called B models. These B models represent a
machine or a system that formal method experts specify.

"The kind of systems we are interested in developing are complex and discrete." [1]
The author means that formal methods can be used to inspect a model that operates
autonomously. Equally important is that a model "requires a high amount of correct-
ness" because it operates in unpredictable environments [1].

2.2 ProB2 and ProB2-UI 5

2.2 ProB2 and ProB2-UI

"ProB is an animator, constraint solver and model checker for the B-Method." (In-
troduction) [22] ProB was introduced in 2003, by Leuschel and Butler [7]. With this
tool, one can verify a system, based on the B-Method, in development. In ProB it is
also possible to work with other verification languages, like Alloy [16], TLA+ [20],
Event-B [2], Z [23], and more [22].

After the development of ProB, the ProB team implemented the ProB 2.0 Java API [17]
to simplify the work with B models. The intention of implementing the ProB 2.0 Java
API was to build a user interface on top of the API [22]. This user interface, ProB2-UI,
was successfully implemented in JavaFX. Many additional features, plugins, and other
tools are developed for ProB2-UI to further enhance the user experience.

3 Architecture

The development of the architecture is one of the most important steps for building
software. The architecture, in this case, accounts for the maintainability and the wide-
ranged possibilities of the visualisation plugin. Consequentially, the architecture of
VisB has to undergo a lot of thought in development.

The following describes the development of the architecture of VisB. Different ap-
proaches are analysed and it is explained how the current architecture of VisB is
achieved. After that, the questions are answered which input files are needed and
why they are needed. The following sections also explain why this architecture is
maintainable. Finally, it is explained why the current implementation of VisB is a
possible solution to satisfy the goals of this thesis.

3.1 Development of the Architecture

This section investigates the development of VisB’s architecture. Furthermore, it
explains why the following approaches are not suitable for this project. In the end,
the final approach for the current architecture is described.

3.1.1 Approach with JavaFX and SVGPath

SVGPath is a class in the JavaFX libraries that enables the developer to visualise
an SVG image in JavaFX and make it interactive through JavaFX intern controls. In
2018 Heinzen introduced the visualisation mechanism [13]. With this visualisation
mechanism, the user has to write Java code with the JavaFX class SVGPath to visualise
a B model. A formal methods expert, therefore, has to understand Java and JavaFX to
visualise with this tool. Moreover, the visualisation with SVGPath and JavaFX can be
difficult and intricate. Because of that, the idea is to simplify the process of creating
a visualisation when using the visualisation mechanism.

6 3 ARCHITECTURE

One of the goals for this thesis is to use SVG to create a visualisation. When using
the visualisation mechanism [13] one, therefore, has to find a way to interact with an
SVG image inside of this tool. The solution for this is to translate SVG images to the
JavaFX class, SVGPath, used in visualisation mechanism.

One can use pre-made SVG images and visualisation specification to create a visu-
alisation for the visualisation mechanism [13]. For that, one has to use those input
files and translate them to a JavaFX project, as one can see in Figure 1. This project
can then be executed with the visualisation mechanism. The JavaFX project can con-
tain more than one JavaFX file, as one can see in visualisations done manually by
Heinzen [13].

In short, for this approach, one has to implement a translator which translates SVG
images to a JavaFX project and a user interface for this translator.

Figure 1: Using a SVG to JavaFX

The JavaFX visualisation project in Figure 1 represents the final visualisation that
can be executed with Heinzen’s visualisation mechanism [13]. That means displaying
the visualisation is already implemented in ProB2-UI because the visualisation mech-
anism is implemented in ProB2-UI. Therefore, this approach has the advantage that
the focus of this work could lay on the translator and the user interface for VisB.

The visualisation mechanism is written in Java and JavaFX [13]. Consequently, one
would not have to use language support interfaces in the implementation. This sim-
plifies the architecture.

Translating an SVG image to SVGPath, however, has its disadvantages. The SVGPath
class is limited to the Java stack and one is not able to translate every SVG specifi-
cation to it. Additionally, there are limited possibilities of what the SVGPath class is
capable of. E.g. animations are something the SVGPath class is not capable of doing
without hard-coded Java methods and objects. For these, the user would have to write
Java code again because those are specific for one visualisation.

Moreover, there would be one JavaFX project for each visualisation, which has to be
maintained or rewritten after updates to the translator or ProB2-UI. A system like
that would be difficult to maintain.

3.1 Development of the Architecture 7

All in all, the approach to implement a translator, which translates SVG images into
executable visualisations is neither maintainable nor useful enough to further develop
it. This is why further ideas are needed.

3.1.2 Approach with JavaScript

JavaScript [11] is used for interactive web applications and works well with SVG. In
web browsers, SVG images can be controlled via jQuery library calls and CSS. Hence,
the next idea is to solely use JavaScript to write the visualisation tool and to use its
capabilities to improve the interaction with the SVG file.

The idea with this is to implement a web application that works inside of the JavaFX
web view as shown in Figure 2.

Figure 2: Using JavaScript

As seen in Figure 2, to implement this idea, one has to build a Java Core that coor-
dinates the interaction between the JavaScript web application and ProB2-UI. One
would need the SVG file and a visualisation specification file for this as well. The visu-
alisation file for this web application would contain the information needed to modify
the SVG image.

With the last approach, the user would have to write a bit of Java code for specific
animations or interactions. It would not be necessary for the user to write anything
else than the visualisation specification file and the SVG file. In this approach, it is
easier to separate specific visualisation aspects from the Java code, which makes the
visualisation specification more general. This is easier to maintain than generated
JavaFX classes.

The advantages of this approach are that it would be easier for the user to create vi-

8 3 ARCHITECTURE

sualisations. The implementation of the interaction with the SVG image would be un-
complicated because web technologies like JavaScript and CSS have built-in libraries
to work with SVG images. That means one could use the exact SVG image from the
user’s input to visualise the B model.

Nevertheless, the maintainability of the tool would have decreased by using this ap-
proach because one has to develop a lot of code in JavaScript. Implementing a similar
approach, BMotionWeb [18] has been done before and it could not be maintained.

In summary, the idea of using an embedded JavaScript web application is easy to
use and additionally fulfils the goal that a wide range of visualisations is possible.
However, this tool would be very difficult to develop and to maintain.

3.1.3 Approach with JavaFX and JavaScript

This last idea is seemingly the best strategy to meet all the goals of this thesis. This
is because it uses all the advantages of previous ideas and combines them.

At first, it seems difficult to combine the JavaScript visualisation and interaction possi-
bilities with the rather limited ones in JavaFX. However, a very understandable chart
of the architecture can be constructed, as shown in Figure 3.

Figure 3: Using JavaFX and JavaScript

This architecture consists of every positive feature of previous ideas built into one
visualisation plugin. To implement it, the concept is to build a Java Core. That Java
Core interacts with a JavaFX interface for the user interface. That user interface
interacts with its web view in which JavaScript can be used to manipulate the SVG

leuschel
Highlight

leuschel
Highlight

3.2 Input Files 9

image.

The Java Core can process the SVG and the visualisation specification file to form a
visualisation. This visualisation is visible in the web view. Additionally, the Java Core
interacts with the ProB2-UI to execute operations and possibly get information about
the B model.

The JavaFX interface further interacts with the built-in web view, which manipulates
the SVG image via JavaScript and jQuery library calls. By using Heinzen’s plugin
mechanism [13], one can focus on implementing a maintainable Java Core and a user-
friendly JavaFX-UI.

One advantage of this approach is that the implementation of it is mainly in Java and
JavaFX. That means one can keep the JavaScript part as small as possible, to ensure
an easy to maintain software. In addition to that, the UI could be implemented in
consideration of the ProB2-UI, so that the user can easily switch between using in
both. And the last point, a wide variety of visualisations without too much trouble for
the user, can be implemented with this as well.

Because this architecture is based around a visualisation specification file, which one
can see in Figure 3, it is possible the user has to write a lot of specifications for a
visualisation to work as intended. But this be countered by further developing the
plugin, so that it works as an editor for visualisation specification files as well, or by
limiting the possibilities of the visualisation plugin. A possible solution to this problem
is shown in section 8.

Finally, it is decided to build VisB based on this architecture, because it fulfils the
goals that were established before: usability, maintainability, and a wide variety of
possible visualisations.

3.2 Input Files

After figuring out the architecture, one has to think about the visualisation specifica-
tion file and the SVG image file which were mentioned in the previous chapters.

With the usage of input files, one can create visualisations that are separate from the
B models code and general enough to allow good maintainability. This makes the B
model more readable and the overall visualisation tool more useful. If needed, one
can use the B model separately from its visualisation and it is possible to create one vi-
sualisation for multiple B models. These are all advantages over using a visualisation
that has to be written within the B models specification.

The following chapters explain how the input file formats were chosen and which re-
strictions they underlay. Additionally, there will be a small example to understand the
functionality of those files. After that, the implementation of the current architecture
is described.

10 3 ARCHITECTURE

3.2.1 VisB file

The VisB file is the key element that makes a VisB visualisation possible. For that, a
file format is needed that can be converted into a Java object. At best it would have
a built-in Java library to convert its data into the needed Java objects and is already
used in ProB2-UI.

JSON [6] is a file format that most Java developers are familiar with. The JSON format
"is a lightweight data-interchange format. It is easy for humans to read and write [...]
[and] easy for machines to parse and generate" [15]. Additionally, the JSON format
is already used in ProB2-UI. This makes the visualisation specification file easy to
maintain as well as easy to use.

The visualisation file, called VisB file, consists of a simple structure, in which there
are visualisation items and visualisation events declared. These can be used to ma-
nipulate the SVG image in the user interface later on. Listing 1 shows an example of
the structure of a VisB file.

