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1 Introduction

In first part of this course [28] we have laid the theoretical foundations for logic
program specialisation, notably introducing the technique of partial deduction along
with some basic techniques to automatically control it. In this part of the course
we first present in Section 2 an advanced way of controlling polyvariance based
upon characteristic trees. We then show in Section 3 how partial deduction can
be extended into conjunctive partial deduction, incorporating much of the power of
unfold/fold program transformation techniques, such as tupling and deforestation,
while keeping the automatic control of partial deduction. Finally, in Section 4 we
elaborate on combining abstract interpretation with conjunctive partial deduction,
showing how together they are more powerful than either method alone.

2 Characteristic Trees for Global Control

2.1 Structure and abstraction

In the first part of the course [28] we have presented the generic partial deduction
Algorithm 3.1. This algorithm is parametrised by an unfolding rule for the local
control and by an abstraction operator for the control of polyvariance. The abstrac-
tion operator examines a set of atoms and then decides which of the atoms should
be abstracted and which ones should be left unmodified.

An abstraction operator like the msg is just based on the syntactic structure
of the atoms to be specialised. However, two atoms can be specialised in a very
similar way in the context of one program P1, and in a very dissimilar fashion in
the context of another program P2. The syntactic structure of the two atoms being
unaffected by the particular context, an operator like the msg will perform exactly
the same abstraction within P1 and P2, even though very different generalisations
might be called for. A much better idea might therefore be to examine the SLDNF-
trees generated for these atoms. These trees capture (to some depth) how the atoms
behave computationally in the context of the respective programs. They also capture
(part of) the specialisation that has been performed on these atoms. An abstraction
operator which takes these trees into account will notice their similarity in the
context of P1 and their dissimilarity in P2, and can therefore take appropriate
actions in the form of different generalisations. The following example illustrates
these points.

Example 1. Let P be the append program:
(1) append([], Z, Z)←
(2) append([H|X], Y, [H|Z])← append(X, Y, Z)



Note that we have added clause numbers, which we will henceforth take the liberty
to incorporate into illustrations of SLD-trees in order to clarify which clauses have
been resolved with.
LetA = {B,C} be a set of atoms, where B = append([a], X, Y ) and C = append(X, [a], Y ).
Typically a partial deducer will unfold the two atoms of A in the way depicted in
Fig. 1, returning the finite SLD-trees τB and τC . These two trees, as well as the
associated resultants, have a very different structure. The atom append([a], X, Y )
has been fully unfolded and we obtain as only resultant the fact:

append([a], X, [a|X])←
while for append(X, [a], Y ) we obtain the following resultants:

append([], [a], [a])←
append([H|X], [a], [H|Z])← append(X, [a], Z)

In this case, it is thus vital to keep separate specialised versions for B and C. How-
ever, it is very easy to come up with another context in which the specialisation
behaviour of B and C are almost indiscernible. Take for instance the following pro-
gram P ∗ in which append∗ no longer appends two lists but finds common elements
at common positions:

(1∗) append∗([X|TX ], [X|TY ], [X])←
(2∗) append∗([X|TX ], [Y |TY ], E)← append∗(TX , TY , E)

The associated finite SLD-trees τ∗
B and τ∗

C , depicted in Fig. 2, are now almost fully
identical. In that case, it is not useful to keep different specialised versions for B
and C because the following single set of specialised clauses could be used for B
and C without specialisation loss:

append∗([a|T1], [a|T2], [a])←
This illustrates that the syntactic structures of B and C alone provide insufficient
information for a satisfactory control of polyvariance.
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← append([a], X, Y ) ← append(X, [a], Y )

2 ← append(X ′, [a], Y ′)

(1) (2)

← append([], X, Y ′)

2

(1)

(2)

