
Partial Evaluation of MATLAB

Daniel Elphick1, Michael Leuschel1 and Simon Cox2

1 Department of Electronics and Computer Science
2 School of Engineering Sciences

University of Southampton
Highfield, Southampton, SO17 1BJ, UK

{dre00r,mal}@ecs.soton.ac.uk, sjc@soton.ac.uk

Abstract. We describe the problems associated with the creation of
high performance code for mathematical computations. We discuss the
advantages and disadvantages of using a high level language like MAT-
LAB and then propose partial evaluation as a way of lessening the disad-
vantages at little cost. We then go on to describe the design of a partial
evaluator for MATLAB and present results showing what performance
increases can be achieved and the circumstances in which partial evalu-
ation can provide these.

1 Introduction

Scientific computing is moving away from hand-coded, hand-optimised codes,
written in low to medium level languages like FORTRAN, towards codes written
in a general way in high-level programming languages or using problem solving
environments, e.g. MATLAB, Maple, MATHEMATICA.

With the current diversity of computer architectures (due to differences in
cache configurations, speeds and memory bandwidths as well as processor types),
it is becoming increasingly difficult to produce near optimal code without ex-
pending excessive time. Even then the code ties the developer to one architecture,
which is no longer ideal in an era of heterogeneous systems. One effort to tackle
this problem has been the ATLAS project, which produces a BLAS (Basic Lin-
ear Algebra Subroutines), automatically tuned to the architecture on which it is
being used [21]. MATLAB itself uses ATLAS for its linear algebra operations.

The use of high level languages allows rapid prototyping to ease development.
Producing optimal code in the initial stage is not so important as actually pro-
ducing something which solves the problem. This often leads to general solutions
which can be applied to a wide variety of problems albeit slowly due to their
generality.

One way to address these issues is to transform general programs written
(or produced by other programs) in high level languages such as MATLAB into
specialised programs that executes more quickly using partial evaluation and
other high level code optimisations. To this end we have developed a partial
evaluator called MPE (MATLAB Partial Evaluator).

In Sect. 2, we examine existing work on partial evaluation as well as work
on improving MATLAB program performance using parallelisation and compi-
lation. In Sect. 3, we examine the MATLAB programming language, looking at
its grammar and performance issues. Sect. 4 presents a formal analysis of the
type system used in MPE. The design and implementation details of MPE are
given in Sect. 5. In Sect. 6, we demonstrate the effectiveness of automatic partial
evaluation by applying our tool to several test programs and comparing timings.
Sect. 7 gives our conclusions based on the results and also describes future work
that could enable further improvements.

2 Optimising MATLAB

MATLAB is a problem solving environment sold by The Mathworks and cur-
rently used by around 500,000 people around the world [20]. It is controlled
using a language also known as MATLAB. From now on when we refer to MAT-
LAB, we are referring to the language unless otherwise stated. MATLAB is a
dynamically typed imperative language which is normally interpreted. Variables
do not need to be declared and can change type. Matrices and arrays are not
of fixed size but are reshaped when assignments are made to subscripts outside
the current bounds.

The Mathworks provides a compiler called MCC, which translates MATLAB
into C. This C code is then compiled by the native compiler to produce an
executable. The code produced consists mostly of function calls and very little
attempt is made to use native C types, as dynamic typing means that a variable
can contain anything from a matrix to a function handle.

Another compiler is FALCON, which produces Fortran 90 code [17]. This
uses extensive type inferencing at compile time to produce code which does very
little type checking. Initial results showed FALCON outperforming MCC, but
no recent comparisons have been reported by its authors.

Following on from FALCON, Almási has developed MaJIC, a MATLAB just-
in-time compiler as part of “an interactive frontend that looks like MATLAB
and compiles/optimises code behind the scenes in real time, employing a com-
bination of just-in-time and speculative ahead-of-time compilation.” [1] Because
MaJIC compiles code in an interpreted environment, it has information about
the parameters used to call functions and attempts to produce more appropri-
ate code. When compiling just-in-time it eschews most optimisations in favour
of fast compilation times and so cannot easily perform the types of aggressive
optimisation seen in offline compilers and partial evaluators. MATLAB 6.5 has
also recently introduced just-in-time compilation as part of its normal operation,
although we have not yet examined its effectiveness.

An example of work on array shape determination is MAGICA, which “takes
a MATLAB program as input and statically infers each variable’s value range,
intrinsic type and array shape.” [11] Unlike the research compilers discussed
above, MAGICA can handle multi-dimensional arrays, although its approach is
different to ours.

Other approaches to speeding up MATLAB execution have involved paral-
lelisation. Mostly this involves adding parallels extensions to the language, like
MultiMATLAB [12] or the DP toolbox [15]. However Otter is an attempt to
translate MATLAB scripts into C programs targeting parallel computers sup-
porting ScaLAPACK [16]. This approach produces varying results depending on
the sizes of matrices and the complexity of the operations performed on them.

Partial Evaluation “Partial evaluation is a technique to partially execute a
program, when only some of its input data are available.” [13] In other words, to
take a program, for which some of the inputs are known prior to full execution,
and execute as much of the program as possible. In cases where programs are
executed many times with few parameters changing, dramatic savings can be
made as many calculations are performed just once during partial evaluation.
Partial evaluators normally perform aggressive optimisations like loop unrolling
and inlining which, while also possible in traditional compilers, are less easy to
control or see the effects of when the transformation is not source to source. A
program generated by partial evaluation is called a residual program.

Traditionally partial evaluation has been mostly applied to declarative lan-
guages, like Scheme [7] or Prolog [10]. But there are also partial evaluators for
C [3], Java [19] and Fortran [8].

We believe that partial evaluation has a potential for scientific applications in
general and MATLAB code in particular. For example, in some of our MATLAB
code to solve partial differential equations, the same mesh structure is used
over and over again, and we believe that we might gain speedups by partially
evaluating the code for a given mesh structure.