1 {
2 "svg":"button.svg",
3 "items":[
4 {
5 "id":"button",
6 "attr":"fill",
7 "value":"IF button=TRUE THEN \"green\" ELSE \"red\" END"
8 }
9],

10 "events":[
11 {
12 "id":"button",
13 "event":"press_button"
14 }
15]
16 }

Listing 1: Minimal Example for VisB file

As one can see, a VisB item contains an id, an attribute and a value. The value
contains a B formula with return values that can be evaluated to JavaScript values of
SVG attributes. How the evaluation of this works, is explained in subsection 3.3.

To be able to click on the SVG items, an event has to be specified. The reason why
the visualisation file is separated into items and events is that only SVG elements with
corresponding events in the JSON file get an on-click functionality when loading the
files. The thought behind this is to keep the interaction between Java and JavaScript
as clean as possible.

Every VisB event contains an id, an event and the event’s predicates if they are nec-
essary. Parameters for events have to be expressed as predicates. An example for

3.3 Implementation of VisB 11

this is shown in section 5. The JSON keyword is predicates, though, because these
events can contain other predicates in addition to the parameters. The event refers
to an operation in the B model.

The VisB file also contains the path to the SVG file. This path can be relative to the
VisB file, or absolute.

Further examples of the structure of a VisB file can be found in section 5.

3.2.2 SVG file

SVG, or Scalable Vector Graphics, is an XML-based markup language. The language
is designed to describe two-dimensional images. SVG is a widely used image format
that can be displayed in all modern browsers and created with a text editor [10].

Because SVG is a markup language, the user can easily change the image’s attributes
in a text editor. There are no further programs needed to write an SVG file. Though
it is suggested the user uses a program to construct larger SVG images because it is
easier than writing the SVG specifications oneself. For that reason, using SVG as the
image format for the visualisation plugin is a set requirement from the beginning, as
mentioned in section 1.

An SVG file has a wide variety of elements which can be modified with attributes.
Those elements have an id attribute. With this attribute, an SVG element can be
modified in other attributes. To further explain the functionality, one has to take a
look at the structure of an SVG file. You can see an example in Listing 2.

1 <svg height="200" width="200">
2 <circle id="button" cx="100" cy="100" r="80"
3 stroke="black" stroke-width="3" fill="green" />
4 </svg>

Listing 2: Minimal Example for SVG file

The SVG file must contain elements which have corresponding ids to those ids used
in the VisB file. If one takes a look at line 5 and 12 in Listing 1, for example, "button"
has to be the id of an SVG element in the SVG file. In this example, "button" is also
the id of the circle element in Listing 2.

In short, the SVG image is a set choice from the beginning because it is very user-
friendly, and can be modified easily.

3.3 Implementation of VisB

In the implementation of VisB, the focus is to achieve a maintainable tool. To achieve
this goal, the architecture is structured as simple as possible. In addition to that, the
code is well documented.

12 3 ARCHITECTURE

The current architecture, as shown in Figure 4 contains the VisB-UI and the VisB Java
Core. In this section, only the VisB Java Core is explained. The section additionally
describes the interaction between VisB Java Core and VisB-UI. The VisB-UI layout is
inspected in more detail in section 4, where the layout itself is evaluated.

Figure 4: Current Internal Structure

Figure 4 shows that the VisB Java Core gets information from ProB2-UI about the
current project. This information is needed for changes in the VisB-UI as well as
starting and stopping a visualisation automatically after a VisB file is loaded.

The VisB Java Core interacts with the ProB2 Java API to evaluate the B formulas,
which are written in the values of an item in the VisB file. These B formulas return
strings that represent SVG attribute values, which are used in a jQuery. This jQuery
is created in the VisB Java Core as well. It is then sent to the VisB-UI to manipulate
the visualisation. This is, what is meant by "visualisation control" in Figure 4.

The user selects the VisB file, which contains the path to the SVG image used for this
visualisation. The first approach is to make this SVG image path absolute. By taking
a relative path, this path could either be relative to the ProB2-UI project file, the file
of the B model or the VisB file and this could confuse the user. However, because
collaborative repositories are often used in IT development, the SVG image file can
be relative to the VisB file, or absolute. Moreover, it is clarified that the SVG image
file path is relative to the VisB file path. After the VisB file is selected, the VisB-UI
sends it to the VisB Java Core to prepare it for visualisation, as shown in Figure 4.

In subsection 3.2 it is mentioned that the JSON format comes with a built-in Java
library to convert the content of the file to Java objects. Those Java objects are part

3.3 Implementation of VisB 13

of the VisB Java Core. They have to be implemented manually to correspond with the
chosen JSON layout. E.g. a VisBVisualisation object holds the path to the SVG file, the
visualisation items, and the visualisation events. This is an internal representation of
the JSON file.

The current state of the loaded B model affects the visualisation. Information about
the current state is taken from ProB2-UI, as shown in Figure 4. Whenever the current
state of the model changes after the initialisation state, the VisB-UI adapts corre-
sponding to the user input in the VisB file. The very simple B model seen in Listing 15
describes a button that can be pressed one time only.

This model has two states, one in which the button is not pressed and one in which the
button is pressed. The button is represented by a boolean value. In ProB2, a model’s
specification can be visualised as a state space graph. In the state space graph, a
node represents a specific state and the path from the root state to a specific state
represents a trace in the state space. After the current state changes, the values of
the VisB items are newly evaluated.

A very simple VisB file can be seen in Listing 1. In its context, the button is repre-
sented by a circle. By inspecting the contents of the SVG image in Listing 2, one can
see that without manipulation this circle is set as green. However, after initialising
the visualisation with the B model in Listing 15 the button is red. This can be seen in
Figure 6

To achieve this functionality, the VisB Java Core directs the evaluation of the VisB
item values, as shown in Figure 4. For that, each B expression in those item values is
evaluated on the current state.

In ProB2, IF and LET can be used as expressions and predicates, though this func-
tionality is not ordinary for B interpreters [22]. This makes it possible to construct
the B expression, which returns a string value, as shown in Listing 1.

Those B expressions are then evaluated one by one by the B Interpreter of the ProB
Java API. After that, they are translated into a jQuery library call within the VisB
Java Core. A jQuery library call manipulates the SVG image in the VisB UI, which
can be read upon in the next chapter. When the jQuery library call is executed, the
SVG image changes accordingly to its new values for its attributes. Because the B
expressions are currently evaluated one by one, the performance could be drastically
improved in future work, as described in section 8.

The VisB Java Core sends the previously mentioned jQuery library calls to VisB-UI,
as mentioned before. Those jQuery library calls all have the same structure. The
structure is shown in Listing 3.

1 changeAttribute("#button", "fill", "red");

Listing 3: jQuery call for minimal example

ChangeAttribute is a JavaScript function, which is hardcoded into the HTML embed-
ding of the SVG image. Because of that, it is possible to use the ids of the SVG

14 3 ARCHITECTURE

(a) After Initialisation

(b) Button is Pressed

Figure 6: Visualisation of the Button

15

elements to manipulate the SVG.

Most of the string values are tested before they are used in the jQuery library call.
The testing of the right usage of values for the corresponding attributes helps the
user to find mistakes and errors in their files. However, not all of those values can be
tested, without a JavaScript interpreter.

The connection between the VisB UI and the JavaScript interaction is implemented
within the VisB Java Core. In Figure 4, it is represented by the VisBConnector. This
connector makes it possible to click on an SVG element and execute an operation of
a B model in ProB2-UI.

In this particular example, the circle in the SVG file in Listing 2 with the id "button"
can be clicked because there is a visualisation event in the VisB file. This event
describes a B operation. For this particular event, no predicates are needed.

If the SVG element is clicked, the VisBConnector notifies the VisB Java Core with the
id of the SVG element. After that, the corresponding event for this id is found and
executed.

The VisB Java Core uses the current trace to try and execute the operation. The
information about the current trace is provided by the ProB2-UI, as one can see in
Figure 4. If the operation can be executed, the resulting trace is set as the new
current trace. If an operation cannot be executed, the user is notified over the infor-
mation label in the VisB-UI. If an operation needs parameters, the procedure is done
with the corresponding predicates.

Momentarily, there can only be one operation for one SVG element, meaning there
can be only one VisB event for one id. That way, developers have a better overview of
which element is clicked and which operation has to be executed. The functionality of
clicking an SVG element and automatically run more than one operation is discussed
in section 8.

4 VisB-UI Layout

In the development of the VisB-UI layout, one has to consider a different goal than
in the development of the internal structure. While the user usually does not inter-
act with the internal structure of a tool, the user interacts with the user interface.
That means, the layout of the interface inevitably determines the usability of the tool.
Therefore, making the layout of VisB-UI as simple as possible for the user is one of
the goals for this thesis.

Additionally, another goal is set: Leaving or creating a place for additional features or
improving the plugin’s extensibility. Additional features are not necessary for building
simple visualisations, which is the goal of this thesis. However, it would be beneficial
for the user experience to implement them in the future. It should be possible to
implement new features as seamlessly as possible. Therefore, the layout should hold
the capability of adding additional features to it.

16 4 VISB-UI LAYOUT

In the following sections, it is described how the layout of VisB-UI is developed. Fur-
thermore, it is explained, how the functionality and structure of a layout determine
the usability. In the end, the current VisB-UI layout is described and its advantages
and disadvantages are explained.

4.1 Development of the VisB-UI Layout

In the early stages of the user interface, the idea is to display the SVG image in the
VisB-UI in a window itself. That means the controls would be in a different window
than the SVG image. The reason for this layout idea is, that it is very easy to under-
stand and intuitive to control. An illustration of it can be seen in the Figure 7.