Fig. 1. SLD-trees τB and τC for Example 1

2.2 Characteristic trees

The above illustrates the interest of (also) examining the “essential structure” of
the SLDNF-trees generated for the atoms to be partially deduced. This leads to the
definition of characteristic trees, initially presented in [13, 12] and later exploited
in [31, 33], which abstracts SLDNF-trees by only remembering, for the non-failing
branches1:
1 The failing branches do not materialise within the residual code and it is not interesting

to know how a certain branch has failed; see [31, 33].
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← append∗([a], X, Y ) ← append∗(X, [a], Y )

2 ← append∗(TX , [], E)

(1∗) (2∗)

← append∗([], TX , E)

fail fail

(1∗) (2∗)

Fig. 2. SLD-trees τ∗
B and τ∗

C for Example 1

1. the position of the selected literals and
2. the (number of the) clauses that have been resolved with.

We will now use pos ◦ cl to denote a selection of a literal at position pos within
a goal which is resolved with the clause numbered cl. We will represent trees by the
set of their branches. For example, the characteristic trees of the finite SLD-trees
τB and τC in Fig. 1 are then {〈1 ◦ 2, 1 ◦ 1〉} and {〈1 ◦ 1〉, 〈1 ◦ 2〉} respectively. The
characteristic trees of the finite SLD-trees τ∗

B and τ∗
C in Fig. 2 are both {〈1 ◦ 1∗〉}.

The characteristic tree of an atom A explicitly or implicitly captures the follow-
ing important aspects of specialisation:

– the branches that have been pruned through the unfolding process (namely
those that are absent from the characteristic tree). For instance, by inspecting
the characteristic trees of τB and τC from Ex. 1, we can see that two branches
have been pruned for the atom B (thereby removing recursion) whereas no
pruning could be performed for C.

– how deep ← A has been unfolded and which literals and clauses have been
resolved with each other in that process. This captures the computation steps
that have already been performed at partial deduction time.

– the number of clauses in the resultants of A (namely one per characteristic path)
and also (implicitly) which predicates are called in the bodies of the resultants.
This means that a single predicate definition can (in principle) be used for two
atoms which have the same characteristic tree.

Furthermore, Ex. 2 below (further examples can be found in [33]; similar sit-
uations also arise in the context of specialising metainterpreters) illustrate that
sometimes a growth of syntactic structure (as spotted, e.g., by �) is accompanied
by a shrinking of the associated SLDNF-trees. In such situations there is, despite
the growth of syntactic structure, actually no danger of non-termination. An ab-
straction operator solely focussing on the syntactic structure would unnecessarily
force generalisation, thus often resulting in sub-optimal specialisation.

Example 2. Let P be the following definite program:

(1) path([N ])←
(2) path([X, Y |T ])← arc(X, Y ), path([Y |T ])
(3) arc(a, b)←

Unfolding ← path(L) (e.g., using an unfolding rule based on �; see Fig. 3 for the
SLD-trees constructed) will result in lifting path([b|T ]) to the global level. Notice
that we have a growth of syntactic structure (path(L) � path([b|T ])). However, one
can see that further unfolding path([b|T ]) results in a SLD-tree whose characteristic
tree τB = {〈1 ◦ 1〉} is strictly smaller than the one for path(L) (which is τA =
{〈1 ◦ 1〉, 〈1 ◦ 2, 1 ◦ 3〉}).
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fail

2 ← arc(b, Y ), path([Y |T ])
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← path([b|T ])

← path([b|T ])

← arc(X, Y ), path([Y |T ])2

← path(L)

Fig. 3. SLD-trees for Example 2

In summary, characteristic trees seem to be an almost ideal vehicle for a refined
control of polyvariance, a fact we will try to exploit in the following section.

2.3 An abstraction operator using characteristic trees

A first attempt at using characteristic might be as follows: classify atoms at the
global control level by their associated characteristic tree and apply generalisation
(msg) only on those atoms which have the same characteristic tree. The following
example illustrates this approach.