There are two main forms of partial evaluation, online and offline. In offline
partial evaluation, binding-time analysis is performed first which parses the input
and determines which parts are static and which parts are dynamic. This data is
then embedded in the source file in the form of annotations which are used by the
partial evaluator to produce the final result. In online partial evaluation, there
is no binding-time analysis step but instead decisions about static vs. dynamic
expressions are made as late as possible, and it is thus, in principle, more precise.
In general, offline partial evaluators can be made more efficient and predictable
while online partial evaluators are typically slower but more precise.

Due to the non-static nature of MATLAB (no static types, types of vari-
ables can change) and the presence of complicated elementary operations (e.g.,
multiplication of multi-dimensional matrices), we have chosen to use the online
approach.

3 Overview of MATLAB

For the purposes of this project we intend only to look at a subset of MATLAB.
In this section the structure of MATLAB will be discussed in order to give a
better understanding of the later sections.

MATLAB code is always stored in a file with a .m extension, called an m-file.
An m-file is either a script or a function, depending on whether the file starts with
the function keyword. Scripts are executed within the current scope whereas
functions execute within their own scope.

Functions are declared using the function keyword. They can return zero
or more values and take zero or more parameters. We have chosen to exclude
functions that can take a variable number of parameters. Any values stored in
the return variables at the end of the execution of the function are returned.
E.g.

function [a,b] = f(x,y)

MATLAB statements are either separated by new lines or semi-colons, al-
though in matrices, these also delimit rows. A MATLAB statement must be one
of the following: an expression, an assignment, an if statement, a for loop, a
while loop, a switch block, or a global variable declaration. Note that we can
have a multi-value assignment for use only with functions which return multiple
values. To simplify matters, we require that global variable declarations come
immediately after the function declaration and cannot appear later.

MATLAB allows the creation of complex expressions in a very intuitive way.
The basic construct is the array, of which matrices, vectors and scalars are special
cases. The only other data type we consider is the string. Apart from standard
matrices which are two dimensional, MATLAB also has n-dimensional arrays.
Matrices can be either real, complex or logical. Logical arrays are returned from
boolean operators and built-in functions like isreal and isinf. While generally
they will have the values 0 or 1, they can have any real value.

It is possible to index into a matrix using more dimensions than the matrix
has, as long as the extra indices are equal to 1. If fewer dimensions are used then
the dimensions that are not explicitly specified are flattened, so that the final
index can be used to access all of them. For example matrices can be indexed
linearly.

MATLAB allows more than just scalars as indices; any appropriately sized
matrix can be used. In particular, ranges can be used to extract parts of matrices.
Indices start at 1 and end can be used to get the last element along a particular
dimension. If the index is ‘:’, it indicates all elements along a given dimension
should be extracted. Finally, if an index is logical it predicates which part of the
matrix should be extracted. Below, for example, the first row of a is retrieved
and stored in b and then all elements in b not equal to 2 are displayed.

>> a = [1 2 3; 4 5 6; 7 8 9];
>> b = a(1,:)
b = 1 2 3
>> b(b ~= 2)
ans = 1 3

There are several MATLAB features that we do not yet consider, such as
function handles, try-catch statements, cell arrays and persistent variables. By
limiting the set of MATLAB features that we can handle we limit the number of

MATLAB programs with which we can initially work. However we have to make
a pragmatic decision to ignore certain features that are not critical to testing
our hypothesis that partial evaluation is a viable technique for the optimisation
of MATLAB programs. In the future, it is hoped that these features could also
be added to our tool.

4 Abstract Domains

MATLAB has a complicated type system which has evolved over time from
just representing two dimensional matrices to N -dimensional arrays, cell arrays,
structures, strings and function handles. We have chosen to exclude cell arrays,
structures and function handles in the current work and just handle arrays (in-
cluding matrices). In this section, we formalise the abstract domains our partial
evaluator uses to capture information about arrays. The notation and method-
ology is based on [1] and [4].

4.1 Abstract Type System

A MATLAB array can have the following types: real, complex, logical or charac-
ter. These types are not exclusive, as logical and character arrays are also real.
There is no single gettype function, but there are various boolean functions that
determine the properties of an array: isreal, islogical and ischar. An array
of type real is made up from double precision floats. A logical array is identical
to a real array except that it has a flag indicating that it is logical. Complex ar-
rays use twice the memory of real ones, in order to store the real and imaginary
components. Character arrays are just like arrays except that the elements are
two byte characters. Some example types are shown in Fig. 1.

>> [isreal ([1 pi]), islogical ([1 pi]), ischar ([1 pi])]
ans = 1 0 0
>> [isreal (3 == 2) , islogical (3 == 2) , ischar (3 == 2)]
ans = 1 1 0
>> [isreal(’abc ’), islogical (’abc ’), ischar(’abc ’)]
ans = 1 0 1
>> [isreal (3 + 2i), islogical (3 + 2i), ischar (3 + 2i)]
ans = 0 0 0

Fig. 1. Examining MATLAB types (Non-zero values indicate true)

We cannot always reliably make assumptions about types in MATLAB for
several reasons. For one, it is possible to add two complex numbers together and
get a real number as the result. A compiler would almost certainly assume the
result was complex and allocate enough storage for that. MATLAB allocates the

extra space only when it determines that the result is actually complex. It is also
possible to force the creation of a complex type with no imaginary component
using the complex built-in. The isreal built-in indicates whether storage has
been allocated for an imaginary component, not whether it is really real.

To handle these types, an inclusive type system is required, which indicates
what possible types an array might have. This would have three trinary flags,
which indicate true, false or unknown. The unknown value is actually equivalent
to !b in a lattice and so we shall write that from now on. These values all
form the set B, given in Definition 1. There is also nominally another value, ⊥b,
which denotes an invalid type. The three flags are real, logical and character.
While in theory this would allow 33 possible types, in practice the value of one
flag can dictate the value of another flag, as for instance logical arrays cannot
be complex. There are in fact only 12 valid combinations including the invalid
type, which are shown in Fig. 2.