Figure 7: Separate Windows

The advantages of this idea are the possibility to have the visualisation view in one
window and the controls in another. This would be beneficiary, e.g. for beamer pre-
sentations. As well as, the possibility to automatically animate the visualisation, which
is further explained in section 8.

Then again, this layout does make it possible to edit and construct a visualisation later
on in development. In Figure 7 one can see, that controls for starting and stopping a
visualisation would have been necessary. However, with the current implementation,
the visualisation cannot be started or stopped by the user. That is because the visuali-
sation is getting updated, whenever the model updates. Additionally, this layout lacks
user information, such as a loading bar or an information label.

In conclusion, the idea of separate windows is interesting and will be used for fu-
ture work, but the overall structure of this layout is not compatible with the current
internal structure and the possibility to add additional features in the future.

This next idea is the first layout of the VisB-UI. In this layout, one could find the

4.1 Development of the VisB-UI Layout 17

possibility to load the VisB file and SVG file separately as well as the SVG image and
the visual representation of the VisB items in the same window, as shown in Figure 8.

Figure 8: Early Stage of VisB-UI Layout

The screenshot shows an early stage of the current UI layout with a visualisation of
the Lift loaded, which is further explained in subsection 5.1.

As shown in Figure 8, there are two buttons, which allow the user to load the VisB file
and SVG file manually in the stage. In addition to that, there is the possibility to see
the visualisation items. They are represented as strings in a list and the VisB events
are not displayed at all. This is because of the idea, that one probably did not want to
edit the VisB events over the UI in the future. In this idea, the SVG image could be
independently loaded into the UI.

On the one hand, this layout could be easily added onto. New features could be in the
same window or get a separate window entirely. Because the layout itself is simple
enough to add on features very seamlessly. That is necessary because the user should
not have to relearn how to use the tools functions after updates for new features.

However, the layout is not user-friendly enough, yet. There is no information or feed-
back for the user. The two buttons for loading the SVG image and the VisB file are

18 4 VISB-UI LAYOUT

intricate to deal with. Two files have to be added manually over the stage before a
visualisation is possible. Lastly, the way the VisB items are represented in Figure 8 is
not professional and the VisB events are not displayed at all. This is bad for develop-
ment if an editing possibility is implemented in the future.

In summary, this layout idea is a relatively good choice for additional features, be-
cause it leaves a lot of room for future additions, but it does not visually fit to ProB2-
UI and lacks in usability. That is why, in the next section, this simple layout is made
more user-friendly with new features. The layout basis is the one seen in Figure 8.

4.2 Current VisB-UI Layout

The following section explains the final changes to the VisB-UI in consideration to
the last chapter. Additionally, it highlights the advantages and disadvantages of this
layout.

After testing and analysing the layout in Figure 8, the decision is made to add a menu
bar. This helps the user to navigate in the UI. The menu bar also holds the key for
more additional features, which can be accessed over menu items.

Two of those additional features are implemented in that menu bar. A help menu
item would lead to a short user manual. The zooming menu items are added to the
menu bar. The possibility to resize or scale the SVG image is something, that highly
improves the functionality and usability of this Plugin.

Another aspect that is missing in the two layout versions before is feedback. In ProB2-
UI, there is a status bar which displays information for the user. Possible pieces of
information from ProB2-UI are, whether the model is loaded correctly if an error
occurred somewhere or even the information that a file is processed. Because this
feature is so useful, and improves the usability, it is added in the form of a status label
in the VisB-UI layout. The plain label is chosen because a coloured status bar would
draw the users attention from the actual visualisation.

The amount of effort a user has to make to start a working visualisation is decreased
by adding the path of the SVG image to the VisB file. This can be done because it is
not planned for the user to be able to edit the SVG image itself within VisB.

These changes mentioned above can be seen in Figure 9.

The screenshot shows the current layout of VisB-UI. As one can see, it is colour-
coordinated with ProB2-UI. Those colours are chosen because the ProB2-UI already
has distinct colours, which the user connects with ProB2. Additionally, to make the
user experience as seamless as possible, the same styles for buttons and labels were
chosen.

As one can see, there are now four menu items, which help the user interact with
VisB. The button for loading the VisB file is kept in the UI and is now used to add the
VisB file, which contains the SVG path, as shown in section 5.

Last but not least, the VisB items and VisB events are displayed in a more professional

4.2 Current VisB-UI Layout 19

Figure 9: Current VisB-UI Layout on Top of ProB2-UI

20 5 VISUALISATION EXAMPLES

way, which matches with ProB2-UI. Now each list has its view. This makes it easier to
add the feature of editing items and events later on.

There is a small disadvantage to this layout in comparison to the previous ones,
though. The disadvantages are that the layout does not make it possible for the user
to stop the visualisation without closing the window.

To sum this up, the layout of the VisB-UI currently has a lot of usable features. These
enable the user to easily interact with VisB-UI and switch seamlessly between it and
ProB2-UI. Additionally, the usability of the layout has been improved from previous
stages. Lastly, additional features can easily be implemented with the current layout.
Therefore, the goals that were set for the VisB-UI layout have been accomplished with
the layout shown in Figure 9.

5 Visualisation Examples

The following uses two B models to illustrate VisB. One is the model of a lift, the
other one is a variation of the eight queens puzzle [9]. The B models for the following
visualisation examples can be found in the ProB Public Examples [4]. In this chapter,
these two examples are visualised with VisB.

5.1 Lift

The B model of this example is shown in Listing 16. It specifies a simple lift, that can
move up and down on four or less different floors. These floors are restricted by a top
floor and a ground floor, which are set as integer constants.

The lift is represented by three variables: the current floor is an integer value between
the ground floor and the top floor, the variable for direction can be either up or down
and the last variable states if the doors are opened or not.

The environment of the lift, on the other hand, is represented by the top floor, the
ground floor and eight buttons, four on the inside and four on the outside of the lift.

Moreover, the specification contains an invariant to ensure that the ground floor is
smaller than the top floor at all times.

However, the lift needs the possibilities to move up, move down, change the direction
as well as opening and closing the doors. The user also needs to be able to press the
buttons, that previously were added to the environment of the lift. Both are realised
with operations in B.

For this B model, one can construct an SVG image, that shows how the current state
of the lift looks like after initialisation of the B model. What the SVG image for this
example looks like without manipulation can be seen in Figure 10.

After creating an image with the desired components one has to set ids. Each element
that one intends to manipulate in the visualisation needs an id. Note that the SVG

5.1 Lift 21

Figure 10: SVG Image for the Lift Visualisation

image in Figure 10 contains overlapping items. This will be used later on to use more
than one event in one place.

The SVG image for the visualisation is created and the identifiers for the SVG ele-
ments are set. Now one can think about what each element of the SVG image does
when the B model is running. This information will be used to create the VisB file. For
this visualisation, the ground floor and top floor can vary. What one can do now, is to
hide unused floors for the current visualisation. In the created SVG image one floor
consists of five SVG elements. The corresponding VisB items can be seen in Listing 4.
This is how the VisB file would look like if one did not use the possibility to group the
elements.

1 ...
2 {
3 "id":"floor_2",
4 "attr":"visibility",
5 "value":"IF topf=2 THEN \"visible\" ELSE \"hidden\" END"
6 },
7 ...
8 {
9 "id": "text_2",

10 "attr": "visibility",
11 "value": "IF topf=2 THEN \"visible\" ELSE \"hidden\" END"
12 },

22 5 VISUALISATION EXAMPLES

13 ...
14 {
15 "id": "inside_text_2",
16 "attr": "visibility",
17 "value": "IF topf=2 THEN \"visible\" ELSE \"hidden\" END"
18 },
19 ...
20 {
21 "id": "button_2",
22 "attr": "visibility",
23 "value": "IF topf=2 THEN \"visible\" ELSE \"hidden\" END"
24 },
25 ...
26 {
27 "id": "inside_2",
28 "attr": "visibility",
29 "value": "IF topf=2 THEN \"visible\" ELSE \"hidden\" END"
30 },
31 ...

Listing 4: Change "visibility" Attribute

By grouping the elements, one can change some of the attributes of each of the ele-
ments in this group with one VisB item.

Now that the SVG elements are grouped, the VisB file only contains one item for visi-
bility, as shown in Listing 5. This approach changes the visibility of the five elements
with one VisB item.

1 ...
2 {
3 "id":"gFloor_2",
4 "attr":"visibility",
5 "value":"IF topf=2 THEN \"visible\" ELSE \"hidden\" END"
6 },
7 ...

Listing 5: The Benefits of Grouping SVG Elements

For this visualisation, the user needs more than visible floors, though. The lift is
represented by three rectangles. Two of those represent the doors and the other
one represents the inside of the lift. This visualisation tricks the user by changing the
colour of the inside of the lift to make it appear as if the doors are closed. Additionally,
every button that can be pushed should change colour. The SVG attribute needed to
change the colour of an SVG element is called "fill", it can be seen in Listing 6.

5.1 Lift 23

1 ...
2 {
3 "id":"lift",
4 "attr":"fill",
5 "value":"IF door_open=TRUE THEN \"#ffeeaa\" ELSE \"#ac9393\" END"
6 },
7 ...
8 {
9 "id":"button_U",

10 "attr":"fill",
11 "value":"IF -1:call_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END"
12 },
13 ...
14 {
15 "id":"inside_U",
16 "attr":"fill",
17 "value":"IF -1:inside_buttons THEN \"#FF0000\" ELSE \"#FF8080\"

END"
18 },
19 ...