Example 3. Let P be the program reversing a list using an accumulating parame-
ter:

(1) rev([], Acc,Acc)←
(2) rev([H|T ], Acc,Res)← rev(T, [H|Acc], Res)

We will use a (shower) determinate unfolding rule U inside the generic Algorithm 3.1
in [28].
When starting out with A0 ={rev([a|B], [], R)} the following steps are performed
by Algorithm 3.1:

– the only atom in A0 is unfolded (see Fig. 4) and the atoms in the leaves are
added, yielding: A′

0 = {rev([a|B], [], R), rev(B, [a], R)}.
– the atoms in A′

0 all have different characteristic trees, and we obtain A1 = A′
0.

– the atoms in A1 are unfolded (see Fig. 4) and the atoms in the leaves are added,
yielding:
A′

1 = {rev([a|B], [], R), rev(B, [a], R), rev(T, [H, a], R)}.
– the atoms rev(B, [a], R) and rev(T, [H, a], R) have the same characteristic tree

(see Fig. 4) and we thus apply the msg and obtain:
A2 = {rev([a|B], [], R), rev(T, [A|B], R)}.

– the atoms in A2 are unfolded and the leaf atoms added:
A′

2 = {rev([a|B], [], R), rev(T, [A|B], R), rev(T ′, [H ′, A|B], R)}.
– the atoms rev(T, [A|B], R) and rev(T ′, [H ′, A|B], R) have the same character-

istic tree and we thus apply the msg and obtain: A3 = A2. We have reached a
fixpoint and thus obtain the following partial deduction satisfying the closedness
condition (and which is also independent without renaming):

rev([a|B], [], R)← rev(B, [a], R)
rev([], [A|B], [A|B])←
rev([H|T ], [A|B], Res)← rev(T, [H,A|B], Res)

Because of the selective application of the msg , no loss of precision has been in-
curred, e.g., the pruning and pre-computation for rev([a|B], [], R) has been pre-
served. An abstraction operator allowing just one version per predicate would have



lost this local specialisation, while a method with unlimited polyvariance (called
dynamic renaming, in [1]) does not terminate.

For this example, our approach provides a terminating and fine grained control
of polyvariance, conferring just as many polyvariant versions as necessary.
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(2)

(1)

2

(2)

← rev(B, [a], R)

(1)

2

(2)

← rev(T, [H, a], R)

← rev(T ′, [H ′, H, a], R)

← rev(T, [H, a], R)

← rev([a|B], [], R)

← rev(B, [a], R)

Fig. 4. SLD-trees for Example 3

The above example is thus very encouraging and one might hope that charac-
teristic trees are always preserved upon generalisation and that we already have a
refined solution to the control of polyvariance problem. Unfortunately, the approach
still has two major problems:

1. it does not always preserve the characteristic trees, entailing a loss of precision
and specialisation, and

2. it is not guaranteed to terminate (even if the number of distinct characteristic
trees is finite).

We illustrate these problems and show how they can be overcame in the Sec-
tions 2.4 and 2.5 below.

2.4 Preserving characteristic trees upon generalisation

Let us show why the approach described in Section 2.3 does not preserve charac-
teristic trees:

Example 4. Let P be the program:
(1) p(X)← q(X)
(2) p(c)←

Let A = {p(a), p(b)}. Supposing that we do not unfold q(X), p(a) and p(b) have
the same characteristic tree τ = {〈1 ◦ 1〉}. We thus calculate msg(p(a), p(b)) =
p(X) which has unfortunately the characteristic tree τ ′ = {〈1 ◦ 1〉, 〈1 ◦ 2〉} 6= τ
and the pruning that was possible for the atoms p(a) and p(b) has been lost. More
importantly, there exists no atom, more general than p(a) and p(b), which has τ as
its characteristic tree.

The problem in the above example is that, through generalisation, a new non-
failing derivation has been added, thereby modifying the characteristic tree. Another
problem can occur when negative literals are selected by the unfolding rule. More
involved and realistic examples can be found in [33, 31].