!
"

#
$!b,!b,!b

!
""""""#

$$$$$$%!
"

#
$!b, f,!b

!
$$$$$$%

!
"

#
$!b,!b, f

!
""""""#

$$$$$$%

!
"

#
$t,!b,!b

!
""""""#!

"
#
$!b, f, f

!
$$$$$$%

!
"

#
$t, f,!b

$$$$$$%!

!
"

#
$t,!b, f

""""""#
$$$$$$%!

"
#
$f, f, f

$$$$$$%

!
"

#
$t, f, f

!

!
"

#
$t, f, t

""""""#

!
"

#
$t, t, f

&&&&&&&&&'!
"

#
$⊥b,⊥b,⊥b

Fig. 2. Visualisation of the type lattice Lt, of valid triples (real , logical , complex) ∈
B × B ×B, where the arrows indicate the partial ordering

Definition 1. B = {!b, true, false,⊥b} is the extended boolean type, with an
associated partial order #b defined by ⊥b #b false #b !b and ⊥b #b true #b !b.
T ⊂ B × B× B is the following set of all valid triples of B:

T =
{
〈!b,!b,!b〉, 〈!b, false ,!b〉, 〈!b,!b, false〉,

〈!b, false, false〉, 〈false , false, false〉, 〈true,!b,!b〉,
〈true,!b, false〉, 〈true, false,!b〉, 〈true, false, false〉,
〈true, false , true〉, 〈true, true, false〉, 〈⊥b,⊥b,⊥b〉

}

The partial order (t associated with T is depicted in Fig. 2. Finally we define
the lattice Lt = (T,⊥t,!t,#t,)t) where !t = 〈!b,!b,!b〉, ⊥t = 〈⊥b,⊥b,⊥b〉,
and where)t and *t are defined in the usual way (cf., Fig. 2).

4.2 Dimension Information

The above abstract domain captures the types of arrays. As matrix manipula-
tions are the backbone of MATLAB, to enable advanced optimisations, we need
to capture abstract information about the shape of matrices. As loops are fre-
quently controlled by the size of a matrix dimension, knowing the matrix shape
can allow loop unrolling.

Arrays have a number of dimensions, which is always greater than or equal
to 2 and is returned by the ndims function. Each dimension then has a value
greater than or equal to 0. The size function us used to get the dimension sizes.
Requesting a dimension beyond the number of dimensions always returns 1. The
shape of an array is defined initially in Definition 4 and Definition 5.

Definition 2. We define the extended set of non-negative integers Zω = Z∗ ∪
{ω}, We extend the ordering < on Zω by stating ∀n ∈ Zω, n ≤ ω and also
ω ≤ n ⇒ n = ω.

Definition 3. A range is a tuple 〈l, u〉, where l, u ∈ Zω and l ≤ u. l is called
the lower bound and u the upper bound of the range. We define the set R to
contain all possible ranges with the addition of the ⊥r element to indicate an
invalid range (R ⊂ Zω × Zω ∪ {⊥r}). The top element is the least constrained
range possible, i.e. !r = 〈0, ω〉. We define two functions: low(〈l, u〉) = l and
up(〈l, u〉) = u. We also define join ()) and meet (*) operations on this set.

〈l1, u1〉 #r 〈l2, u2〉 ⇐⇒ l1 ≥ l2 and u1 ≤ u2

〈l1, u1〉)r 〈l2, u2〉 =
〈
min(l1, l2), max(u1, u2)

〉

〈l1, u1〉 *r 〈l2, u2〉 =
{〈

max(l1, l2), min(u1, u2)
〉

if l1 ≤ u2 ∧ l2 ≤ u1

⊥r otherwise

We use ranges to represent the possible values a shape characteristic might have.
Note that ω is used for ranges without an upper bound.

Definition 4. The number of dimensions is a range (Definition 3), except that
the minimum value is 2, as an array always has at least 2 dimensions. This is
given by the set, N = R −

{
〈i, j〉 | i ∈ {0, 1}, j ∈ Zω

}
. The top element in N is

!n = 〈2, ω〉. The partial ordering #n and operations *n and *r are equivalent
to #r, *r and)r respectively.

Definition 5. The list of dimensions is a sequence of ranges, 〈r1, r2, . . . , rn〉 ∈
D, where D = R∗. We also define two functions low (i, d) = low(ri) and up(i, d) =
up(ri). The length of a list, d, is given by |d|. The join and meet operations
(d)d d′ = 〈r1)r r′1, . . . , rn)r r′n〉 and d *d d′ = 〈r1 *r r′1, . . . , rn *r r′n〉) and the
partial ordering, d #d d′ ⇐⇒ ∀i ∈ Z+, i ≤ |d|, ri #r r′iP(#d), are defined for
dimension lists of the same size, where d = 〈r1, r2, . . . rn〉 and d′ = 〈r′1, r′2, . . . r′n〉.

dim(i, n, d) =

⊥r if n = ⊥n ∨ d = ⊥d

〈low (i, d), up(i, d)〉 if i ≤ |d|
〈0, ω〉 if |d| < i ≤ up(n)
〈1, 1〉 otherwise

(1)

The function in (1), given i ∈ Z+, n ∈ N and d ∈ D, gives the range
representing the ith dimension. If the range is in the dimension list, this is
returned; else if the dimension number is less than the number of dimensions,
the dimension size is unknown so !r is returned; otherwise the dimension is
beyond the number of dimensions and its size is 1. Not all values of n and d give
meaningful values for (1) and we will describe the constraints in Sect. 4.4.