Listing 6: Change "fill" Attribute

One can observe that the symbol " which is used around the return values has to be
escaped with the symbol \. This is because in JSON " is a special character, that
expects a string value, similarly to Java. This is something the user has to keep in
mind when writing the B formulas for each item.

Additionally, the lift has a VisB item for changing its position in the SVG image. One
cannot change the x or y values of groups, which is why these values have to be
changed for each part that moves. An example for this attribute change can be seen
in Listing 7. One can work around that by nesting SVG images, as it can be seen in
subsection 5.2.

1 ...
2 {
3 "id":"lift",
4 "attr":"y",
5 "value":"IF cur_floor=2 THEN \"grounf+3\" ELSIF cur_floor=1 THEN \

"76.974\" ELSIF cur_floor=0 THEN \"150.474\" ELSE \"224.574\"
END"

6 },
7 {
8 "id":"door_right",
9 "attr":"y",

10 "value":"IF cur_floor=2 THEN \"3.207\" ELSIF cur_floor=1 THEN \"

24 5 VISUALISATION EXAMPLES

76.974\" ELSIF cur_floor=0 THEN \"150.474\" ELSE \"224.574\"
END"

11 },
12 {
13 "id":"door_left",
14 "attr":"y",
15 "value":"IF cur_floor=2 THEN \"3.207\" ELSIF cur_floor=1 THEN \"

76.974\" ELSIF cur_floor=0 THEN \"150.474\" ELSE \"224.574\"
END"

16 },
17 ...

Listing 7: Change "y" Attribute

The overlapping items, mentioned before are meant to simplify the usages of revers-
ing the lift, moving the lift and opening and closing the doors. The idea is to hide the
item which’s operation cannot be executed and show the item that can be executed
on the current trace and, therefore, has a on-click functionality. Because, it is enough
to show and hide the item that is on top of the other one in the SVG image, the VisB
items shown in Listing 8 are enough to achieve this behaviour. This is similarly done
for reversing and moving the lift up and down.

1 ...
2 {
3 "id":"open_door",
4 "attr":"visibility",
5 "value":"IF door_open=TRUE THEN \"hidden\" ELSE \"visible\" END"
6 },
7 ...
8 {
9 "id":"close_door",

10 "event":"close_door"
11 },
12 {
13 "id":"open_door",
14 "event":"open_door"
15 },
16 ...

Listing 8: Hiding Not Executable Elements

To execute an operation with a parameter, that parameter has to be set as an addi-
tional predicate for the executable event. An example of that can be seen in Listing 9.

1 ...
2 {
3 "id":"button_U",

5.1 Lift 25

4 "event":"push_call_button",
5 "predicates":[
6 "b=-1"
7]
8 },
9 ...

Listing 9: Event with Parameters

After all of the buttons have their events, similar to the one shown in Listing 9 the
visualisation for the lift is finished. The complete VisB file that is created in this
visualisation example can be found in Listing 18. A small example of how two of the
states look like in VisB can be found in Figure 12. A bigger example of a whole use
case can be found in Appendix C.

(a) Before Initialisation, VisB Items Opened (b) Before Initialisation, VisB Events Opened

(c) After Initialisation, topf=1, groundf=0 (d) After call_button 1 is pressed

Figure 12: Example of two States of the Lift Visualisation

26 5 VISUALISATION EXAMPLES

5.2 N-Queens

The following logic puzzle is a more general version of the eight queens puzzle [9].
The problem of this puzzle is to place eight queens on an 8× 8 chessboard so that no
two queens do attack each other. Now the n-queens puzzle is the same, but with n

queens on an n× n chessboard.

The specification of the B model is defined as follows. It is listed in Listing 17. In the
beginning, the user can set n. This n is then used to generate the n × n chessboard.
This can be realised with setting up constants and the initialisation of the B model.

After the initialisation, the user can set the queens. For setting the queens, the op-
eration SetQueens(i,j) is used. Additionally to that, if a queen of a certain column
is already set, the user can change that queen’s column. This can be done with the
ChangeQueen(i,j) operation.

For this visualisation, there are already SVG images that can be used to create the
chessboard seen in Figure 14. These images can be found in the ProB Public Exam-
ples [4]. To produce the image seen in Figure 14 these SVG images were nested and
combined to a bigger SVG file.

(a) Before Initialisation, 20× 20 (b) After Initialisation, 20× 20

Figure 14: N-Queens SVG Image for Visualisation

The simplest and fastest approach of the visualisation uses n + n × n SVG items n

nested SVG images, that represent the queens and n × n tiles, that represent the
chessboard.

A tile is visible if its row or its column is smaller than N. N is a constant set by the
user.

However, when continuing this approach for the chessboard, it would lead to a sim-
ilar problem one had with the lift visualisation. In the comparison of Listing 10 and
Listing 11 this problem becomes clear.

5.2 N-Queens 27

1 ...
2 {
3 "id": "tile8x1",
4 "attr": "visibility",
5 "value" : "IF 8<=n & 1<=n THEN \"visible\" ELSE \"hidden\" END"
6 },
7 ...
8 {
9 "id": "tile8x2",

10 "attr": "visibility",
11 "value" : "IF 8<=n & 2<=n THEN \"visible\" ELSE \"hidden\" END"
12 },
13 ...
14 {
15 "id": "tile8x3",
16 "attr": "visibility",
17 "value" : "IF 8<=n & 3<=n THEN \"visible\" ELSE \"hidden\" END"
18 },
19 ...

Listing 10: Visibility of Tiles without Grouping

If each tile has a VisB item, the number of VisB items needed for an n× n chessboard
is clearly n× n. However, the chessboard is always of the form n× n, this is why this
approach is simplified by the process of grouping the items so that the amount of VisB
items needed becomes n.

Figure 15: N-Queens Grouping

For this approach, the SVG elements representing the tiles are grouped as visualised
in Figure 15. The tile (i, j) is in group k if i ≤ k and j ≤ k, but only if i = k or j = k.

28 5 VISUALISATION EXAMPLES

1 ...
2 {
3 "id": "gTiles8",
4 "attr": "visibility",
5 "value" : "IF 8<=n THEN \"visible\" ELSE \"hidden\" END"
6 },
7 ...

Listing 11: Visibility of Tiles with Grouping

The SVG elements representing the queens are not grouped. Each queen is invisible
after initialisation. They become visible if the queen’s column is set in the model. This
can be checked with the B predicate q1:dom(queens), as shown in Listing 12.

1 ...
2 {
3 "id": "svgQueen1",
4 "attr": "visibility",
5 "value" : "IF 1:dom(queens) THEN \"visible\" ELSE \"hidden\" END"
6 },
7 {
8 "id": "svgQueen1",
9 "attr": "y",

10 "value" :"IF 1|->2:queens THEN \"45\" ELSIF 1|->3:queens THEN \"
90\" ELSIF 1|->4:queens THEN \"135\" ELSIF 1|->5:queens THEN \
"180\" ELSIF 1|->6:queens THEN \"225\" ELSIF 1|->7:queens THEN
\"270\" ELSIF 1|->8:queens THEN \"315\" ELSIF 1|->9:queens
THEN \"360\" ELSIF 1|->10:queens THEN \"405\" ELSIF 1|->11:
queens THEN \"450\" ELSIF 1|->12:queens THEN \"495\" ELSIF
1|->13:queens THEN \"540\" ELSIF 1|->14:queens THEN \"585\"
ELSIF 1|->15:queens THEN \"630\" ELSIF 1|->16:queens THEN \"
675\" ELSIF 1|->17:queens THEN \"720\" ELSIF 1|->18:queens
THEN \"765\" ELSIF 1|->19:queens THEN \"810\" ELSIF 1|->20:
queens THEN \"855\" ELSE \"0\" END"

11 },
12 {
13 "id": "svgQueen1",
14 "attr": "fill",
15 "value" : "IF is_attacked(1) & 1:dom(queens) THEN \"red\" ELSE \"

black\" END"
16 },
17 ...

Listing 12: VisB Items for Queens

5.2 N-Queens 29

The VisB item used to set the y coordinate of the queen can be seen in Listing 12 in
line 10. The B formula used to set the y coordinate is constructed as follows. There is
only one queen for each column. The exact position of the queen in column i can be
found out by checking for each row j if i|->j:queens is true. The exact position for
the y coordinate is 45 ∗ (j − 1) for this example because the height of the images is 45
pixels. E.g. the queen’s y coordinate on position j = 1 is y = 0, for j = 2 it’s y = 45,
etc.

The last VisB item determines the colour of the queen. That is achieved by using the
SVG attribute "fill". The "fill" of the queen is "red" whenever the queen is attacked
and it is a set queen, otherwise the queen’s "fill" is "black".

The specification of the model gives the user the possibility to set and change the
queens on the chessboard. It is not possible in VisB to have multiple operations for
one SVG element, but one can work around that by redefining the user input in a new
operation, as seen in Listing 13.

It is, additionally, possible to use machine inclusion and it would probably be more
elegant. For this, another model has to be specified that extends the model seen in
Listing 17 with a new operation.

However, this example redefines the user input since it is not important how the new
operation is implemented for the visualisation of it. Moreover, changing the code
is easier to understand at this point. The VisB item shown in Listing 14 achieves the
functionality of setting and changing queens by clicking on the tiles of the chessboard.

