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Abstract

The creation of a consistent system description is a challenging problem of re-
quirements engineering. Formal and informal reasoning can greatly contribute
to meet this challenge. However, this demands that formal and informal rea-
soning and the system description are connected in such way that the reasoning
permits drawing conclusions about the system description.

We describe an incremental approach to requirements modelling and valida-
tion that incorporates formal and informal reasoning. Our main contribution
is an approach to requirements tracing that delivers the necessary connection
that links the reasoning to the system description. Formal refinement is used in
order to deal with large and complex system descriptions.

We discuss tool support for our approach of requirements tracing that com-
bines informal requirements modelling with formal modelling and verification
while tracing requirements among each other and into the formal model.
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1. Introduction

We describe an incremental approach for producing a system description
from an initial set of informal requirements. The system description is com-
posed of formal and informal artefacts that describe, for instance, assumptions
about the environment or requirements proper. The central aspect we are con-
cerned with is reasoning about these artefacts. We allow formal and informal
reasoning but demand firm conclusions about satisfaction of the requirements
and correctness of the specification to be part of the system description. In or-
der to achieve this we need a method to trace artefacts such that the proofs we
carry out formally and informally translate to corresponding validation state-
ments in the system description. The approach must be incremental in the sense
that changes to system descriptions and formal models should be considered fre-
quent activities. These changes certainly happen in early development phases
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of a project but will usually continue during maintenance. This article expands
on [25] and continues work that is presented in [21, 26].

Our approach to tracing is based on the WRSPM reference model [12] that
identifies common categories of artefacts and specifies soundness conditions that
they must satisfy. We extend the categories so that a mixture of formal and
informal reasoning can be handled. Using the extended reference model we in-
troduce different notions of traces between artefacts. These traces allow us to
relate proofs to involved artefacts and to detect artefacts that are affected by
the system description changes or the formal model associated with it. Usually,
the elements of the system description are stated in natural language; and some
approach for structuring large collections of natural language requirements is
used such as [19, 35]. Such structured system descriptions are still understand-
able by stakeholders like customers and developers but already permit informal
reasoning about the requirements. We use Problem Frames [19] in this article
but other choices like [35] would be possible too.

The formal method to be used should compatible with the predicative rea-
soning style of WRSPM. We consider state-based formalisms such as ASM [7],
VDM [27], TLA+ [31] or Event-B [2] particularly suited because they permit
straightforward specification of state, state invariants and state transitions for
modelling dynamic behaviour. The formal reasoning that we present in this
article uses the Event-B method. In particular, we make use of the notion of re-
finement of Event-B to handle artefacts in small increments. This avoids having
to trace a large number of refinements into one monolithic formal model. We
not require that all artefacts are modelled formally, but those that are benefit
from rigorous reasoning. Once modelled formally, artefacts can be analysed us-
ing automated verification by theorem provers or model checkers. For Event-B
such tools are available in the form of Rodin [3] and ProB [32], for instance. To
deal with natural language requirements and requirements tracing we use the
tool ProR [20] that has been customised for use with Rodin and ProB. This per-
mits us to evaluate our approach by tracing informal natural language artefacts
among each other and to formal Event-B artefacts.

1.1. Tool Support

Keeping track manually of large sets of requirements and their relationships
is not feasible. For this reason it is mandatory that the method for requirements
modelling that we suggest be supported by a software tool. The tool ProR can
be extended to achieve this. The generic method-independent characteristics of
the tool are discussed in [20].

The genericity of ProR is achieved by means of the Eclipse Requirement
Modelling Framework (RMF, http://eclipse.org/rmf) [24], which consists of a
generic data model for requirements. Despite its genericity, a key objective in
the development of ProR has been the support the approach described in this
paper.

The generic ProR supports tracing natural language requirements in the
form hierarchical tables. A dedicated column of each table summarises the
incoming and outgoing traces.
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Rodin ProR ProB

Figure 1: Integration of ProR with Rodin and ProB

ProR allows the customisation of its meta-model for concrete notions of
requirements. Such a customisation may, for example, consist of adding a new
type of requirements with a specified number of typed attributes. The display
of the requirements models can also be customised, for example, by showing
only selected attributes.

Our approach is supported by means of extending ProR. ProR is integrated
with the Rodin formal modelling platform [3] and ProB [32]. The tools Rodin
and ProB in combination provide support for proof, model checking and an-
imation of formal models specified in the Event-B notation. The integration
with these tools provides support the central aspect of our approach: to ex-
ploit formal reasoning as much as possible for modelling and analysing informal
requirements. A screenshot of the resulting tool is shown in Fig. 1.

1.2. Running Example

Throughout the paper, we use a lift system to demonstrate our approach to
requirements modelling and validation. The example is taken from [5], which
provides already a structured system description. An important assumption
underlying [5] is that all artefacts can be directly represented as logical formulae,
in particular, relying on a dedicated logic for real-time modelling. In order to
illustrate mixing formal and informal reasoning we do not use such a logic but
use only a formalism for discrete modelling. The lift system is described in
general terms in [5]:

“A simple, single lift system allows movement of a single lift cage
between a finite number of floors, the starting and stopping of the
lift cage and the opening and closing of floor doors — all in response
to the pressing of floor call and cage send buttons.”
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Lift Controller

Lift Cage

[moving up]
[moving down]

[idle]

Door
[closed ]
[open]

The [door ]
shall be

[closed ] while
the [lift cage]
is [moving ]

Q W R

Figure 2: A problem diagram describing door behaviour

We begin by treating the running example informally using Problem Frames
[19].

Example 1. Problem Frames offer a way to structure and analyse a system
description informally. They can easily be related to the model for requirements
tracing that we introduce in Section 2. Although we do not discuss informal
structuring and analysis in detail, we find it instructive to show a concrete way
to work with the rather abstract model for requirements tracing.

A problem diagram for a specific aspect of the lift system is shown in Fig. 2.
The diagram shows a machine domain called “Lift Controller” that is to be
designed and built. The given domains “Lift Cage” and “Door” are part of the
environment. Their properties are given and cannot be designed. Requirements
are drawn as dashed ovals. The requirement shown in this problem diagram
says: “The [door ] shall be [closed ] while the [lift cage] is [moving ]”. It describes
a property of that the lift cage and the door together should satisfy. This is
visually indicated by the edges to the corresponding given domains. Edges are
decorated with phenomena that the connected domains or requirements share.
For instance, the lift controller and the door share the phenomena [open] and
[closed ]. The brackets around the phenomena are our notation. They permit
us to trace phenomena and verify their consistent usage. This is explained in
Section 2 in terms of the model for requirements tracing that uses the term
phenomenon in the same sense. We have partitioned the different domains and
the requirements into three distinct parts marked by Q, W and R. Members
of these parts are called artefacts: Q are the specification elements, W the
domain properties and R the requirements. Artefacts are the basis for tracing
requirements in our approach. Fig. 2 illustrates how the artefacts can be related
to a concrete structured system description.

The concept of a Problem Frames domain does not appear in our approach.
Instead, we subsume domains as phenomena in our approach, arguing that they
are constructs that group phenomena.