4.3 Definedness

We also need to consider that a variable may not be defined. When a function
is called, it does not need to be passed as many parameters as there are in
the function signature. As a result some of the parameters may be undefined.
Variables can also be undefined if they are only set on one branch of a conditional
statement. In this case, it would be unknown whether the variable was defined.
The defined flag is δ ∈ B. It is an error to use an undefined variable, but the
built-in function exist takes a variable name and returns whether the variable
exists.

4.4 Putting it all together

The full type of an array could be described by T×N×D×B, but components
of the type are not entirely independent. It is possible to produce many n ∈
N, d ∈ D which give the same values of dim(i, n, d) for all i ∈ Z+, for instance:

n1 = 〈2, 2〉, d1 =
〈
〈1, 1〉, 〈1, 1〉

〉
, n2 = 〈3, 3〉, d2 =

〈
〈1, 1〉, 〈1, 1〉, 〈1, 1〉

〉

n3 = 〈2, 3〉, d3 =
〈
〈5, 10〉, 〈2, 2〉

〉
, n4 = 〈2, 3〉, d4 =

〈
〈5, 10〉, 〈2, 2〉, 〈0, ω〉

〉

n5 = 〈2, 3〉, d5 =
〈
〈5, 10〉, 〈2, 2〉, 〈0, ω〉, 〈1, 1〉, 〈1, 1〉

〉

In the above examples, 〈n1, d1〉 and 〈n2, d2〉 represent the same shape. However
MATLAB would return 2 as the value of ndims and so n2 is wrong. The same
values of dim would also be given for 〈n3, d3〉, 〈n4, d4〉 and 〈n4, d4〉 so clearly
redundant information is present in d4 and d5. Finally if n = 〈2, 2〉 and d =〈
〈1, 1〉, 〈1, 1〉, 〈2, 2〉

〉
, then clearly n and d contradict, as there are 3 dimensions.

In order to compare types, we need a concrete description of each type with no
ambiguity. In addition if a variable is undefined, it is meaningless for it to have
shape or type. If the definedness is unknown, it can still have shape and type as
might be the case when a variable is defined in only one branch of a conditional
statement. The constraints on the type are given below:

1. The shape, s ∈ S (S ⊂ N× D), must be in the canonical form described in
[5].

2. If an array, with full type 〈t, s, δ〉, is undefined, e.g. δ = false, then the values
of t, n and d can only be ⊥t, ⊥n and ⊥d respectively.

We have thus defined a canonical form for our type system (along with the
abstract interpretation concretisation functions), which allows us to compare two
shapes and compute their least upper bound. Full details are given in [5]. All of
this is then used by our data flow analysis and our partial evaluator proper, as
described later in the paper.

5 Design of a Partial Evaluator

We wish to perform optimisations based on the characteristics of arrays such as
shape and type. For example, while the exact value of a matrix may be unknown,
the dimensions and whether it is real or complex could well be known. In this
case built-in functions which try to determine these properties can be replaced
by the actual values, which might lead to speed-ups due to loop unrolling and
the removal of conditionals.

5.1 Overview

Below we give an overview of the stages of our partial evaluator:

1. Parse main source file to be partially evaluated (Sect. 5.2).
2. Insert the static values (given at the command line) by creating assignments

within the parse tree of the main source file (Sect. 5.3).
3. Convert placeholders in the parse tree of the first function from the main

source file.
(a) Whenever a function is encountered, load and parse the function, while

adding it to the list of functions called by the current function.
(b) Repeat step 3 for all the functions in the list created in step 3a.

4. Partially evaluate the parse tree of the main function obtaining a new parse
tree (Sect. 5.4).

5. Post-process the new tree, removing dead code.
6. Write out the final tree as MATLAB source code.

Each of these stages will be described in more detail in the following sections.
Our MATLAB partial evaluator (MPE) was written for GNU/Linux systems

in C++, but only uses the MATLAB runtime libraries aside from the core li-
braries and so should be easy to port to other platforms on which MATLAB is
supported. It is invoked from the command line and in its basic mode of opera-
tion takes one file and partially evaluates the functions found within it. It does
not currently partially evaluate the whole system and currently does no poly-
variant specialisation. Its effectiveness is therefore currently limited to functions
that do not call other functions with dynamic parameters. Function calls with
fully static parameters can be evaluated and so the results can be embedded
directly into the partially evaluated function. Whether this is always desirable
will be discussed later.

5.2 Lexical Analysis and Parsing

MATLAB was designed more to allow mathematicians to read it than for simple
parsing. This leads to ambiguous constructs that are fairly simple for a human
to understand as they can more easily make contextual judgements, but a lot
harder for a lexical analyser. Problems occur because in matrices, spaces can
be column delimiters or white space. Outside matrices new lines are treated
as an end of command indicator, but inside they are treated as row separators.
Fortunately flex can be made stateful thus avoiding the need for a hand-written
lexical analyser.

Due to difficulties in disambiguating variables and function calls, identifiers
that could represent either are stored initially as placeholders. In the following
stage, these will be replaced with either variables or function calls.

5.3 Converting Placeholders

This stage is necessary because the distinction between variables and functions
is not immediately determinable unlike in C (assuming macros are not used).
Variables do not have to be declared but are created as required by assignments.
Variables can also shadow the names of both built-in and ordinary functions.
This means that an identifier could be used to indicate a function call at one point
in a function and then later be used to access a variable if there is assignment to
the variable in between. This also needs to be done by all MATLAB compilers
and is discussed in [18] and [2].

The end result of this stage is one parse tree where all placeholders have
been replaced with either variable, subscript or function call identifiers, for each
function in all m-files in the system.

5.4 Partial Evaluation

In this pass, we try to evaluate as much of the function as possible. This stage
takes a list of MATLAB statements and a table mapping variables to values
and returns a new list of statements. This can be applied recursively to lists of
commands within control flow statements like for loops.