1 TryQueen(i,j) = PRE i:1..n & j:1..n THEN
2 IF i /: dom(queens) THEN
3 SELECT i:1..n & j:1..n & i /: dom(queens) THEN
4 queens(i) := j
5 END ELSE
6 SELECT i:1..n & j:1..n & i : dom(queens) & j /= queens(i) THEN
7 queens(i) := j
8 END
9 END

10 END;

Listing 13: Redefining the User Interaction for the Visualisation

1 ...
2 {
3 "id": "tile1x1",
4 "event": "TryQueen",
5 "predicates" : ["i=1","j=1"]
6 },
7 {
8 "id": "tile2x1",
9 "event": "TryQueen",

30 5 VISUALISATION EXAMPLES

10 "predicates" : ["i=2","j=1"]
11 },
12 ...

Listing 14: VisB Events for Tiles

Listing 14 shows that one VisB Event for each tile (i, j) is set. With that, VisB executes
the operation TryQueen(i, j) for each tile (i, j).

With the visualisation specification set, one can now visualise the n-queens problem
for an n × n chessboard. A full use case for a 10 × 10 chessboard can be seen in
Appendix C. Figure 17 shows possible solutions for n = 8, n = 20, n = 120.

The case n = 120 is an example that cannot be visualised with the previous con-
structed VisB items because they only have y coordinated for 20 tiles. It is used,
however, to evidence the possibility to visualise bigger state spaces in VisB. The con-
struction of a VisB file for n = 120 is done similarly to the discussed construction for
n = 20.

5.2 N-Queens 31

(a) Solution for n = 8 (b) Solution for n = 20

(c) Solution for n = 120

Figure 17: N-Queens Visualisation Solutions

32 6 RELATED WORK

6 Related Work

Visualisation and animation have always been very important for the ProB team. Over
the years of development, there have been several visualisations for ProB2.

Currently, two of the following visualisation tools can be maintained and are usable
in ProB2-UI. One of these tools is the ANIMATION_FUNCTION [21], which was one
of the first visualisation tools built for ProB. The JavaFX based visualisation mecha-
nism [13], created by Heinzen can be used in ProB2-UI as well. B-Motion Studio [18]
for ProB2 is a visualisation tool that was created by Ladenberger. This visualisation,
however, is currently not usable in the current version of ProB2-UI.

In the following chapters, each of the visualisation tools is summarised. After that, the
visualisations are analysed in consideration of the goals set in this thesis and finally
compared to VisB. However, these tools were created for different reasons, which is
explained in these summaries as well.

6.1 Animation Function

One of the first visualisation tools for ProB was introduced in a paper that Leuschel
and Bendisposto published in 2007 [5]. The motivation for this animation tool is to
create a visual prototype for a B model. The motivation is that domain experts and
formal method experts can communicate properties of the B model more easily.

However, this tool, based on Macromedia Flash, is inconvenient for students and
lecturers, as the setup and the development of glueing code are too difficult [21].

The ANIMATION_FUNCTION was developed in 2008 [21]. The motivation was to cre-
ate a visualisation tool which is easier to use. The authors explain that the ANIMA-
TION_FUNCTION has to be declared in the DEFINITIONS. This tool is implemented
in B. Paths to images have to be declared in those as well. With this tool, the user
can visualise B models in a grid layout by using the B language. An example of the
ANIMATION_FUNCTION written for the n-queens problem can be seen in Listing 19.

The advantages of the ANIMATION_FUNCTION are the following: The tool has
been added to ProB2-UI and is very useful for simple visualisations. The ANIMA-
TION_FUNCTION needs a small amount of maintenance because it is very sophisti-
cated. Another positive aspect is, that the user writes in the B language only.

On disadvantages are that the functionality of the tool is rather restricted by the
grid layout, which is inconvenient for more complex visualisations. Additionally, the
tool requires writing the ANIMATION_FUNCTION which "can still be a considerable
challenge" [19].

In conclusion, the ANIMATION_FUNCTION is still a very useful, sophisticated tool
for creating visualisations and animations of B models. In comparison, the ANIMA-
TION_FUNCTION is not as user-friendly as VisB, because it requires a rather com-
plicated function written in B. This is not as intuitive as selecting the value for an

6.2 BMotion Studio and BMotionWeb 33

attribute for an SVG element. However, VisB is less sophisticated than the ANIMA-
TION_FUNCTION and therefore lacks in features the ANIMATION_FUNCTION has,
e.g. right click mouse menus for selecting an operation. VisB is also more flexible in
creating visualisations because the ANIMATION_FUNCTION is bound by the a grid
layout.

6.2 BMotion Studio and BMotionWeb

BMotion Studio was introduced in 2009, in a paper by Leuschel, Bendisposto and
Ladenberger and was created to simplify the process of creating a visualisation. They
explained, that the ANIMATION_FUNCTION is still too complicated to use [19]. BMo-
tion Studio uses controls and observers. The controls are graphical representations
of important aspects of the model, while the observers are used to "link controls to
the model’s state" [19].

However, BMotion Studio does not have features for validation. In 2016 Ladenberger,
therefore, presents BMotionWeb, a "novel graphical environment" created to validate
"interactive safety-critical systems by creating interactive formal prototypes" [18].
"BMotionWeb is the successor of BMotion Studio", as stated by Ladenberger in [18].
What Ladenberger means is that this new visualisation approach makes it possible to
validate models by creating visual prototypes.

BMotionWeb is a complex tool for creating formal prototypes, that includes a great
number of features, such as a graphical environment for creating visualisations and
a scripting language for more complex prototypes [18]. The tool is based on web-
technologies like JavaScript and HTML and works with SVG, just like VisB does [18].
Additionally, it similarly is created with a visualisation template in JSON format. One
also can add a Groovy Script for further modifications or write JavaScript code for the
visualisation.

VisB is mainly focused on usability, maintainability, and the possibility to create a
wide range of B models. BMotionWeb, on the other hand, is focused on more complex
goals, such as prototyping and validation. BMotionWeb is written mostly in JavaScript
and Java, though a great amount of the code is JavaScript [18]. Because BMotionWeb
is focused on different aspects and is mostly written in JavaScript, the code is hard to
understand for other members of the ProB team. Therefore, this tool is not maintain-
able at the moment.

All in all, this tool is user-friendly, because one can create a visualisation in a small
amount of time. BMotionWeb additionally has the capability of creating a visualisation
for a wide range of B models because it supports nondeterministic behaviour which
VisB is currently not able to do. However, the tool is not maintainable in the long-
term because its architecture is very complex. When comparing this tool to VisB, it
has advantages in the sense that it has a very wide range of B models that can be
visualised with it, but it has its disadvantage in terms of maintainability. Both tools
are user-friendly and work with modern web technologies, though using BMotionWeb
requires more knowledge about those technologies, especially when one wants to use

34 6 RELATED WORK

JavaScript or Groovy additions.

6.3 Visualisation Mechanism

Heinzen introduces the visualisation mechanism for ProB2-UI in his master’s thesis.
He states in its motivation that a ProB user needs basic knowledge of SVG, HTML
and JavaScript for a simple visualisation with BMotionWeb [13]. The visualisation
mechanism is written in Java and JavaFX. It requires, theoretically, one JavaFX class
to be written for a visualisation to be possible, but it is hard to achieve a useful
visualisation with only one JavaFX class with that tool.

The Java class that represents the visualisation can only access built-in Java objects
from the JavaFX library, such as rectangles, circles, and other simple shapes, e.g. in
the lift visualisation example [14]. If one wants to create a more complex visualisation
the user has to write more JavaFX classes, as one can see in the bridges visualisation
example in Heinzen’s thesis [14]. Unfortunately, there are not many tools, that pro-
vide a user-friendly way of creating a more complex image in JavaFX.

However, there are tools that translate an SVG image to JavaFX, though they are
limited to the SVGPath [24] class and therefore do not have all of the specifications of
SVG images, as mentioned in subsection 3.1.

The visualisation mechanism is optimised in performance and multiple machines can
be visualised with one visualisation [13]. Additionally, it needed an in-memory com-
piler for the Java visualisations, with user-friendly error messages [13].

The code of the visualisation mechanism is maintainable and the visualisation mech-
anism can be used for standalone visualisations for B models. However, because the
visualisations are rather specialised on one domain, there is still a lot of code for ev-
ery visualisation to maintain, which makes it overall harder to maintain. Especially if
the usage of code for the visualisation mechanism changes.

In short, the visualisation mechanism is not user-friendly, because the user has to
write complicated JavaFX classes to create a visualisation. Additionally, images for
visualisation are very intricate to construct. In comparison, VisB is more user-friendly
and visualisations can be constructed more easily. The visualisation mechanism can
be maintained well, but the visualisations themselves are much harder to maintain.
VisB relies on a file system so that major changes internally less likely affect already
created visualisations. That means VisB has an advantage in maintenance.

35

7 Conclusion

All in all, the goals of this thesis were accomplished during this work. In brief, these
goals were to build a visualisation plugin, VisB, for ProB2-UI that is maintainable,
user-friendly, and can visualise a broad range of B models.

It is investigated how the architecture of VisB is developed. There are different ap-
proaches for a visualisation plugin: Creating it in JavaFX only, by using the SVG-
Path class and on the other hand, implementing a web application fully based on
JavaScript. Both of these approaches were shown to be unpractical for they do not
accomplish the goals of this thesis. The final approach of using a combination of
JavaFX and JavaScript, however, was discovered to fulfill every goal.

The thesis shows that VisB is maintainable because its architecture is easy to under-
stand and well documented. In VisB’s architecture, the logic and the user interface
are isolated from each other while interacting with each other. This enhances the
maintainability of the plugin.

Furthermore, the VisB files are easy to read and easy to work within the development.
The usage of JSON is useful because it comes with the advantages of built-in libraries
in Java. SVG has a wide variety of elements and functionalities and was, therefore,
a good choice for this plugin. These file formats further enhance the maintainability
of the tool because the logic and the user interface of the visualisation itself are
separated.