Problem diagrams can grow very large with many requirements and many
shared phenomena. In order to keep them as small as possible they can be struc-
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tured into sub-problem diagrams. The sub-problem diagrams are projections of
a larger diagram. They may describe and constrain overlapping portions of that
larger diagram.

Analysis of problem diagrams involves asking whether the right domains
are present in order to express the problems to be solved. In fact, the Problem
Frames approach has a specific kind of diagram for this sort of analysis, the con-
text diagram. Once problem diagrams have been created, we can reason about
them by means of frame concerns. A frame concern is an informal argument
why, given the domain properties, the specification satisfies a requirement. In
the Problem Frame approach they take the role of informal proofs.

1.3. Structure of this Paper

Section 2 describes a model for tracing requirements based on WRSPM.
In Section 3 we describe the formal method Event-B which we use for formal
requirements validation. Section 4 describes a process of how to produce a sys-
tem description incrementally following our approach of requirements tracing.
Finally Sections 5 and 6 discuss related work and draw some conclusions.

2. A Model for Requirements Tracing

Our approach is based on WRSPM by Gunter et. al. [12]. The objective of
our approach is to produce a system description of “high quality” by establish-
ing a traceability that allows a systematic validation of the system description
and provides robustness with respect to changes in the system description. It
further allows the mixing of formal and informal elements, thereby enabling rig-
orous reasoning where it is desired. WRSPM is a reference model for applying
formal methods to the development of user requirements and their reduction to
a behavioural system specification. The reference model distinguishes artefacts
and phenomena. Phenomena describe the state space and state transitions of
an environment and a system, while artefacts describe constraints on the state
space and the state transitions. Artefacts (A,B) are distinguished into the fol-
lowing categories corresponding to the WRSPM reference model described in
[12]:

• domain properties (W )
describe facts about how the world behaves;

• requirement items (R) and (N)
describe how the world shall behave once the system is built;

• specification elements (Q)
describe a system whose implementation satisfies the requirements;

• implementation elements (P )
provide an implementation of the specifications;

• design decisions (U)
describe design options chosen for specification and implementation;
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Enviroment System

W, R, N, U

P, M

Q

eh ev sv sh

Figure 3: Variant of the WRSPM reference model with design decisions

[lift cage] (eh) is the cabin carrying the [passenger ] (eh)

[floor ] (ev) is the current position of the [lift cage] (eh)

[open] (sv) is the status of the [door ] (ev) being open

[closed ] (sv) is the status of the [door ] (ev) being closed

[request ] (ev) is the command by the [passenger ] (eh) to service some [floor ] (ev)

Figure 4: Excerpt of the lift system glossary

• platform properties (M)
provide an execution environment for the programs.

We have extended the reference model introducing design decisions U and an
additional class of requirement items N as artefacts. We also changed the symbol
for specification elements from S (used in WRSPM) to Q, to avoid ambiguities
when discussion state based modelling in Section 3. The requirement items N
are those requirements that are validated by purely informal reasoning. These
will usually include non-functional requirements but also requirements that,
intentionally, remain informal during modelling. By contrast, requirement items
R are intended to be validated by formal reasoning.

Fig. 3 illustrates the different kinds of phenomena and artefacts. Phenomena
p are distinguished by whether they are controlled by the system, belonging to
set s, or the environment, belonging to set e. They partition the set of all
phenomena, that is s ∩ e = ∅ and s ∪ e = p. Furthermore, phenomena are
distinguished by visibility. Environmental phenomena may be visible to the
system, belonging to ev, or hidden from it, belonging to eh. Similarly, system
phenomena belonging to sv are visible to the environment, while those belonging
to sh are hidden from it. These classes of phenomena are mutually disjoint.

Example 2. All phenomena are listed and described in a glossary. An excerpt
of the glossary for the lift system is shown in Fig. 4.

The distinction between environment and system is important; omitting it
can lead to misconstrued specifications. The boundary between environment
and system is often based on the discretion of the user and may be based on
taste or convenience. Nevertheless, it has a profound impact on the problem
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R-1 The current [floor ] shall be between the [ground floor ] and the [top floor ]

R-2 If the [lift cage] is [moving up] or [moving down], the [door ] shall be [closed ]

N-1 When a [floor ] is [service]d, the [door ] shall [open] for at least [ts] time units

N-2 Each [request ] to [service] some [floor ] shall be served within [tr] time units

W-1 The [lift cage] takes [tf ] time units to travel from one [floor ] to the next

W-2 The [lift cage] may be [idle], [moving up] or [moving down]

W-3 The lift system has [N ] [floors]

W-4 The [floors] are numbered from [0 ], the [ground floor ], to [N ], the [top floor ]

Figure 5: Some requirement items and domain properties of the lift system

analysis and the obligations to be respected between environment and system.
The distinction serves to clarify the responsibilities and interfaces between the
system and the environment [12].

The artefacts W , R and U may only be expressed referring to phenomena
that are visible in the environment, that is e ∪ sv. Likewise, P and M may
only be expressed referring to phenomena that are visible to the system, that
is s ∪ ev. Artefacts Q may only be expressed referring to phenomena that are
visible to both the system and the environment, that is ev ∪ sv.

Example 3. Fig.. 5 shows some domain properties and requirement items for
the lift system. Note that the travel time between floors, W-1, is considered
a domain property whereas the the service time for a specific floor, N-1, is
considered a requirement item: We cannot influence the travel time but we are
supposed to control the service time.

2.1. Reasoning with Artefacts

Once a system is modelled following our approach, a number of properties
can be verified with regard to the model, one being adequacy with respect to Q:

∀e, s ·W ∧Q⇒ R ∧ U . (1)

It says that the specification constrains the world such that the requirements
and design decisions are realised. Note that if the world is vacuous, that is,
¬(∃e, sv ·W ), the implication would be trivial to satisfy by any specification.
However, if the world W is consistent, then we expect the development method
to preserve it: a specification Q must not be permitted to falsify the premise
W ∧Q. We expect the specification Q to be feasible assuming W . This can be
achieved by construction using refinement, e.g., [1].

Example 4. Fig. 6 shows some specification elements for the lift system. We
could argue, informally, that Q-2 should contribute to satisfying R-1 given the
domain property W-2 about possible lift cage movements.
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Q-1 Initially the lift is [idle] at the [ground floor ] with the [door ] [open] and no
pending [request ]s for the lift

Q-2 If the [lift cage] is [idle] at some [floor ], it may proceed by [moving up]. Having
reached the [top floor ] the [lift cage] does not proceed by [moving up]

Q-3 If the [lift cage] is [idle] and at some [floor ], the [door ] may be [open]ed

Figure 6: Some specification elements of the lift system

U-1 The [lift cage] switches from [moving up] to [moving down] if the [top floor ]
is reached or there are no upwards [request ]s but downwards [request ]s

U-2 The [lift cage] switches from [moving down] to [moving up] if the [ground floor ]
is reached or there are no downwards [request ]s but upwards [request ]s

Figure 7: Some design decisions of the lift system

Example 5. Fig. 7 shows some design decisions for the lift system. The design
decisions U-1 and U-2 contribute to the satisfaction of requirement item N-
2. So do W-1 and N-1. We can argue informally that it takes maximally
tb = (2 ∗N − 3) ∗ (ts + tf ) time units until the lift cage reaches a specific floor.
Hence, if tr is chosen such that tr ≥ tb, then N-2 is satisfied. Whether tb is an
acceptable bound has to be confirmed with the stakeholders.