For every expression, we have a structure which stores what information we
have for it. In some cases the value will be known, in which case full substitutions
can be performed. In the case where the actual value of an expression is not
known, we store all relevant information that can be inferred about it. This
corresponds to the full type described in Sect. 4.4.

There are two types of partial evaluation that are carried out by our tool.
In one, a function is evaluated as much as is possible in conjunction with a list
of variables and information about their contents, in the end producing a final
table containing the values of variables at the end of a function. The other mode
of operation also produces a new parse tree for the residual code as it goes along.
Evaluation without producing code is required for dealing with function calls as
well as for iterating over loops, which will be described later in Sect. 5.4.

For each kind of statement discussed in Sect. 3, we will now give a description
of how they are partially evaluated.

Expressions. Expressions are stored in a binary tree structure. Our implemen-
tation performs a depth first traversal of the tree evaluating wherever possible.

Most binary operations in MATLAB are called element-wise binary opera-
tions. These either operate on two arrays with equal dimensions, one non-scalar
and a scalar or two scalars. They always result in an array of the same shape as
the non-scalar operand or a scalar in the case of two scalars. These include ad-
dition, subtraction, array multiplication (as opposed to matrix multiplication),
left and right array division, array power, relational operations and logical oper-
ations. The operations that have non-array alternatives (multiplication, division
and power) are prefixed with a full stop to differentiate them (e.g. .*, ./, .\
and .^). While the values of these of operands will frequently not be known it is
often possible to make inferences about the dimensions of the operands and thus
infer the dimensions of the result of an operation. We use the following scheme
for c = a ⊕ b, (a, b and c have shapes sa, sb, sc ∈ S. ss ∈ S is the shape of a
scalar and ⊕ is an element-wise binary operator):

– If a is a scalar (sa = ss), c will have the same shape as b (sc = sb). If b is
a scalar (sb = ss), c will have the same shape as a (sc = sa). If both are
scalars (sa = sb), c will also be a scalar (sc = ss).

– If there is complete information about the shape of a and b and they have
identical shapes (sa = sb), c will also have the same shape (sc = sa = sb).

– If incomplete information is known about the shapes of a and b, but they
are definitely not scalars (sa * ss = ⊥s ∧ sb * ss = ⊥s) and their shapes
do not conflict (sa * sb 6= ⊥s), then the shape of c will be the meet of the
two shapes (sc = sa * sb). E.g. a has 5 rows and is added to b which has 3
columns; the result will therefore have 5 rows and 3 columns.

– If a can be a scalar but b cannot (sa*ss = ss∧sb*ss = ⊥s), use the shape of
b (sc = sb), or if b can be a scalar but a cannot (sa * ss = ss ∧ sb * ss = ⊥s),
use the shape of a (sc = sa). E.g. a has 2 rows and 2 columns is added to
b which has 1 column but an unknown number of rows. The only way the
operation can be valid is if b has 1 row and is thus a scalar, in which case
the result would have 2 rows and 2 columns.

– If both a and b can be scalars (sa * ss = ss ∧ sb * ss = ss), use the join
of the two shapes (sc = sa) sb). E.g. If a has between 1 and 3 rows, b has
between 0 and 2 rows and both have one have column, then the result will
have between 0 and 3 rows as either a or b could be a scalar.

– If both are definitely not scalars and there are conflicting dimensions (sa *
ss = ⊥s ∧ sb * ss = ⊥s ∧ sa * sb = ⊥s), give an error.

The scheme above assumes that user code has no errors as it could hide
errors by inferring valid shapes for operands when complete information is not
available. This is discussed further in Sect. 7. Currently information is never

passed backwards meaning that information, about the operands themselves, is
never updated, but this change is planned for the future.

There are several non-array binary operations, matrix multiplication, division
and power. These operations only work on two dimensional matrices and each
has different dimension requirements.

– Matrix multiply : a * b
The number of columns in a must match the number of rows in b. The result
of the operation will have the same number of columns as b and the same
number of rows as a. The exception here is that if either a or b are scalars
then the result will have the same dimensions as the other.

– Left matrix division : a \ b
a must have the same number of rows as b, in which case the result will have
as many rows as a has columns and as many columns as b. The exception is
if a is scalar, in which case it is equivalent to array division of b by a.

– Right matrix division : a / b
a must have the same number of columns as b, in which case the result will
have as many columns as b has rows and as many rows as a. The exception
is if a is scalar, in which case it is equivalent to array division of a by b.

– Matrix power : a ^ b
Either a or b must be a scalar and the other must be a square matrix. The
result will have the same dimensions as the matrix.

There are two types of function calls that we have to deal with in expressions:
built-in functions and m-files.

Built-in functions that have static parameters can usually be executed di-
rectly via the MATLAB runtime libraries. There are however some built-in
functions that cannot be executed directly as they require context. Examples
include exist, which can be used to determine the existence of variables as well
as files and functions, I/O functions, graphing functions and timing functions.

Some built-in functions like exist can be evaluated but indirectly by exam-
ining our symbol table. It makes little sense to evaluate timing functions while
partially evaluating as the intention would usually be to time the final program.
I/O functions are discussed in Sect. 7.

Built-in functions that cannot be evaluated directly are handled by the partial
evaluator internally. For each built-in function we extract as much information
as possible about the return values based on the input passed to it. In the case of
functions like size and ndims, we can fully evaluate them if we have sufficient
shape information. If insufficient information is available, an entry, describing
what we can determine of the shape and type of the returned value, is returned.

Functions stored in m-files are evaluated using the partial evaluation process
without code generation. Later we plan to implement polyvariant specialisation
where new specialised functions are created when some of the parameters are
fixed. Currently functions are evaluated as completely as possible and if the final
result is static then the function call can be removed and a constant substituted
for it. If this is not possible, then any shape or type information garnered by
evaluating the function is retained.