Similarly, it is investigated whether the user interface of VisB is user-friendly. Operat-
ing the tool can be done instinctively because only a few things have to be understood
when using the tool. The additional goal, to find a layout suitable for additional fea-
tures, was accomplished as well. This is accomplished because the user will not have
to relearn the user interface, after developing features and adding them to the exten-
sive layout in the future.

Moreover, this thesis achieves the goal to create a tool that enables the user to create
simple visualisations for B models. This is shown in two different examples, that was
easily created and visualised in VisB. For both examples, there are use cases that show
how domain experts can use the visualisation created by formal methods experts.

In the end, this thesis compares VisB to previous visualisation tools. Each previously
discussed tool has its advantages and disadvantages. However, VisB is the only tool
that accomplishes all three goals that are set in this thesis. VisB is maintainable,
user-friendly, and a broad range of visualisations for different kinds of B models can
be achieved with it.

36 8 FUTURE WORK

8 Future Work

With all this, the work is not done, yet. There are numerous ideas on how to improve
VisB further, while still containing the goals of this thesis. In the future, the following
ideas could be further developed and researched. However, the intention of this thesis
should be kept in mind, while further developing this tool.

1. Implementing an editor for manipulating VisB files over VisB-UI. As men-
tioned before in this thesis, the usability would increase, when one could im-
plement an editor for VisB files. When working with VisB at the moment, the B
user has to write a large amount of code, e.g. for repeating items. This could be
simplified by an editor, e.g. the editor could repeat certain code fragments with
different ids.

2. Investigating and increasing the performance of VisB. Though this is not
seen as necessary for this thesis because it has a different focus, one could
increase the performance of VisB. This could be done by finding another solution
for the evaluation of values.

3. Standalone visualisation with VisB. In BMotionWeb [18] standalone visuali-
sations were possible. That means creating visualisations that can be executed
separately from ProB2-UI. However, further research has to be done on how to
implement such functionality in VisB and if it would be beneficial.

4. Possibility to separate visualisation from editor layout. If the editor is
developed, one should find a way to separate the visualisation from the editor.
Currently, the goal was to get an extensive visualisation layout. This extensive-
ness should be used, however, to make it possible to separate the views. This
should be done because it would be beneficial e.g. for presentations and lec-
tures, where the VisB code should not be seen.

5. The integration of VisB into ProB2-UI. In the long run, a goal for this project
should be to integrate VisB into ProB2-UI because the tool can be very useful
for users of ProB2-UI.

37

A List of B Models used in this Thesis

1 MACHINE button
2 VARIABLES
3 button
4 INVARIANT
5 button:BOOL
6 INITIALISATION
7 button := FALSE
8 OPERATIONS
9 press_button = PRE button=FALSE THEN

10 button:=TRUE
11 END
12 END

Listing 15: Minimal Example for B model

1 MACHINE Lift
2 /* A simple model of a lift without a controller; The controller
3 will be added in a refinement (by refining the lift moving operations

) or
4 by a CSP controller */
5 DEFINITIONS
6 FLOORS == (groundf .. topf);
7 all_buttons_pressed == (inside_buttons \/ call_buttons);
8 /* Note: one could make a slightly simpler spec by only keeping a

single all_buttons_pressed variable */
9 ASSERT_LTL == "G ([push_call_button(groundf)] -> X F {cur_floor=

groundf & door_open=TRUE})";
10 ASSERT_LTL2 == "G ([push_inside_button(topf)] -> X F {cur_floor=topf &

door_open=TRUE})"
11 /* These LTL properties are violated: e.g., the machine can reverse

infinitely without moving */
12 CONSTANTS groundf,topf
13 PROPERTIES
14 groundf:INT & topf:INT & groundf < topf
15 VARIABLES cur_floor, inside_buttons, door_open, call_buttons,

direction_up
16 INVARIANT
17 cur_floor : FLOORS &
18 inside_buttons <: FLOORS &
19 door_open : BOOL &
20 call_buttons <: FLOORS &
21 direction_up : BOOL
22 INITIALISATION

38 A LIST OF B MODELS USED IN THIS THESIS

23 cur_floor := groundf || inside_buttons := {} || door_open := FALSE ||
call_buttons := {} || direction_up := TRUE

24 OPERATIONS
25 /* The lift operations : */
26 move_up = PRE door_open = FALSE & cur_floor <topf & direction_up=TRUE

THEN
27 cur_floor := cur_floor +1
28 END;
29 move_down = PRE door_open = FALSE & cur_floor>groundf & direction_up=

FALSE THEN
30 cur_floor := cur_floor - 1
31 END;
32 reverse_lift_down = PRE direction_up=TRUE THEN direction_up := FALSE

END;
33 reverse_lift_up = PRE direction_up=FALSE THEN direction_up := TRUE END

;
34 open_door = PRE door_open = FALSE & cur_floor : all_buttons_pressed

THEN
35 door_open := TRUE
36 END;
37 close_door = PRE door_open = TRUE THEN
38 door_open := FALSE ||
39 /* clear requests as floor now visited: */
40 inside_buttons := inside_buttons - {cur_floor} || call_buttons :=

call_buttons - {cur_floor}
41 END;
42

43 /* The user interface : */
44 push_inside_button(b) = PRE b:FLOORS & b/: inside_buttons & b/=

cur_floor THEN
45 inside_buttons := inside_buttons \/ {b}
46 END;
47 push_call_button(b) = PRE b:FLOORS & b/: call_buttons THEN
48 call_buttons := call_buttons \/ {b}
49 END
50 END

Listing 16: Lift Specifications in B from the ProB Public Examples [4]

39

1 MACHINE QueensWithEvents
2 CONSTANTS n
3 PROPERTIES
4 n : NATURAL &
5 n < 20
6 DEFINITIONS
7 SET_PREF_TIME_OUT == 6000;
8 SET_PREF_CLPFD == TRUE;
9 SET_PREF_MAX_INITIALISATIONS == 20;

10 SET_PREF_MAX_OPERATIONS == 10;
11 MAX_OPERATIONS_SetQueen == 1000;
12 MAX_OPERATIONS_ChangeQueen == 1000;
13 MAX_OPERATIONS_SolveAny == 4;
14

15 is_attacked(q1) == q1:dom(queens) &
16 #q2.(q2:dom(queens) & q2 /= q1 &
17 (no_attack(q1,q2,queens) => queens(q1) =

queens(q2)));
18 pos_is_attacked(q1,q1row) ==
19 #q2.(q2:dom(queens) & q2 /= q1 &
20 (no_attack_pos(q1,q1row,q2,queens(q2)) =>

q1row = queens(q2)));
21 no_attack(q1,q2,board) == no_attack_pos(q1,board(q1),q2,board(q2))

;
22 no_attack_pos(q1,q1row,q2,q2row) == (q1row+q2-q1 /= q2row & q1row-

q2+q1 /= q2row);
23 Solution(board) == (
24 board : perm(1..n) /* for each column the row in which the

queen is in */
25 &
26 !(q1,q2).(q1:1..n & q2:2..n & q2>q1 => no_attack(q1,q2,board))
27)
28 VARIABLES queens
29 INVARIANT
30 queens : (1..n) +-> (1..n)
31 INITIALISATION
32 queens := {}
33 OPERATIONS
34 Solve = ANY solution WHERE
35 Solution(solution) &
36 !x.(x:dom(queens) => solution(x)=queens(x))
37 THEN
38 queens := solution
39 END;

40 A LIST OF B MODELS USED IN THIS THESIS

40 SolveFuzzy = ANY solution WHERE
41 Solution(solution) &
42 !x.(x:dom(queens) => solution(x):{queens(x)-1,queens(x),queens(x)

+1})
43 THEN
44 queens := solution
45 END;
46 SetQueen(i,j) = SELECT i:1..n & j:1..n & i /: dom(queens) THEN
47 queens(i) := j
48 END;
49 ChangeQueen(i,j) = SELECT i:1..n & j:1..n & i : dom(queens) & j /=

queens(i) THEN
50 queens(i) := j
51 END;
52 r<--Get(yy) = PRE yy:dom(queens) THEN r:= queens(yy) END
53 END

Listing 17: N-Queens Problem in B from the ProB Public Examples without Animation
Function [4]

41

B Complete VisB File Examples

1 {
2 "svg":"lift_groups.svg",
3 "items":[
4 {
5 "id":"gFloor_2",
6 "attr":"visibility",
7 "value":"IF topf=2 THEN \"visible\" ELSE \"hidden\" END"
8 },
9 {

10 "id":"gFloor_1",
11 "attr":"visibility",
12 "value":"IF topf:{1,2} THEN \"visible\" ELSE \"hidden\" END"
13 },
14 {
15 "id":"gFloor_0",
16 "attr":"visibility",
17 "value":"IF topf:{0,1,2} THEN \"visible\" ELSE \"hidden\" END"
18 },
19 {
20 "id":"gFloor_U",
21 "attr":"visibility",
22 "value":"IF groundf=-1 THEN \"visible\" ELSE \"hidden\" END"
23 },
24 {
25 "id":"lift",
26 "attr":"fill",
27 "value":"IF door_open=TRUE THEN \"#ffeeaa\" ELSE \"#ac9393\" END"
28 },
29 {
30 "id":"lift",
31 "attr":"y",
32 "value":"IF cur_floor=2 THEN \"3.207\" ELSIF cur_floor=1 THEN \"

76.974\" ELSIF cur_floor=0 THEN \"150.474\" ELSE \"224.574\"
END"

33 },
34 {
35 "id":"door_right",
36 "attr":"y",
37 "value":"IF cur_floor=2 THEN \"3.207\" ELSIF cur_floor=1 THEN \"