The implementation should also satisfy a condition similar to adequacy:

∀e, s ·W ∧M ∧ P ⇒ R ∧ U . (2)

If we have already established adequacy, (2) can be achieved by refinement:

∀e, s ·W ∧M ∧ P ⇒ Q . (3)

The latter formula (3) reflects the refinement condition for relations presented
in [15]. An additional side condition provides for feasibility. We use the refine-
ment approach of [2] that permits additionally changing the data-representation.
However, for the present purposes we do not make use of this additional concept.

Non-functional requirements depend, in particular, on design decisions. This
aspect of non-functional requirements is discussed in [8]. Design decisions in-
troduce architectural concepts or constrain the implementation, for example.

∀e, s ·W ∧R ∧ U ∧Q⇒ N . (4)

We assume that often non-function requirements will not be formal. Hence, for-
mula (4) will usually consist of formal and informal artefacts with the conclusion
N being informal.

The implications in the formulae (1) to (4) indicate relationships between
specific artefacts. For instance, a specific specification element Q′ may imply a
specific requirement item R′. We can also say that we can trace requirement

8



R′ to specification element Q′. The reference model provides the foundation for
our approach of requirement traceability. We also cast the refinement theory
of Event-B conceptually into the reference model so that we can trace require-
ments among formal artefacts, among informal artefacts and across formal and
informal artefacts.

2.2. Tracing of Artefacts and Phenomena

In order to trace requirements we need to define relationships between arte-
facts. Currently, we are not interested in tracing implementation elements P
and platform properties M . We focus on the relationship between specification
Q and design decision U on one side and requirements items R and N , as well
as domain properties W on the other.

We are interested in tracing justifications of artefacts, equivalence between
artefacts, evolution of artefacts and tracing of phenomena used in artefacts. We
discuss the different kinds of tracing in turn.

2.2.1. Tracing Artefact Justification

We say B justifies A, or B ← A, if B justifies the presence of artefact A. If
an artefact appears in the system description, its presence should be justified.
It should be there for a reason. If we read implications like (1) from the right to
the left we arrive at justifications for the involved artefacts. We say R∧U justify
Q ∧W . We would like Q ∧W not to contain more artefacts than necessary in
order to establish (1). We call a subset SB of the artefacts Q ∧W such that
SB ⇒ R ∧ U a satisfaction base [28] for R ∧ U . We are particularly interested
in small satisfaction bases to obtain as precise justifications as possible. There
may not be a minimal unique satisfaction base nor may it be feasible to find it
if a minimal set exists. A good estimate is practically sufficient though. Such
an estimate can be derived by looking at artefacts mentioned in proofs —formal
and informal. Satisfaction bases have been explored in the context of relevance
logic [39]. Reading a justification B ← A in the reverse direction A → B we
say that A realises B. We can rephrase statements about justification using
realisation, for instance: each specification element or domain property should
be there for a reason. It should realise requirement items or design decisions.
The additional notion of realisation provides us with a tracing concept that is
similar to implication, unlike justification which is similar to reverse implication.
The similarity should not be taken to far, however. In particular, realisation and
implication are not the same. Realisation is just a relation between artefacts. A
realisation does not state that its left-hand side logically implies its right hand
side.

Example 6. The informal proof in Example 5 indicates that there should be
a corresponding justification trace.

W-1, N-1, U-1, U-2 → N-2
→
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Figure 8: The ProR editor for artefacts and traces

If the informal proof associated with N-2 would mention the artefacts that realise
it, then this trace could be generated automatically in ProR. At the moment
this is not done.

Tool Support for Tracing Justification in ProR. Tool support for justification
traces needs, in particular, to deal with creation and modification of traces. We
describe briefly how ProR realises this.

• Creation
Traces between artefacts can be created via drag and drop. This includes
traces between informal artefacts, as well as informal and formal ones.
The tool visualises the resulting traces in the table view that shows the
artefacts, as shown in Fig. 8. The column “Trace” summarises the number
of incoming and outgoing links, and the trace information itself can be
unfolded beneath, marked with a triangle, as shown in the figure as well.
Traces can be annotated if additional information is necessary.

• Modification
If the source or target of a trace changes, then the trace is marked as
“suspect” by showing a small icon in a dedicated column. This is also
shown in Fig. 8. Having validated a trace, double-clicking the correspond-
ing marker removes the “suspect” icon. This is described in more detail
in Section 4.1.8.

2.2.2. Tracing Artefact Equivalence

In our approach some but not all artefacts may be formal. Often formal
artefacts have informal counterparts. If an artefact A is formal, we write Af. We
write Bi if B is informal. When formalising informal requirement items we often
get direct correspondences between informal items Ai and formal items Bf. We
say that these items are equivalent, denoted by Ai ↔ Bf. Equivalence tracing
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is particularly useful when dealing with domain properties in formal proofs.
Domain properties are on the left hand side of all implications (1) to (4). We take
the relation Bf realises Ai, Bf→ Ai, to reflect the implication Bf⇒ Ai. If Ai
and Bf are only related by implication following this correspondence, statements
about formal world properties may not hold with respect to the corresponding
informal world properties. For this to hold we need either Ai → Bf, that is
the formal assumption about the world are not stronger than the the informal
assumptions, or equivalence Ai ↔ Bf. Equivalence tells us that the informal
domain properties are not stronger than needed for building the system.

2.2.3. Tracing Artefact Evolution

A system description evolves over time. This may happen due to changing
requirement items or due to improvements to the description made by modelling
and reasoning. Evolution does not follow logical implication. The best we
can do is to record approximately how artefacts have changed over time based
on differences between different revisions of the system description. We write
A  B for A evolves into B. Evolution traces are needed for the benefit of
various stakeholders to follow original requirement items into current revision
of the system description.

2.2.4. Tracing Used Phenomena

The partitioning of the phenomena in Fig. 3 indicates that it is important
to trace phenomena into various artefacts. We need to verify that the various
artefacts —informal and formal— only refer to allowed phenomena as outline
in the figure; the description ought to be syntactically sound. Furthermore, we
are interested in verifying that formalised artefacts refer to those phenomena
specified in the corresponding informal artefacts be it related by justification
or equivalence. We have only little means in our hand to achieve consistency
between formal and informal artefacts. This one appears simple and effective,
similarly, to type checking or the use of alphabets in UTP [15]. We record
references from artefacts to phenomena saying that A uses p, denoted by, p ∈ A.
This just means that A makes some statement about p. The management of
this relationship can be handled efficiently by proper tool support, as described
in Section 1.1.