Assignments. Simple assignments discard the old value of the target variable
and are relatively easy to handle. If the new value is known, it is stored in the
symbol table, otherwise we store inferred information such as type, shape and
rank. With assignments to subscripts, the target variable is changed but not
replaced. If the indices are outside the bounds of the matrix, then the matrix is
resized to allow the assignment.

Functions with multiple outputs are more complicated. If the function can
be fully evaluated, it is removed and replaced with several assignments. E.g.

[a,b] = size(c);

If the shape of c is known then two assignments to a and b are substituted,
but if only one dimension is known, we would have to use a function call. E.g.

a = size(c,1);
b = 1;

This is more expensive than the original as there are two assignments and a
function call, but post-processing could eliminate the assignment to b. It is easy
to transform the size function into multiple assignments, but most function
calls are not so simple and so we do not perform this kind of transformation.

for loops. There are two cases to consider with for loops: the loop bounds are
either static or dynamic. In the static case, the number of iterations is immedi-
ately determinable without data flow analysis as we do not consider break or
return statements. Unrolling is achieved by partially evaluating the body of
the loop for each iteration, setting the value of the loop variable as appropriate.
Indexed assignments, to the loop variable in the loop body, require an explicit
assignment to be written out. At the end of the loop, an assignment may be
required to ensure the final value of the loop variable is available to the rest of
the program. If the loop bounds indicate that the loop body is never executed,
the entire loop is deleted.

If the loop bounds are dynamic, the loop is retained in the residual program.
To find the least upper bound of the loop state, we iterate over the loop body
evaluating its statements, comparing the state of the symbol table after each
iteration. Note the loop variable is reset to dynamic before each iteration, al-
though its shape and type is inferred if possible. A separate final state table
is maintained with which the results are merged each time. If, as a result of a
merge, the final state table is left unchanged, iteration ceases. This is almost
certainly not an optimal approach and could, in the case of nested loops, lead
to excessive computation but this will be refined later. This approach detects
variables left unchanged after every iteration and preserves their values.

If the loop might not execute even once (due to its bounds), the final state
table of the loop is merged with the symbol table that would be obtained if the
loop did not execute, possibly leading to information being lost; therefore it is
important to examine the loop bounds first in case this merge can be skipped.

while loops. No attempt is made to unroll these loops apart from removing
while loops that are never executed. A fix-point iteration is performed for shape
and type analysis as described above for for loops.

if statements. If the condition expression is static, the conditional statement
is removed and replaced with an appropriate set of commands depending on
whether or not the condition expression evaluated to zero. Otherwise, both sets
of commands are partially evaluated with the same initial conditions and the
resulting symbol tables merged, meaning that if both branches set a variable to
the same value, it will have that value after the loop. If the value is different,
but the type or size of the matrix are the same, then this information is retained
instead as the least upper bound for the shape and type is calculated.

switch statements. As with if statements, if the condition is static the entire
statement is removed and replaced with the appropriate set of commands. Oth-
erwise cases that cannot match are removed, thus reducing the number of com-
parisons required. If the exact control flow cannot be determined, each branch of
the switch statement needs to be partially evaluated in parallel and the results
then merged, skipping branches that can never be reached.

Annotations. In addition to standard MATLAB language constructs, our tool
recognises annotations which guide the partial evaluation. These always begin
with %# and are ignored by MATLAB as comments. There are two types of an-
notations: variable annotations and function annotations. Variable annotations
specify the type, shape and definedness of a variable.

%# x size [1 1]
%# x complex
%# y undefined

Function annotations describe how the function has been called. They specify
the values returned by built-in functions like nargin and nargout, which return
the number of parameters and the number of return values respectively.

%# nargin 2
%# nargout 1

5.5 Post-processing

In this phase dead code is removed. A statement is considered dead if it has no
side-effects and does not affect the final result. We will use a simple approach,
which is to work backwards through a function marking variables which are used
so that the last assignment before it can be marked as live. As noted by Knoop
[9], removing dead assignments or expressions can change the program semantics
as the dead code could generate a run-time error. Multiplying two matrices with
incompatible dimensions or raising a matrix to the power of another matrix is
illegal and will halt execution. Problems like this are discussed further in Sect. 7.

Expressions. If an expression is on a line on its own and it is terminated with
a semi-colon then it has no side-effects and can be safely removed. If there is no
semi-colon, then the result of evaluating the expression will be printed to the
screen. Expressions, containing function calls that have side effects, cannot be
removed.

Assignments. If the assignment is to a variable whose value may be required
for a later statement, it is considered live. If nothing depends on the variable
being assigned then it is dead and can be removed in the same way as expressions
above depending on the presence of semi-colons.

If the assignment is to multiple variables, but only some of those variables are
live then ideally we would transform it into an assignment which only assigned
to the relevant variables, but as with the partial evaluation of assignments, the
transformation is tricky and so we do not attempt it. As with stand-alone expres-
sions, we must be wary of removing assignments involving expressions containing
function calls with side effects.

Loops. Our simple approach of moving backwards through the code will not
work for loops. E.g.

function y = f(x)
a = 1;
y = 1;
for n = 1:x

y = n * a;
a = a + n;

end

Moving backwards with y as the only live variable would result in the second
assignment to a being removed, even though the previous line is dependent on
it. To avoid this, the loop dependants must first be found and treated as live
variables before working backwards. In this case n and a would be marked live
and the assignment to a would be left intact. Since removing a statement can
change the loop dependants, the two steps need to be iterated until no changes
are made.

In the previous example, x could be less than 1, meaning that the loop body
would never be executed. If the loop body is never executed then the value of y
would remain 1, but moving backwards naively assuming the body of the loop is
executed would lead to the removal of the initial assignment leaving y undefined.
Unless we can guarantee that x ≥ 1, we must assume that the loop might not
be executed, in which case the live variable information from the loop must be
merged with the live variable information from after the loop to ensure that
correct code is generated.