76.974\" ELSIF cur_floor=0 THEN \"150.474\" ELSE \"224.574\"
END"

38 },

42 B COMPLETE VISB FILE EXAMPLES

39 {
40 "id":"door_left",
41 "attr":"y",
42 "value":"IF cur_floor=2 THEN \"3.207\" ELSIF cur_floor=1 THEN \"

76.974\" ELSIF cur_floor=0 THEN \"150.474\" ELSE \"224.574\"
END"

43 },
44 {
45 "id":"button_U",
46 "attr":"fill",
47 "value":"IF -1:call_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END"
48 },
49 {
50 "id":"button_0",
51 "attr":"fill",
52 "value":"IF 0:call_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END"
53 },
54 {
55 "id":"button_1",
56 "attr":"fill",
57 "value":"IF 1:call_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END"
58 },
59 {
60 "id":"button_2",
61 "attr":"fill",
62 "value":"IF 2:call_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END"
63 },
64 {
65 "id":"inside_U",
66 "attr":"fill",
67 "value":"IF -1:inside_buttons THEN \"#FF0000\" ELSE \"#FF8080\"

END"
68 },
69 {
70 "id":"inside_0",
71 "attr":"fill",
72 "value":"IF 0:inside_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END

"
73 },
74 {
75 "id":"inside_1",
76 "attr":"fill",
77 "value":"IF 1:inside_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END

"

43

78 },
79 {
80 "id":"inside_2",
81 "attr":"fill",
82 "value":"IF 2:inside_buttons THEN \"#FF0000\" ELSE \"#FF8080\" END

"
83 },
84 {
85 "id":"reverse_up",
86 "attr":"visibility",
87 "value":"IF direction_up=TRUE THEN \"hidden\" ELSE \"visible\" END

"
88 },
89 {
90 "id":"reverse_down",
91 "attr":"visibility",
92 "value":"IF direction_up=FALSE THEN \"hidden\" ELSE \"visible\"

END"
93 },
94 {
95 "id":"open_door",
96 "attr":"visibility",
97 "value":"IF door_open=TRUE THEN \"hidden\" ELSE \"visible\" END"
98 }
99],

100 "events":[
101 {
102 "id":"button_U",
103 "event":"push_call_button",
104 "predicates":[
105 "b=-1"
106]
107 },
108 {
109 "id":"button_0",
110 "event":"push_call_button",
111 "predicates":[
112 "b=0"
113]
114 },
115 {
116 "id":"button_1",
117 "event":"push_call_button",
118 "predicates":[

44 B COMPLETE VISB FILE EXAMPLES

119 "b=1"
120]
121 },
122 {
123 "id":"button_2",
124 "event":"push_call_button",
125 "predicates":[
126 "b=2"
127]
128 },
129 {
130 "id":"inside_U",
131 "event":"push_inside_button",
132 "predicates":[
133 "b=-1"
134]
135 },
136 {
137 "id":"inside_0",
138 "event":"push_inside_button",
139 "predicates":[
140 "b=0"
141]
142 },
143 {
144 "id":"inside_1",
145 "event":"push_inside_button",
146 "predicates":[
147 "b=1"
148]
149 },
150 {
151 "id":"inside_2",
152 "event":"push_inside_button",
153 "predicates":[
154 "b=2"
155]
156 },
157 {
158 "id":"close_door",
159 "event":"close_door"
160 },
161 {
162 "id":"open_door",

45

163 "event":"open_door"
164 },
165 {
166 "id":"up",
167 "event":"move_up"
168 },
169 {
170 "id":"down",
171 "event":"move_down"
172 },
173 {
174 "id":"reverse_up",
175 "event":"reverse_lift_up"
176 },
177 {
178 "id":"reverse_down",
179 "event":"reverse_lift_down"
180 }
181]
182 }

Listing 18: Complete VisB File for Lift Model

46 C ADDITIONAL EXAMPLES

C Additional Examples

C.1 Use Case for Lift Visualisation

In the use case example in Figure 19 and Figure 21 the lift starts at the ground floor.
The lift picks up guests from the ground floor and transports them to the top floor.
After that, the lift goes back into the state after the initialisation.

C.2 Use Case for N-Queens Visualisation

In the following images, a domain expert is able to find a solution for the n-queens
problem, with n = 10.

C.2 Use Case for N-Queens Visualisation 47

(a) Before Initialisation, VisB Items Opened (b) Before Initialisation, VisB Events Opened

(c) After Initialisation, topf=0, groundf=-1 (d) A guest presses the button on ground floor.

(e) The doors open. The guests move inside of the
lift.

(f) The doors close again.

(g) The inside button for the top floor is pressed. (h) The lift moves up.

Figure 19: Use Case Example for Lift Visualisation Part 1

48 C ADDITIONAL EXAMPLES

(a) The doors open. The guests leave the lift. (b) The doors close.

(c) The lift reverses down. (d) The lift moves down.

(e) The lift reverses up. The same state as in Fig-
ure 19 (c) is reached.

Figure 21: Use Case Example for Lift Visualisation Part 2

C.2 Use Case for N-Queens Visualisation 49

(a) After Initialisation, n = 10 (b) Set the queen in column 6 to row 5.

(c) Set the queen in column 2 to row 10. (d) Set the queen in column 3 to row 6.

(e) Set the queen in column 4 to row 9. (f) Set the queen in column 1 to row 7.

Figure 23: Use Case Example for N-Queens Visualisation Part 1

50 C ADDITIONAL EXAMPLES

(a) Set the queen in column 5 to row 2. (b) Set the queen in column 10 to row 8.

(c) Set the queen in column 7 to row 3. (d) Change the queen of column 1 to row 1.

(e) Change the queen of column 3 to row 4. (f) Change the queen of column 2 to row 7.

Figure 25: Use Case Example for N-Queens Visualisation Part 2

C.2 Use Case for N-Queens Visualisation 51

(a) Change the queen of column 4 to row 10. (b) Change the queen of column 6 to row 9.

(c) Set the queen in column 8 to row 5. (d) Change the queen of column 5 to row 1.

(e) Change the queen of column 5 to row 6. (f) Change the queen of column 3 to row 2.

Figure 27: Use Case Example for N-Queens Visualisation Part 3

52 C ADDITIONAL EXAMPLES

(a) Set the queen in column 9 to row 4. (b) Change the queen of column 8 to row 8.

(c) Change the queen of column 8 to row 2. (d) Change the queen of column 8 to row 5.

(e) Change the queen of column 9 to row 8. (f) Change the queen of column 10 to row 4.

Figure 29: Use Case Example for N-Queens Visualisation Part 4

C.2 Use Case for N-Queens Visualisation 53

(a) Change the queen of column 10 to row 8. (b) Change the queen of column 9 to row 4.

(c) Change the queen of column 9 to row 2. (d) Change the queen of column 3 to row 4.

(e) Change the queen of column 5 to row 7. (f) Change the queen of column 2 to row 6.

Figure 31: Use Case Example for N-Queens Visualisation Part 5

54 C ADDITIONAL EXAMPLES

C.3 Additional B Model Code Examples

1 MACHINE QueensWithEvents
2 // a version of the N-queens model with events to pre-fill the

chessboard by hand
3 CONSTANTS n
4 PROPERTIES
5 n : NATURAL &
6 n < 120
7 DEFINITIONS
8 ANIMATION_FUNCTION_DEFAULT == ({r,c,i|r:1..n & c:1..n & i=(r+c)

mod 2 });
9 ANIMATION_FUNCTION == ({r,c,i|c:1..n & c|->r:queens & i=2+((r+c)

mod 2) });
10 ANIMATION_FUNCTION1 == ({r,c,i|c:1..n & r:1..n & c|->r/:queens &

pos_is_attacked(c,r) & i=13+((r+c) mod 2) });
11 ANIMATION_FUNCTION2 == ({r,c,i|c:1..n & c|->r:queens &

is_attacked(c) & i=10 });
12 ANIMATION_IMG0 == "Queens/ChessPieces/Chess_emptyl45.gif";
13 ANIMATION_IMG1 == "Queens/ChessPieces/Chess_emptyd45.gif";
14 ANIMATION_IMG2 == "Queens/ChessPieces/Chess_qll45.gif";
15 ANIMATION_IMG3 == "Queens/ChessPieces/Chess_qld45.gif";
16 ANIMATION_IMG10 == "Queens/ChessPieces/Chess_qrt45.gif"; // Red

queen
17 ANIMATION_IMG11 == "Queens/ChessPieces/Chess_emptyg45.gif"; //

green square
18 ANIMATION_IMG12 == "Queens/ChessPieces/Chess_emptyXg45.gif"; //

green square with X
19 ANIMATION_IMG13 == "Queens/ChessPieces/Chess_emptyDOTl45.gif"; //

white square with dot
20 ANIMATION_IMG14 == "Queens/ChessPieces/Chess_emptyDOTd45.gif"; //

black square with dot
21 SET_PREF_TIME_OUT == 6000;
22 SET_PREF_CLPFD == TRUE;
23 SET_PREF_MAX_INITIALISATIONS == 120;
24 SET_PREF_MAX_OPERATIONS == 10;
25 MAX_OPERATIONS_SetQueen == 1000;
26 MAX_OPERATIONS_ChangeQueen == 1000;
27 MAX_OPERATIONS_SolveAny == 4;
28 //SET_PREF_RANDOMISE_ENUMERATION_ORDER == TRUE;
29 ANIMATION_RIGHT_CLICK(I,J) == CHOICE SetQueen(I,J) OR ChangeQueen(