Example 7. By marking words occurring in artefacts in square brackets they
are recognised as phenomena and a corresponding uses-trace is generated. The
tool ProR does this automatically. Marking a word p in an artefact A specifies
the trace p ∈ A: the artefact A makes some statement about p. For instance,
the requirement item R-1 uses the phenomena floor, ground floor and top floor.

floor, ground floor, top floor ∈ R-1
∈

Uses traces can be useful for informal proof. They allow us to search for related
phenomena, a technique that is borrowed from formal proof.
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Tool Support for Tracing Used Phenomena in ProR. Tracing of phenomena is
supported by highlighting text passages in the natural language artefacts that
refer to phenomena, as shown in Figure 8. If a passage is found that is textually
identical to a declared phenomenon, ProR underlines it. A phenomenon is
declared by including it in a glossary. In order to add a uses-trace for an
phenomenon to an artefact the corresponding text passage is put in square
brackets. If the phenomena has been declared, the text passage is rendered in
blue, otherwise in red, reminding the user that an undeclared phenomenon is
used. Underlining text passages that are found in the glossary serves to remind
the user that this passage may represent an untraced phenomenon.

3. Formal Modelling and Refinement

Our approach to requirements tracing could be used with a wide range of
formal methods for state-based modelling that have an associated notion of re-
finement. In this paper, we use Event-B which we introduce in Section 3.1.
Based on Event-B we also discuss limitations of formalisation: not all require-
ments can be formalised within the core Event-B formalism. For this reason,
formal and informal reasoning need to be combined in a sensible way. The
boundary of formalisation in the example is given by temporal and real time
properties. We have intentionally chosen a boundary that could be moved by
using another formal method or extending Event-B. We think the boundary is
not fixed and may vary depending on characteristics of development projects
to it may move as a development progresses. We think of modelling and re-
quirements validation as an incremental process: we permit the boundary to be
changed as need arises.

We take advantage of the concept of refinement supported by Event-B. Other
notions of refinement could be used without changing the approach fundamen-
tally. Our approach of requirements tracing allows us to account for additional
requirements at later refinement stages, thereby, providing a structuring mech-
anism for the introduction of requirements into the formal model. Tracing
requirements into and within Event-B models is based on the Event-B proof
obligations described in Section 3.2. The approach to tracing requirements in
Event-B is described in the subsequent Section 3.3.

3.1. Event-B Models

Formal models in Event-B consist of contexts K and machines M . Contexts
provide their static properties while machines provide behavioural properties.
A context K can be extended by another context L. We call K an abstract
context and L a concrete context. The behaviour of a machine is expressed in
terms of events E. Events model transitions between the states of the machine.
A dedicated event models the initialisation of the machine. An invariant I
is specified for a machine that should always hold. This must be proved. In
Section 3.2 we describe the corresponding proof obligations. Before turning to
the proof obligations we describe in the following two Sections 3.1.1 and 3.1.2 the
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syntax of machines and contexts in more detail. When introducing constructs
such as invariants or axioms we indicate in brackets free identifiers that may
occur in them.

3.1.1. Event-B Contexts

Contexts K consist of carrier sets and constants. Carrier sets s are similar
to types in other formalisms. Constants c are constrained by axioms C(s, c).
Contexts are seen by machines. All carrier sets, constants and axioms of a
context seen by a machine M are visible in M .

Context K can be extended by another context L with carrier sets t, con-
stants d and axioms D(s, t, c, d). The carrier sets s and t as well as the constants
c and d must be distinct. All axioms C of K become axioms of L, too.

3.1.2. Event-B Machines

Machines provide behavioural properties of Event-B models. Machines con-
sist of variables , invariants, events. Variables v describe the state of a machine.
They are constrained by invariants I(s, c, v) where s and c are carrier sets and
constants of a seen context.

Events. Possible transitions between states of the machine are described by
means of events. Each event is composed of a guard G(p, v) and an action
A(p, v), where p are parameters of the event. The guard states the necessary
condition under which an event may occur, and the action describes how the
state variables evolve when the event occurs. We denote an event E(v) by
any p when G(p, v) then A(p, v) end in its most general form, or when G(v) then
A(v) end if the event does not have parameters, or begin A(v) end if in ad-
dition the guard equals true. A dedicated event of the third form is used for
initialisation.

Actions. The action component of an event is composed of assignments. Let
x be variables, a subset of v. Assignments in Event-B are either deterministic,
x := e where e(p, v) are expressions, or non-deterministic: either it is a non-
deterministic choice from a set, x :∈ e, where e(p, v) is an expression, or it is a
non-deterministic choice of a x′ satisfying a predicate, x :| Q, where Q(t, v, x′)
is a predicate. The first two forms of assignment can be expressed in terms of
the third: the deterministic assignment x := e is the equivalent of x :| x′ = e
and the non-deterministic assignment x :∈ e the equivalent of v :| v′ ∈ e.

Transitions. The effect of an assignment can also be described by a before-after
predicate: before-after-predicate-of “x :| Q ” =̂ Q. A before-after predicate is
used to describe the relationship between the state just before an assignment
has occurred (unprimed variable names x within v) and the state just after
the assignment has occurred (primed variable names x′). All assignments of an
action A occur simultaneously which is expressed by conjoining their before-
after predicates, yielding a single predicate P . Variables y that do not appear
on the left-hand side of an assignment of an action are not changed by the
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action. Formally, this is achieved by conjoining P with y′ = y, yielding the
before-after predicate S(p, v, v′) of the action: S =̂ P ∧ y′ = y. Note that the
guards are not part of the before-after predicate. In the presentation of the
proof obligations below we use events with actions specified in terms of their
before-after predicate, that is, events E of the form any p when G then v :| S end.

Refinement. A machine M with variables v and invariant I(v) can be refined
by another machine N with variables w and invariant J(v, w); we also say that
M is an abstraction of N We call M an abstract machine and N a concrete
machine. Invariant J is called a gluing invariant. It relates the states of the
abstract machine to those of the concrete machine. A concrete machine N can
refine at most one abstract machine M . The reason for this is that the concrete
machine N contains the predicate J that links N to the abstract machine M .
Invariants are built up incrementally during refinement, preserving invariants
from abstractions: the invariant I of the abstract machine M is joined with the
invariant J of the concrete machine N in machine N . So the full invariant of
N is I ∧ J .

Machine N refines M if N behaves similarly to M . This is expressed more
precisely by relating abstract and concrete events by event refinement : each
abstract event E(v) = any p when G(p, v) then v :| S(p, v, v′) end is refined by
one or more concrete events F (w) = any q when H(q, w) with Z(p, q, v, v′, w, w′)
then w :| T (q, w,w′) end. Informally, concrete event F refines abstract event
E if the guard H of F is at least as strong as the guard G of E, and the
gluing invariant J establishes a simulation of the action of F by the action
of E. The concrete event F contains an additional predicate Z following the
keyword with, called the witnesses for p and v′. Somewhat simplified, they link
the abstract parameters p and the abstract variables v′ to concrete parameters q
and concrete variables and w′. Witnesses describe for each event separately how
the refinement is achieved. It is possible to introduce new events in a refinement.
They are required to refine the implicit abstract event skip =̂ begin v := v end.

Refinement permits us to verify a large number of properties piecemeal.
This is particularly important when dealing with complex systems consisting of
many properties to be modelled and verified. We also exploit this for tracing
requirements by disentangling intricate properties into simpler ones [13].