This is not a perfect algorithm, but it is quite simple to implement. For
instance an assignment which only creates new values for dead variables will not
be removed. Muchnick [14] describes an algorithm that deals with even these

assignments using UD and DU chains. Knoop [9] describes partial dead code
elimination which allows assignments to be moved to the code blocks in which
the assigned variables are live, speeding up the execution for alternate code
blocks.

Conditional Statements. A simple conservative approach to dealing with
conditional statements is to post-process all code blocks in parallel and then
merge the lists of live variables. Later code motion may be used to perform
partial dead code elimination [9].

Annotations. These are just removed from the final output.

6 Results

In this chapter we will evaluate the effectiveness of our partial evaluator on sev-
eral source programs. The code for these tests is a mixture of code developed
inside the Computational Engineering and Design research group at the Univer-
sity of Southampton, code come from partners from other universities and code
found in code repositories on the internet. All of the timings were taken using
the MATLAB 6.1 interpreter.

Experiment 1. The first code tested was a function for the generation of Cheby-
shev polynomials, which, like power series, are used to approximate functions by
summing terms. As with power series, using more terms leads to better approx-
imations. This function has two parameters, a m-by-n matrix, c of coefficients
for calculating m functions with n terms and a vector, x, as input to the func-
tions. Table 1 shows the relative timings for the chebyshev function (iterated
5000 times to get measurable results). Timings are shown where the function
has been partially evaluated where just n is fixed, c is fixed and lastly where c
is fixed along with the size of x. The timings are further subdivided according
to whether post-processing was used. The results show a steady increase in per-
formance as more information is fixed, with the final function running in half
the time of the original. Partial evaluation has been previously been successfully
applied to Chebyshev approximation previously [6].

Experiment 2. The second test function, when given a set of points from a
function, computes the Lagrange interpolating polynomial that passes through
them and returns a set of points on the curve. The MATLAB code is comprised
of two nested loops both dependent on the number of points to interpolate
followed by a third loop also dependent on the number of points. We specialised
this function by first fixing the number of points, n, (and thus the number of x
and y coordinates) resulting in all of the loops being unrolled and then further
specialised it by fixing the x coordinates. Again, timings were taken with and
without post-processing. Table 2 shows the improvements we achieved including
at least 50% speed increases when the x coordinates are completely fixed.

Original n fixed c fixed c and size of x fixed
size(c,2) No p.p. With p.p. No p.p. With p.p. No p.p. With p.p.

2 1.00 0.90 0.89 0.81 0.77 0.60 0.48
4 1.00 0.94 0.92 0.84 0.81 0.59 0.50
6 1.00 0.94 0.93 0.85 0.82 0.58 0.51
8 1.00 0.94 0.94 0.85 0.83 0.57 0.52
10 1.00 0.95 0.95 0.86 0.84 0.57 0.52

Table 1. Relative timings for the Chebyshev functions with m = 3 and p = 3, relative
to original function (p.p. is post-processing).

n fixed x -coordinates fixed
n Original No postproc Postproc No postproc Postproc
2 1.00 0.73 0.67 0.67 0.58
4 1.00 0.82 0.79 0.68 0.64
6 1.00 0.85 0.83 0.67 0.65
8 1.00 0.86 0.84 0.68 0.66
10 1.00 0.87 0.86 0.68 0.66

Table 2. Relative timings for the Lagrange functions with values of n

Experiment 3. The next example function solves the Gaussian Hypergeometric
differential equation, x(1 − x)d2y

dx2 + c − (a + b + 1)xdy
dx − aby = 0, using a series

expansion. The main work is done by a single for loop which calculates the series
terms. To get more accurate results, higher order series terms are required and
thus more iterations. The number of terms is the parameter that we have chosen
to specialise. As can be seen from Table 3, partial evaluation with post-processing
is very effective at speeding up the function, showing a 62% performance increase
over the original function.

n Original Partially Evaluated Post-processed
4 1.17 0.85 (0.73) 0.72 (0.62)
6 1.47 1.07 (0.73) 0.94 (0.64)
8 1.77 1.30 (0.73) 1.17 (0.66)
10 2.08 1.54 (0.74) 1.40 (0.67)

Table 3. Timings in seconds for the Gaussian Hypergeometric differential equation
solver (iterated 8000 times). (Relative times are given in brackets).

Experiment 4. Our final set of results in Table 4 are for a computational fluid
dynamic solver in our research group. The main function is very general allowing
users to choose what parameters they want to optimise. After some initial set

Original After mpe After mpe with postproc
67.91 54.64 52.77
67.88 54.54 52.71
67.97 54.55 52.74
67.92 54.58 (0.80) 52.74 (0.78)

Table 4. Timings for the computational fluid dynamic solver in seconds. (Relative
times to the original are shown in brackets).

up code which can be fully evaluated when specialised, it consists of a main loop
that cannot be unrolled and an inner loop which can be, leading to the removal of
many conditional statements and allowing the full evaluation of several function
calls. This function would benefit from many traditional optimisation techniques
but since MATLAB does not perform these and our partial evaluator does, we
can see some improvements.

The code we have examined in this section was chosen because it was in the
subset of MATLAB that we can handle and because it had control flow struc-
tures that would benefit from unrolling. We have not examined highly vectorised
codes with few control flow structures as we conjecture that partial evaluation
can do little without making code non-vectorised, which would hurt performance.
The code we have examined has shown promising results. Inferring shape char-
acteristics has allowed loop unrolling in many cases, but the large performance
increases in experiment 1 and experiment 2 came from knowing the actual values
stored in these matrices.