I,J) OR Solve OR SolveFuzzy END;
30 ANIMATION_CLICK(I,J,tocol,torow) == CHOICE SetQueen(I,J) OR

ChangeQueen(I,J) END;

C.3 Additional B Model Code Examples 55

31

32 is_attacked(q1) == q1:dom(queens) &
33 #q2.(q2:dom(queens) & q2 /= q1 &
34 (no_attack(q1,q2,queens) => queens(q1) =

queens(q2)));
35 pos_is_attacked(q1,q1row) ==
36 #q2.(q2:dom(queens) & q2 /= q1 &
37 (no_attack_pos(q1,q1row,q2,queens(q2)) =>

q1row = queens(q2)));
38 no_attack(q1,q2,board) == no_attack_pos(q1,board(q1),q2,board(q2))

;
39 no_attack_pos(q1,q1row,q2,q2row) == (q1row+q2-q1 /= q2row & q1row-

q2+q1 /= q2row);
40 Solution(board) == (
41 board : perm(1..n) /* for each column the row in which the

queen is in */
42 &
43 !(q1,q2).(q1:1..n & q2:2..n & q2>q1 => no_attack(q1,q2,board))
44)
45 VARIABLES queens
46 INVARIANT
47 queens : (1..n) +-> (1..n)
48 INITIALISATION
49 queens := {}
50 OPERATIONS
51 Solve = ANY solution WHERE
52 Solution(solution) &
53 !x.(x:dom(queens) => solution(x)=queens(x))
54 THEN
55 queens := solution
56 END;
57 SolveFuzzy = ANY solution WHERE
58 Solution(solution) &
59 !x.(x:dom(queens) => solution(x):{queens(x)-1,queens(x),queens(x)

+1})
60 THEN
61 queens := solution
62 END;
63 SetQueen(i,j) = SELECT i:1..n & j:1..n & i /: dom(queens) THEN
64 queens(i) := j
65 END;
66 ChangeQueen(i,j) = SELECT i:1..n & j:1..n & i : dom(queens) & j /=

queens(i) THEN
67 queens(i) := j

56 C ADDITIONAL EXAMPLES

68 END;
69 r<--Get(yy) = PRE yy:dom(queens) THEN r:= queens(yy) END
70 END

Listing 19: Animation Function Example from the ProB Public Examples [4]

REFERENCES 57

References

[1] Jean-Raymond Abrial. “Formal Methods: Theory Becoming Practice”. In: Jour-
nal of Universal Computer Science 13.5 (May 28, 2007), pp. 619–628. URL:
http://www.jucs.org/jucs_13_5/formal_methods_theory_becoming.

[2] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[3] Jean-Raymond Abrial and Jean-Raymond Abrial. The B-book: assigning pro-
grams to meanings. Cambridge University Press, 2005.

[4] Michael Leuschel et al. ProB Public Examples. Available at https://www3.hhu.
de/stups/downloads/prob/source/ (2019/06/02).

[5] Jens Bendisposto and Michael Leuschel. “A Generic Flash-based Animation En-
gine for ProB”. In: Proceedings of the 7th International B Conference (B2007).
LNCS 4355. Besancon, France: Springer-Verlag, 2007, pp. 266–269.

[6] Pierre Bourhis et al. “JSON: data model, query languages and schema specifi-
cation”. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems. ACM. 2017, pp. 123–135.

[7] Michael Butler and Michael Leuschel. “ProB: A model checker for B”. In: Inter-
national Symposium of Formal Methods Europe. Springer. 2003, pp. 855–874.

[8] Mathieu Comptier et al. “Property-Based Modelling and Validation of a CBTC
Zone Controller in Event-B”. In: International Conference on Reliability, Safety,
and Security of Railway Systems. Springer. 2019, pp. 202–212.

[9] Eight Queens Puzzle. Available at https://en.wikipedia.org/wiki/Eight_

queens_puzzle (2019/05/06).

[10] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable vector graphics (SVG)
1.0 specification. iuniverse, 2000.

[11] David Flanagan. JavaScript: the definitive guide. " O’Reilly Media, Inc.", 2006.

[12] Dominik Hansen et al. “Using a Formal B Model at Runtime in a Demonstration
of the ETCS Hybrid Level 3 Concept with Real Trains”. In: Proceedings ABZ
2018. Ed. by Michael Butler et al. Vol. 10817. LNCS. Springer, 2018, pp. 292–
306.

[13] Christoph Heinzen. “A user-interface Plugin for the Rule Validation Language
in ProB”. MA thesis. 2018.

[14] Christoph Heinzen. Visualisation Examples. Available at https://github.com/
hhu-stups/prob2-ui-visualizations/ (2019/05/06).

[15] Introducing JSON. Available at http://www.json.org/ (2019/18/06).

[16] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT
press, 2012.

http://www.jucs.org/jucs_13_5/formal_methods_theory_becoming
https://www3.hhu.de/stups/downloads/prob/source/
https://www3.hhu.de/stups/downloads/prob/source/
 https://en.wikipedia.org/wiki/Eight_queens_puzzle
 https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://github.com/hhu-stups/prob2-ui-visualizations/
https://github.com/hhu-stups/prob2-ui-visualizations/
http://www.json.org/

58 REFERENCES

[17] Philipp Körner et al. “Embedding High-Level Formal Specifications into Appli-
cations”. In: Proceedings of the 23rd International Symposium on Formal Meth-
ods (FM 2019). Vol. (to appear). LNCS. Springer, 2019.

[18] Lukas Ladenberger. “Rapid Creation of Interactive Formal Prototypes for Vali-
dating Safety-Critical Systems”. PhD thesis. 2016.

[19] Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel. “Visualising
Event-B models with B-Motion Studio”. In: Proceedings FMICS’2009. LNCS
5825. Verlag, 2009, pp. 202–204.

[20] Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware
and software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[21] Michael Leuschel et al. “Easy Graphical Animation and Formula Viewing for
Teaching B”. In: The B Method: from Research to Teaching (2008). Ed. by C.
Attiogbé and H. Habrias, pp. 17–32.

[22] Michael Leuschel et al. ProB Handbook. Available at https://www3.hhu.de/
stups/handbook/prob2/prob_handbook.html (2019/05/06).

[23] J Michael Spivey and JR Abrial. The Z notation. Prentice Hall Hemel Hempstead,
1992.

[24] SVG Path. Available at https://docs.oracle.com/javafx/2/api/javafx/
scene/shape/SVGPath.html (2019/05/06).

https://www3.hhu.de/stups/handbook/prob2/prob_handbook.html
https://www3.hhu.de/stups/handbook/prob2/prob_handbook.html
 https://docs.oracle.com/javafx/2/api/javafx/scene/shape/SVGPath.html
 https://docs.oracle.com/javafx/2/api/javafx/scene/shape/SVGPath.html

LIST OF FIGURES 59

List of Figures

1 Using a SVG to JavaFX . 6

2 Using JavaScript . 7

3 Using JavaFX and JavaScript . 8

4 Current Internal Structure . 12

6 Visualisation of the Button . 14

7 Separate Windows . 16

8 Early Stage of VisB-UI Layout . 17

9 Current VisB-UI Layout on Top of ProB2-UI 19

10 SVG Image for the Lift Visualisation . 21

12 Example of two States of the Lift Visualisation 25

14 N-Queens SVG Image for Visualisation . 26

15 N-Queens Grouping . 27

17 N-Queens Visualisation Solutions . 31

19 Use Case Example for Lift Visualisation Part 1 47

21 Use Case Example for Lift Visualisation Part 2 48

23 Use Case Example for N-Queens Visualisation Part 1 49

25 Use Case Example for N-Queens Visualisation Part 2 50

27 Use Case Example for N-Queens Visualisation Part 3 51

29 Use Case Example for N-Queens Visualisation Part 4 52

31 Use Case Example for N-Queens Visualisation Part 5 53

List of Tables

List of Listings

1 Minimal Example for VisB file . 10

2 Minimal Example for SVG file . 11

3 jQuery call for minimal example . 13

4 Change "visibility" Attribute . 21

5 The Benefits of Grouping SVG Elements 22

6 Change "fill" Attribute . 23

7 Change "y" Attribute . 23

8 Hiding Not Executable Elements . 24

60 LIST OF LISTINGS

9 Event with Parameters . 24
10 Visibility of Tiles without Grouping . 26
11 Visibility of Tiles with Grouping . 27
12 VisB Items for Queens . 28
13 Redefining the User Interaction for the Visualisation 29
14 VisB Events for Tiles . 29
15 Minimal Example for B model . 37
16 Lift Specifications in B from the ProB Public Examples [4] 37
17 N-Queens Problem in B from the ProB Public Examples without Anima-

tion Function [4] . 39
18 Complete VisB File for Lift Model . 41
19 Animation Function Example from the ProB Public Examples [4] 54

	Introduction and Motivation
	Fundamentals
	B-Method
	ProB2 and ProB2-UI

	Architecture
	Development of the Architecture
	Approach with JavaFX and SVGPath
	Approach with JavaScript
	Approach with JavaFX and JavaScript

	Input Files
	VisB file
	SVG file

	Implementation of VisB

	VisB-UI Layout
	Development of the VisB-UI Layout
	Current VisB-UI Layout

	Visualisation Examples
	Lift
	N-Queens

	Related Work
	Animation Function
	BMotion Studio and BMotionWeb
	Visualisation Mechanism

	Conclusion
	Future Work
	List of B Models used in this Thesis
	Complete VisB File Examples
	Additional Examples
	Use Case for Lift Visualisation
	Use Case for N-Queens Visualisation
	Additional B Model Code Examples

	List of Figures
	List of Tables
	List of Listings