Remark on Convergence and Deadlock-Freedom. Event-B also has the notions
of convergence and deadlock freedom [2]. Proving convergence we show that
events introduced newly in a refinement do not take control forever. Among
other things this can be used to prove loop termination [2]. Deadlock freedom
in Event-B means that some concrete event may occur whenever some abstract
event could occur. This property ensures that we cannot remove behaviour in
a refinement. In our approach this property could be interesting for showing
that domain properties modelled by events are not accidentally strengthened in
a refinement. For the purpose of this article we do not discuss convergence and
deadlock freedom further because they do not contribute new insights.
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3.2. Event-B Proof Obligations

We present proof obligations for machine consistency in Section 3.2.1 and
proof obligations for machine refinement in Section 3.2.2. During the presen-
tation of the proof obligations we comment on some issues concerning the ref-
erence model discussed in Section 2 before explaining our approach of tracing
requirements into formal models in Section 3.3.

3.2.1. Consistency Proof Obligations

Transition Proof Obligations. For an event E = any p where G then v :| S end
we have to prove feasiblity of the event: C∧I∧G⇒ ∃v′·S. Feasibility expresses
that S describes an after state whenever the guard G holds. This means that
the guard indeed represents an enabling condition of the event.

Invariants should hold whenever an event possibly changes the values of some
variable. The corresponding proof obligation is called invariant preservation:
C ∧ I ∧ G ∧ S ⇒ I[v := v′]. This proof obligation verifies that if the invariant
I holds before the event E occurs, then it also holds after it has occurred. In
other words, the invariant I is preserved by event E.

The two consistency proof obligations address the problem of the feasibility
of domain properties and specification elements discussed in Section 2.1. For
those domain properties modelled by events and invariants we also verify fea-
sibility. There remain those domain properties modelled by the axioms C for
which feasibility is not verified. The software tool ProB provides some means
to check axioms for consistency and gives feedback, that is, a counterexample,
if checking for consistency fails [33].

Example 8. Let us formalise the domain properties W-3 and W-4.

axiom axm1: floors = 0 .. N
axm2: card(floors) = N

The corresponding traces are: axm1 ← W-4 and axm2 ↔ W-3. (W-4 should
be split into three different domain properties. We have not done this to save
space.) Unfortunately, axm1 and axm2 contradict each other. We have to
correct the domain properties and decide to number the floors from 0 to N − 1.
We change W-4 to

W-4 The [floors] are numbered from [0 ], the [ground floor ], to [N-1 ], the [top floor ]

and keep an evolution trace to the old version of the domain property. The
inconsistency between W-3 and W-4 is already contained in [5]. This just shows
how tempting it is to formalise a model without tracing artefacts. It is all too
easy not to spot problems in informal descriptions and ignore inconsistencies
building by mistake the right model but for wrong artefacts.
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Initialisation Proof Obligations. For an initialisation we have to prove feasibility
and invariant establishment. These two proof obligations together imply that
the state space of the machine is not vacuous provided the axioms C are free
of contradictions. The proof obligations of invariant establishment and invari-
ant preservation together manifest an inductive proof that the invariant always
holds. So we could also say that the machine M satisfies the temporal property
“always I”.

3.2.2. Refinement Proof Obligations

We only discuss transition proof obligations. Initialisation proof obligations
are similar. For abstract event E = any p where G then v :| S end and concrete
event F = any q where H with Z then w :| T end where F refines E we have
to prove feasibility of F . It is similar to feasibility of the abstract event except
that we additionally assume D and J in the premise.

The proof obligations (5) to (8) verify that the abstract event E can sim-
ulate the concrete event F . A consequence of this simulation is that invariant
preservation proved for the abstract event also holds for the concrete event.

Guard strengthening establishes that the concrete event cannot occur more
often than the abstract event:

C ∧D ∧ I ∧ J ∧ Z ∧H ∧ T ⇒ G . (5)

Action simulation demonstrates that the action S of the abstract event can
simulate the action T of the concrete event:

C ∧D ∧ I ∧ J ∧ Z ∧H ∧ T ⇒ S . (6)

Invariant preservation verifies that the gluing invariant J is preserved:

C ∧D ∧ I ∧ J ∧ Z ∧H ∧ T ⇒ J [v, w := v′, w′] . (7)

Note that in the formulae (5) and (7) the witness Z constrains w′ to satisfy S.
The existence of the witness must be established by a separate proof obligation,
called, witness feasibility :

C ∧D ∧ I ∧ J ∧H ∧ T ⇒ ∃w′, q · Z . (8)

In combination the proof obligations (5) to (8) serve to verify the following
property:

C ∧D ∧ I ∧ J ∧H ∧ T ⇒ ∃q, w′ · G ∧ S ∧ J [v, w := v′, w′] . (9)

It is a standard proof technique for refinement called forward simulation (e.g.
[41]). The introduction of witnesses Z has the methodical advantage of explicat-
ing the relationship between the abstract and the concrete event. But it makes
requirements tracing easier, too. The proof obligations (5) to (8) provide a much
better and robust basis for tracing. We can record which premises have been
used in the proof per proof obligation. If forward simulation was proved directly
by means of (9), used premises would be much more difficult to determine for
the constructs occurring the conclusion.
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3.3. Tracing Requirements in Event-B

Event-B models consist of formal constructs such as axioms, invariants and
events. These should be related to informal artefacts such as domain proper-
ties, specification elements and requirements. We assume that non-functional
requirements are left to informal reasoning. Hence, when tracing requirements
from a formal model we always refer to functional requirements R. In the fol-
lowing we denote by Xi an informal artefact and by Xf a formal construct. The
decorations i and f are only used for emphasis: we keep the letters as employed
in the Sections 2.1 and 3.2 above. We also distinguish strictly between informal
artefacts and formal constructs for emphasis.

3.3.1. Tracing and Correctness

In the formal model we must not strengthen the assumptions we make by
means of the domain properties. That is domain properties W i must realise
formal constructs Af:

W i→ Af . (10)

For requirements Ri we have the opposite. They must be realised by formal
constructs Bf:

Bf→ Ri . (11)

We must not weaken the requirements. Whenever possible (10) and (11) should
be equivalence traces, W i ↔ Af and Bf ↔ Ri. That is, we do not want to
implement more than necessary, either because we have weakened the assump-
tions or because we have strengthened the requirements. Note, however, that
neither weaker assumptions nor stronger requirements will cause a correctness
problem. This is a well-known fact in program verification [4].

3.3.2. Tracing Artefacts into Formal Models

The proof obligations for an Event-B machine M are produced by mildly
rewriting and composing its constructs (and the constructs of seen contexts).
The motivation for this approach is that it should be easy to relate constructs
in a formal model with proof obligations [3]. In particular, if proving a proof
obligation fails, it should be clear where in the formal model to look for an error.
Exploiting the proximity between proof obligations and formal model, we can
trace requirements into the proof obligations —as a side effect marking the cor-
responding constructs in the formal model. In practice, the tracing information
is attached to the constructs of the formal model. However, the reference model
described in Section 2.1 is formulated predicatively on the the level of the proof
obligations.