These losses of precision can have some regrettable consequences in practice:



– opportunities for specialisation can be lost and
– termination of Algorithm 3.1 in [28] can be undermined (even assuming a finite

number of characteristic trees).

Two different solutions to this problem are:

1. Ecological Partial Deduction [25, 33]
The basic idea is to simply impose characteristic trees on the generalised atoms.
To solve Ex. 4 one would produce the generalisation p(X) on which we impose
τ = {〈1◦1〉} (this is denoted by (p(X), τ) in [25, 33], also called a characteristic
atom). The residual code generated for (p(X), τ) is:

p(X)← q(X)
In other words the pruning possible for p(a) and p(b) has now been preserved.
However, the above residual code is not valid for all instances of p(X); it is
only valid for those instances (called concretisations) for which τ is a “proper”
characteristic tree. For example, the code is valid for p(a), p(b), p(d), but not
for p(c). The full details, along with correctness results, of this approach can be
found in [25, 33].

2. Constrained Partial Deduction [31]
The basic idea of constrained partial deductions is to, instead of producing
a partial deduction for a set of atoms, to produce it for a set of constrained
atoms. A constrained atom is a formula of the form C 2 A, where A is an
ordinary atom and C a constraint over some domain D (see also [21]). The set
of “proper” instances (called concretisations) of a constrained atom C 2 A are
then all the atoms Aθ such that Cθ holds in D.
[31] then achieves the preservation of characteristic trees by using disequality
constraints, designed in such a way as to prune the possible computations into
the right shape. To solve Ex. 4 one would produce the generalisation X 6=
c 2 p(X). The residual code generated for this generalisation is the same as for
ecological partial deduction, and again the pruning possible for p(a) and p(b)
has been preserved:

p(X)← q(X)

The approach in [31] is more general and constraints are also propagated globally
(i.e., in the terminology of supercompilation [44, 19, 43, 42], one can “drive negative
information”). On the other hand, the method in [33] is conceptually simpler and
can handle any unfolding rule as well as normal logic programs, while the concrete
algorithm in [31] is currently limited to determinate unfoldings without a lookahead
and definite programs.

2.5 Ensuring termination without depth-bounds

It turns out that for a fairly large class of realistic programs (and unfolding rules),
the characteristic tree based approaches described above only terminate when im-
posing a depth bound on characteristic trees. [33] presents some natural examples
which show that this leads to undesired results in cases where the depth bound is
actually required. (These examples can also be adapted to prove a similar point
about neighbourhoods in the context of supercompilation of functional programs.)

We illustrate the problem through a slightly artificial, but very simple example.

Example 5. The following is the reverse with accumulating parameter of Ex. 3 where
a list type check (in the style of [14]) on the accumulator has been added.

(1) rev([], Acc,Acc)←
(2) rev([H|T ], Acc,Res)← ls(Acc), rev(T, [H|Acc], Res)
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← rev(L, [], R)

← ls([]), rev(T, [H], R)

← rev(T, [H], R)

(3)
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← rev(T, [H], R)

← ls([H]), rev(T ′, [H ′, H], R)

← rev(T ′, [H ′, H], R)

(3)

← ls([]), rev(T ′, [H ′, H], R)

(4)
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In general:

(1)

2

(2)

(4)

← rev(T,

n︷︸︸︷
[...] , R)

← ls([...]), rev(T ′, [H ′, ...], R)

← rev(T ′, [H ′, ...], R)

(3)

← ls([]), rev(T ′, [H ′, ...], R)

(4)

...

 n

Fig. 5. SLD-trees for Example 5.