7 Future Work and Conclusion

The results show that partial evaluation can give large performance increases for
relatively simple functions like those in experiments 1 to 3, but also for larger
programs as in experiment 4. The results we have seen are encouraging and
show that partial evaluation can achieve performance increases for MATLAB
code. Unfortunately the number of functions that we could assess was limited
by the subset of MATLAB that we currently handle. The omission of support
for functions taking variable numbers of parameters, cell arrays and control flow
change keywords like return, break and continue means that many functions,
that could have benefited from partial evaluation, had to be discarded. Below
are other areas where we plan to expand the capabilities of our tool.

While Loops. Currently while loops are not unrolled at all except for in the
trivial case where the loop condition can never be met and so it can be deleted.
Data flow analysis will be required to determine whether the loop condition will
be static throughout the loop.

Assignment Amalgamation. As a result of unrolling the partial evaluator
generates large series of assignments, either overwriting the same variable again
and again while using its value as an operand or by writing to different subscripts

of a variable. Many of these cases can be combined into single assignments in the
preprocessing stage giving performance increases. Compilers for many languages
optimise these away and so partial evaluators for these languages do not need to
perform this optimisation themselves. Unforunately MATLAB does not do this
(even when using the compiler).

Asserting Assumptions. When confronted with operations on operands for
which only incomplete shape information is known, our implementation assumes
that the program is bug-free and still attempts to infer shape and type informa-
tion. Function calls using only this information could be fully evaluated and the
original operation could then be removed, changing the semantics of the program
in the case of programmer error. We plan to offer options to automaticall insert
into the residual code assertions to check for these cases.

Widening. Currently MPE can loop infinitely on input containing loops which
steadily increase shape values. Checks needs to be carried out to find these cases
and widen the shape value to prevent further iteration.

I/O operations. As mentioned in Sect. 5.4, we currently do not support load-
ing in data with I/O commands like fopen, fscanf and fclose. To be effective
with mathematical codes, we must handle data sets that are loaded from files.

Polyvariant specialisation. This is very important for getting speed increases
from large programs rather than the fairly simple functions examined in this
work. For instance, most MATLAB functions check to see that they have been
passed enough parameters and that their dimensions are valid. A significant
advantage of polyvariant specialisation should be the prevalidation of parameters
thus simplifying many functions.

We have presented the first partial evaluation system for MATLAB. We have
shown how to deal with MATLAB data structures, notably how to store shape
information about partially specified matrices. This is of utmost importance for
scientific MATLAB code, as knowing the shape of a matrix often enables one to
perform loop unrolling (and it is less common to statically know the full values
of an entire matrix). We have presented our implementation and have shown on
several non-trivial, practical examples that our system has achieved a significant
speed increase.

References

1. G. Almási. MaJIC: A MATLAB Just-In-Time Compiler. PhD thesis, University
of Illinois at Urbana-Champaign, 2001.

2. G. Almási and D. Padua. MaJIC: compiling MATLAB for speed and respon-
siveness. In Proceeding of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 294–303. ACM Press, 2002.

3. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, 1994.

4. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2-3):103–179, 1992.

5. D. Elphick. Implementation of a MATLAB partial evaluator. Technical Report
DSSE-TR-2003-4, University of Southampton, 2003.

6. R. Glück, R. Nakashige, and R. Zöchling. Binding-time analysis applied to mathe-
matical algorithms. In System Modelling and Optimization, pages 137–146. Chap-
man & Hall, 1995.

7. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

8. P. Kleinrubatscher, A. Kriegshaber, R. Zöchling, and R. Glück. Fortran program
specialization. In G. Snelting and U. Meyer, editors, Semantikgestützte Anal-
yse, Entwicklung und Generierung von Programmen. GI Workshop, pages 45–54,
Schloss Rauischholzhausen, Germany, 1994. Justus-Liebig-Universität Giessen.

9. J. Knoop, O. Ruthing, and B. Steffen. Partial dead code elimination. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 147–158.
ACM Press, 1994.

10. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

11. MAGICA website. http://www.ece.northwestern.edu/cpdc/pjoisha/MAGICA/.
12. V. Menon and A. E. Trefethen. MultiMATLAB: Integrating Matlab with high per-

formance parallel computing. In Supercomputing ’97 ACM SIGARCH and IEEE
Computer Society, pages 1–18, 1997.

13. T. Æ. Mogensen and P. Sestoft. Partial evaluation. In A. Kent and J. G. Williams,
editors, Encyclopedia of Computer Science and Technology, volume 37, pages 247–
279. Marcel Dekker, 270 Madison Avenue, New York, New York 10016, 1997.

14. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann
Publishers, 1997.

15. S. Pawletta, T. Pawletta, W. Drewelow, P. Duenow, and M. Suesse. A MATLAB
toolbox for distributed and parallel processing. In Moler C. and S. Little, editors,
Proc. of the Matlab Conference 95, Cambridge, MA. MathWorks Inc., October
1995.

16. M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao. Preliminary results from
a parallel MATLAB compiler. In International Parallel Processing Symposium,
pages 81–87. IEEE CS Press, 1998.

17. L. D. Rose. Compiler techniques for MATLAB programs. Technical Report
UIUCDCS-R-96-1956, University of Illinois at Urbana-Champaign, 1996.

18. L. D. Rose, K. Gallivan, E. Gallopoulos, B. A. Marsolf, and D. A. Padua. FALCON:
A MATLAB interactive restructuring compiler. In Languages and Compilers for
Parallel Computing, pages 269–288. Springer, 1995.

19. U. P. Schultz, J. L. Lawall, C. Consel, and G. Muller. Towards automatic specializa-
tion of Java programs. In European Conference on Object-oriented Programming,
volume 1628 of Lecture Notes in Computer Science, pages 367–390, 1999.

20. The MathWorks, Inc. - About Us.
http://www.mathworks.com/company/aboutus.shtml.

21. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations
of software and the ATLAS project. Parallel Computing, 27(1-2):3–35, Jan. 2001.