We focus on specification adequacy (1) first: ∀e, s ·W i ∧ Qi ⇒ Ri ∧ U i. It
deals with domain properties W i, specification elements Qi, requirements Ri
and design decisions U i. To show specification adequacy, the domain properties
W i and specification elements Qi must realise the constructs Af of the formal
model,

W i ∧Qi→ Af , (12)
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and the constructs Af must realise the requirements Ri and design decisions
U i,

Af→ Ri ∧ U i . (13)

Here we consider those artefacts that can be traced into the formal model.
We do not assume, however, that satisfaction of all the requirements is proved
formally. Some proof or argumentation may be informal involving only informal
artefacts as illustrated by Example 5.

Based on (12) we can identify constructs of the formal model that are realised
by W i and Qi. Assumptions are modelled in Event-B by axioms, hence some
static domain properties W i′ ⊆ W i realise the axioms: W i′ → Cf.1 Dynamic
domain properties W i′′ ⊆ W i realise a subset of the events and invariants of a
model: W i′′ → Ïf ∧ G̈f ∧ S̈f. Distinct events and invariants İf ∧ Ġf ∧ Ṡf are
realised by specification elements Qi′ ⊆ Qi: Qi′ → İf ∧ Ġf ∧ Ṡf.

Note that there is a qualitative difference between domain properties W i and
specification elements Qi: the W i are assumed to be given in advance whereas
the Qi are produced during the modelling.

Based on (13) we can identify constructs of the formal model that realise Ri
and U i. Both of them are realised by events and invariants: If ∧ Gf ∧ Sf →
Ri ∧ U i. Note how artefacts that relate to invariants that make a claim of the
form “it is always true that . . . ” correspond to the temporal statement “always
I”. This is not proved directly by the proof obligations for machines but implied
by them. This is not formalised in Event-B. So we rely on an informal proof for
the claim.

Example 9. In the abstract Event-B model of the lift system we introduce the
movement of the lift cage. In order to formalise the current position of the lift
cage with respect to requirement item R-1, we introduce a variable floor and
the invariant inv1 :

invariant inv1: floor ∈ ground floor .. top floor

We keep track of the relationship between R-1 and inv1 using an equivalence
trace.

inv1 ↔ R-1
↔

Once we have proved preservation of invariant inv1 by all events, R-1 is formally
validated. It remains formally validated in all further refinements. Equivalence
is a strong form of justification. Requirement item R-1 justifies the presence of
the invariant inv1 in the formal model but inv1 is stronger than necessary.

1Informal artefacts can realise more than one formal construct. To simplify the presentation
we assume that such artefacts are duplicated.
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Example 10. We formalise the domain property W-2 by introducing another
variable move that describes the direction of the lift cage or whether the lift
cage is idle.

invariant inv2: move ∈ {up, down, idle}

We have the following trace.

inv2 ↔ W-2
↔

Some invariants can be traced to requirement items others to domain properties.
Tracing artefacts makes this explicit for each invariant.

3.3.3. Tracing Artefacts into Formal Refinements

If a model is developed by formal refinement, a sequence of machines Mf1,
Mf2, . . . ,Mfn is obtained where Mfi+1 refines Mfi. Each Mfi captures some
informal artefacts. For instance, we have a corresponding sequence of subsets
of the requirements R that are realised in each model Ri1, Ri2, . . . , Rin, where
Rii ⊆ Rii+1. We rephrase the refinement condition (3) of the reference model
to deal with series of specifications: ∀e, s ·W i ∧ Qi′ ⇒ Qi. This is matched by
the refinement notion of Event-B. Formulae (5) and (6) imply:

Cf ∧Df ∧ If ∧ Jf ∧ Zf ∧Hf ∧ Tf⇒ Gf ∧ Sf . (14)

So we can argue that if Gf ∧ Sf realises some requirement, so does Hf ∧ Tf.
However, Hf ∧ Tf may be stronger. In particular, it may realise more require-
ments Ri′ than Gf ∧ Sf where Ri′ ⊆ Rii+1\Rii if Hf ∧ Tf is an event from
machine Mfi+1. Hence, Hf ∧ Tf realises all requirements that Gf ∧ Sf does
plus the requirements Ri′. We have already outlined at the end of Section 3.2.2
how invariants are accumulated along a series of formal refinements. A similar
argument holds for design decisions U i. Thus formal refinement permits us to
introduce and trace requirements gradually, alleviating a major difficulty when
dealing with complex requirements.

Additional axioms Df can be introduced in a refinement. So in the refine-
ment the axioms realise additional domain properties. Concerning events that
realise domain properties, proving only (14) is not sufficient because the con-
crete event may be stronger than the abstract event. But correctness is only
maintained if this does not happen. There are several possibilities to deal with
this situation. We could argue why the concrete event is still weak enough to
realise the domain properties; or a formal proof technique could establish that
both events are equivalent.2 One could also start with the first approach and
switching to second when all relevant domain properties have been realised. On

2In Event-B this can be achieved by declaring an event as external.
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the other hand we are allowed to strengthen the formal constructs realising the
specification elements Qi. With it, however, we have to strengthen the spec-
ification elements of Qi. As discussed above, Qi is being developed and not
assumed to be exclusively under control of the environment. This is a funda-
mental difference to domain properties we have to observe. For increasing sets
of domain properties W ii and specification elements Qii where i ∈ 1, . . . , n as
above, we have thus

W ii+1 ∧Qii+1 ⇒W ii ∧Qii . (15)

All in all, respecting the precaution about domain properties of the preceding
paragraph, formal refinement preserves (12) and (13). Each refinement step can
be used to verify adequacy of the specification gradually:

W ii ∧Qii ⇒ Rii ∧ U ii . (16)

Refinement steps dealing with implementing elements P i will usually realise
fewer additional requirements. The refinement method, however, does not make
a particular distinction between the two uses of refinement. Refinement the-
ory guarantees that adequacy validated in earlier refinement steps is preserved.
When the end of the series refinements is reached specification adequacy (1) is
fully verified.

Example 11. In the first refinement of the Event-B model of the lift system
we introduce the door status. Furthermore, we formalise requirement item R-2.
It is formally modelled by means of an invariant inv3 :

invariant inv3: move ∈ {up, down} ⇒ door = closed

We consider this to capture precisely the informal meaning of the requirement.
Hence, we create an equivalence trace inv3 ↔ R-1 from inv3 to R-2. As a
consequence of R-2 specification elements have to be added to enforce that no lift
movements occur when the door is open. The formal Event-B model highlights
the the needed specification elements by corresponding proof obligations. Often
guards like grd1 in event switch move up have to be added to events in order
to prevent behaviour that would violate the invariants.

event switch move up
when

grd1: door = closed
grd2: move = idle

then
act1: move := up

end

The guards have to be translated into a specification element Q-4, say, and
corresponding realisation traces be provided: grd1 → Q-4 and Q-4 → R-2.
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3.3.4. Informal Proofs about Formal Models

Often requirements can be identified with invariants, event guards or actions.
In this case (16) holds trivially for the concerned requirements. Sometimes
theorems can be stated that that realise the requirements and are implied by
the invariants [13]. However, our approach is not limited to verification by
formal proof exclusively. We also permit (and encourage) informal proof. We
have already seen the property “always I” that is only proved informally. Other
temporal properties could be used similarly. However, for this article we content
ourselves with a less expressive notation relying only on the core constructs of
Event-B. Our aim here is not to formalise everything but to show how formal
and informal reasoning can be used together for complex models.

3.3.5. Informal Proofs about Informal Models

We mentioned in Section 3.3.3 that with respect to the formal model “we
consider those artefacts that can be traced into the formal model”. Those arte-
facts that are not traced into the formal model can also not be verified formally.
There are various ways to verify them informally. We should certainly not sim-
ply ignore them if they do not fit into the current formal scheme. To name a
few forms of informal verification we mention the following. In Example 5 we
have sketched in informal mathematical proof. The Problem Frames approach
employs frame concerns to argue whether requirements are satisfied. When re-
ferring to temporal formulae we may rely on background theory [14] to infer the
required temporal properties.

3.3.6. From Informal Premises to Informal Conclusions

At the end of Section 3.3.3 we have only discussed informal conclusions.
The reason for this is that our objective is requirements validation and the
premise W i ∧ Qi and conclusion Ri ∧ U i of (1) are both informal. If this is
so and we additionally allow for informal proof, what is the formal model with
its formal proof worth? This is a question we have to ask with respect to any
formal model not just our approach. All we have done is to make the tracing
information to informal artefacts explicit. Any formal model that we create will
be located between informal domain properties and informal requirements. It
is tempting in such formal models to identify formal constructs with domain
properties and requirements. In our experience (e.g. [10]) this is not always
achievable. For instance, some of the verification is done by specialist engineers
and their work is not to be replicated. We can formally prove important system
properties. However, we will always begin with an informal premise and end
with an informal conclusion. Our approach makes this explicit while giving a
dominant role to formal modelling in the requirements process.

4. A Process for Requirements Modelling and Validation

In the requirements engineering process we distinguish the different activ-
ities of requirements elicitation, requirements specification, system modelling,
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Figure 9: The Iterative Requirements Development Process

requirements validation and requirements management [40]. We focus on mod-
elling and validation. Common approaches of requirements elicitation could be
used to gather requirements in early phases during the process. We do not
consider this aspect of the requirements process because it has little influence
on modelling and validation. Figure 9 shows an overview of the requirements
process using iterations of modelling and validation.

Specification. During the requirements specification phase requirements and do-
main properties are first identified. The resulting classification into correspond-
ing artefacts and phenomena (following the reference model of Section 4.1) is
the starting point for modelling and validation.

Modelling and Validation. The objective of system modelling is the formal mod-
elling of a subset of the system description as well as the elaboration of the
specification elements. Artefacts can be incorporated gradually into the formal
model using refinement as described in Section 3.

The objective of requirements validation is to validate the relationship be-
tween informal artefacts and formal constructs and to validate the adequacy of
the specification elements. The validation relies on the our model for tracing
artefacts and phenomena and its use for tracing artefacts into formal model and
refinements.

Usually there will be many iterations of modelling and validation. This has
already been observed when using Event-B to produce formal models where
dealing with requirements often plays a subordinate role [13]. Note that we do
not aim at producing a formal model as opposed to [13] for instance. The aim
of the requirements process is to produce a consistent and complete system de-
scription. The formal model that is produced on the way is only a tool towards
that end. For this reason, constructs of formal models are hardly mentioned
in the process description for modelling and validation in Section 4.1 below.
Formal models are particularly useful for analysing consistency. Completeness
of requirements is more a concern of informal approaches to requirements mod-
elling such as Problem Frames.
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Figure 10: The Requirements Modelling and Validation Process

Management. We see that requirements management as a continuation of mod-
elling and validation in a later phase of a project lifecycle. The underlying
assumption is that the development of a system description fully finished. The
ongoing work includes change management and requirement evolution.

4.1. Incremental Modelling and Validation

The phase of modelling and validation consists usually of many iterations
between modelling and validation where the collection of all artefacts is validated
incrementally. Figure 10 shows the steps of the modelling and validation process
involved for each artefact (based on [26]). The small clouds attached to some of
the steps indicate the kind of traces that are modified in the those steps. The
modelling and validation process typically starts with a collection of informal
artefacts that have been produced during the requirements specification phase.
In the following Sections 4.1.1 to 4.1.8 we describe the steps in the process in
more detail. The section numbers are also indicated near the corresponding
steps in Figure 10.

4.1.1. Choose Artefact

The first step in the process consists in choosing an arbitrary artefact. We do
not distinguish “creating a new artefact” but include this for simplicity under

23



Q-2.1 If the [lift cage] is [idle] at some [floor ] below the [top floor ], it may proceed
by [moving up]

Q-2.2 If the [lift cage] is [idle] at the [top floor ], it does not proceed by [moving up]

Figure 11: Specification element Q-2 split into Q-2.1 and Q-2.2

heading “choosing an artefact”. Depending on the quality of the artefact, it
may have to evolve by being rewritten or split, typically by checking it against
quality criteria [16]. Often this rewriting an artefact will also be a consequence
of insights gained during formal modelling. New artefacts created during the
process will, in particular, be specification elements and design decisions. But
also missing domain properties are often found by formal modelling and need
then to be added to the system description.

4.1.2. Rewrite Artefact

Changing the artefact results in one or more evolution traces and the process
has to start over with an evolved artefact. (The evolved artefacts must be
checked with the stakeholders to ensure that they still reflect their needs.)

Example 12. Specification element Q-2 is too complex and should be split into
two separate specification elements. The new specification elements Q-2.1 and
Q-2.2 to replace Q-2 are shown in Fig. 11.

The evolution trace for Q-2 keeps track of this modification.

Q-2  Q-2.1, Q-2.2
 

The specification elements Q-2.1 and Q-2.2 are easier to trace into the formal
Event-B model.

event switch move up
when

grd1: door = closed
grd2: move = idle
grd3: floor < top floor

then
act1: move := up

end

Specification element Q-2.1 justifies two guards and the action of the event.

grd2,grd3,act1 → Q-2.1
→

There are more traces to event switch move up that justify each of the formal
constructs like grd1 → Q-4 discussed in Example 11.
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4.1.3. Classify Artefact

The artefact is identified as belonging to one of the classes R, N , W , Q
or U . This in turn will determine the kinds of phenomena that are allowed
to be used by the artefact: eh, ev, sv or sh. Here the boundary between the
environment and the system as discussed in Section 2 is crucial. The distinction
of the artefacts requires the boundary to be fixed.

4.1.4. Identify Phenomena

All phenomena used by the artefact are identified. All phenomena need to
be declared in order to achieve consistent usage across the collection of artefacts.
The phenomena that that are allowed to occur in the artefact are determined
by the class of the artefact. Phenomena that have not yet been declared must
be declared before we can continue by tracing the phenomena.

4.1.5. Declare Phenomena

Missing phenomena are declared by introducing a designation. This can be
as simple as adding the designation to a glossary and classifying it as belonging
to one of eh, ev or sv. It may be described further by other artefacts. For
formalised phenomena, for instance, a specific artefact with typing information
may be necessary.

4.1.6. Trace Phenomena

The association “∈” between artefact and the used phenomena is deter-
mined. In the ProR integration, this is done by simply surrounding the desig-
nation by squared brackets in the informal text that represents the artefact. A
phenomenon is considered declared, once a formal element with the same des-
ignation has been created. The tool verifies this and provides feedback in the
form of colour highlighting. Tracing between phenomena and formal artefacts
is done implicitly by building a syntax tree of the formal model.

4.1.7. Trace Artefact

Realisation “→” or equivalence “↔” traces are attached to the artefact.
These as well as traces that were attached to the artefact before must be vali-
dated afterwards. Until then they are marked as suspect, denoted “X→” or “ X↔”.
The traces are constrained by the formulae (1) to (4) (this is currently not ver-
ified by the tool). As artefacts and phenomena change, existing traces that are
automatically marked as suspect by the tool and must be validated anew.

4.1.8. Validate Traces

All traces of the artefact must be validated eventually. This requires review-
ing the artefacts and related formal constructs in order to judge whether the
formal construct properly stand in the claimed relationship “→” or “↔”. In
line with the incremental approach to modelling and validation it is also possi-
ble for traces of an artefact to remain suspect, e.g., “ X→” or “ X↔”. For a system
description to be consistent, though, all traces must have been validated.
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Example 13. If a new trace is added or the source or target of a trace changes
the trace is marked as suspect. The ProR tool does this automatically. For
instance, if we change inv3 or R-2, the trace needs to be validated

inv3 X↔ R-2
X↔

After having reviewed inv3 and R-2 the trace can be validated and the marking
removed. For this task it is important to have not (many) more traces than
necessary. The effort of reviewing should be kept as small as possible.

4.2. The Fully Validated System Description

When all traces have been validated and claims in the formal model have
been verified the system description is considered consistent with respect to

• the allowed references of phenomena by the different artefacts (Figure 3);

• the use of phenomena across different artefacts;

• the traces respecting formulae (1) to (4)

• the relationship of informal artefacts to formal constructs;

• the verified formal properties of the formal model.

Our approach only classifies artefacts and their relationships. There is no
provision for structuring the collection of artefacts as a whole. We acknowl-
edge that the structuring is a relevant issue in practice and rely on approaches
complementary to ours to carry this out. For instance, [29] argues that a list
of requirements is much easier to understand if they are given a meaningful
order. Furthermore, additional structure such as sections or headlines improves
readability and scalability of a system description.

A lot of practical advice with respect to structuring is available, e.g., [16, 36,
38]. Some of this advice is manifested in the form of process templates, e.g., [30],
or in the form of standards such as IEEE standard 830 [17]. The IEEE standard
830 describes a document-centred approach. It provides standardised document
outlines for different types of system descriptions combined with some quality
criteria and checklists for completeness. The standard hardly constrains the
actual contents. This, however, makes it easy to combine it with our approach,
which is primarily concerned with the contents in the form artefacts and their
relationships. Finally, we note that the Problem Frames notation [19], which is
employed in Example 1, provides some structuring based on a graphical notation
(see Figure 2 below).

5. Related Work

Central to this paper is the WRSPM reference model [12]. Earlier work by
the authors on expanding the reference model is published in [26] and [25].
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The issue of traceability has been analysed in depth by Gotel et. al. [11],
according to which our research falls into the area of post-requirements specifi-
cation traceability. Traceability has been recognised as a difficult problem, e.g.
[6].

In this article we use the Event-B formalism [2]. While not directly con-
cerned with requirements traceability, [2] recognises the problem of the transi-
tion from informal user requirements to a formal specification. However, there
is no mention of how this could be achieved.

There have been successful attempts in applying Problem Frames and Event-
B together. In [34], the authors show how these are being applied to an industrial
case study. In contrast to our approach, only requirements that were actually
modelled formally were included in the specification in the first place.

There are other approaches for requirements traceability between formal and
informal artefacts. KAOS [9] is a well-known approach. Rather than allowing
informal elements that are omitted from the formal model, it provides so-called
“soft-goals” that are broken down into requirements that can still be modelled
formally. KAOS does not demand the whole model to be formalised, but does
not clearly state the implications of a partial formalisation.

Reveal [37] is an approach that is driven by an industrial company. It is based
on Michael Jackson’s “World and the Machine” model [18]. There are a lot of
similarities to our approach, including the acknowledgement of requirements
that are not part of the formal model. Reveal does not define a traceability
approach, however: It merely demands that one is defined and followed.

The case study used in this article is described in [5], albeit using a different
formalism. In that article a real-time specification method is used and it is
assumed that all requirements can be formalised as formulae in that formalism.

This paper is also concerned with tool support. The ProR tool [20] has been
used for this purpose, and other integrations for traceability have been realised
with it [23] or proposed [22].

6. Conclusion

We have presented an incremental approach for building a system description
consisting of formal and informal artefacts. The resulting system description
is complemented by a traces between those artefacts that support systematic
validation and change management. We have illustrated the approach by means
of a small case study.

The main objective of our approach is the validation of the informal system
description. Consequently, the formal model is no end in itself, but only serves
as a tool for the rigorous validation of the system description or parts thereof.
Specifically, any formal model that we create is located between informal do-
main properties and informal requirements. The aim of the formal modelling
is to ensure consistency of the informal system description. The approach of
requirements tracing that we have developed plays a crucial role in this.

The role of the formal model in the overall system development process can
vary and depends on a number of factors, including the problem to be solved,
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the formalism that is chosen, the experience of the team, to name a few. In the
case study, a state-based Event-B model was build, which resulted in a subset
of the artefacts to be formalised. For instance, out of the 8 informal artefacts
shown in Table 5, only 5 were formalised.

The formal model was then used to show that the formal counterparts of
the requirements are satisfied, by proving that corresponding invariants are
preserved.

This work has a strong focus on traceability, and we do not distinguish in
principle on whether the artefacts traced are formal or informal. Instead, we
focus on classifying the trace as a justification (or its inverse, realisation) and
its stronger form, equivalence. This allows us to construct a closed system
description that is consistent with respect to the purpose of its artefacts. While
such an approach cannot identify missing requirements or assumptions, it can
ensure that all recorded requirements are realised. Further, the introduction of
phenomena allows the systematic creation and maintenance of a glossary, and
allows for some rudimentary consistence checks as well.

Finally, the work described here is supported by a tool integrating require-
ments modelling, ProR, that is integrated with the tools for formal verification
by proof, Rodin, and by model-checking an animation, ProB.

Future Work. The approach introduced here provides little guidance with re-
spect to the macroscopic structure of the system description. We used Problem
Frames in the case study to provide some structure, and it would be interesting
to develop this further.

The tool chain was helpful and automated a number of tasks required by
our approach. But there is more potential for automation, especially in the
area of issue reporting. We plan on creating a catalogue of properties that a
consistent system description should have, and a reporting tool that lists all
violations of those properties. This is already done, to a degree, through the
colour highlighting, but could be taken much further.
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