(3) ls([])←
(4) ls([H|T ])← ls(T )

As can be noticed in Fig. 5, unfolding (determinate, �-based, and well-founded,
among others) produces an infinite number of different atoms, all with a different
characteristic tree. Imposing a depth bound of say 100, we obtain termination;
however, 100 different characteristic trees (and instantiations of the accumulator)
arise, and 100 different versions of rev are generated: one for each characteristic
tree. The specialised program thus looks like:

(1’) rev([], [], [])←
(2’) rev([H|T ], [], Res)← rev2(T, [H], Res)
(3’) rev2([], [A], [A])←
(4’) rev2([H|T ], [A], Res)← rev3(T, [H,A], Res)

...
(197’) rev99([], [A1, . . . , A98], [A1, . . . , A98])←
(198’) rev99([H|T ], [A1, . . . , A98], Res)←

rev100(T, [H,A1, . . . , A98], Res)
(199’) rev100([], [A1, . . . , A99|AT ], [A1, . . . , A99|AT ]) ←
(200’) rev100([H|T ], [A1, . . . , A99|AT ], Res)←

ls(AT ), rev100(T, [H,A1, . . . , A99|AT ], Res)
(201’) ls([])←
(202’) ls([H|T ])← ls(T )

This program is certainly far from optimal and clearly exhibits the ad hoc nature
of the depth bound.

Situations like the above typically arise when an accumulating parameter in-
fluences the computation, because then the growing of the accumulator causes a
corresponding growing of the characteristic trees. With most simple programs, this
is not the case. For instance, in the standard reverse with accumulating parameter,
the accumulator is only copied in the end, but never influences the computation.



For this reason it was generally felt that natural logic programs would give rise to
only finitely many characteristic trees.

However, among larger and more sophisticated programs, cases like the above
become more and more frequent, even in the absence of type-checking. For instance,
in an explicit unification algorithm, one accumulating parameter is the substitution
built so far. It heavily influences the computation because new bindings have to be
added and checked for compatibility with the current substitution.

A solution to this problem is developed in [33], whose basic ingredients are as
follows:

1. Register descendency relationships among atoms at the global level by putting
them into a global tree (instead of a global set).

2. To watch over the evolution of the characteristic trees associated with atoms
along the branches of the global tree in order to detect dangerous growths.
Obviously, just measuring the depth of characteristic trees would be far too
crude. As can be seen in Fig. 5, we need a more refined measure which would
somehow spot when a characteristic tree (piecemeal) “contains” characteristic
trees appearing earlier in the same branch of the global tree. If such a situation
arises—as it indeed does in Ex. 5—it seems reasonable to stop expanding the
global tree, generalise the offending atoms, and produce a specialised procedure
for the generalisation instead. As shown in [33], this can be accomplished by
extending the homeomorphic embedding relation � to work on characteristic
trees.

The techniques formally elaborated in [33] have led to the implementation of
the ecce partial deduction system which is publicly available [26]. Extensive ex-
periments are reported on in [33, 27]. The ecce system also handles a lot of Prolog
built-ins, like for instance =, is, <, =<, <, >=, number , atomic, call , \==, \=. All
built-ins are supposed to be declarative and their selection delayed until they are
sufficiently instantiated. These built-ins are then also registered within the charac-
teristic trees (see [27]).

3 Conjunctive Partial Deduction

Partial deduction, based upon the Lloyd-Shepherdson framework [35], specialises a
set of atoms. Even though conjunctions may appear within the SLDNF-trees con-
structed for these atoms, only atoms are allowed at the global level. In other words,
when we stop unfolding, every conjunction at the leaf is automatically split into
its atomic constituents which are then specialised (and possibly further abstracted)
separately at the global level. As we show below, this restriction considerably re-
stricts the potential power of partial deduction. The main goal of this section is to
show how this limitation can be overcome, by going to the framework of conjunctive
partial deduction.

3.1 Basics

Let us start by examining a very simple example. In the following, we introduce
the connective ∧ to avoid confusion between conjunction and the set punctuation
symbol “,”.

Example 6. Let P be the following program.
(1) max length(X, M, L)← max (X, M) ∧ length(X, L)
(2) max (X, M)← max 1(X, 0,M)
(3) max1([ ],M,M)←



(4) max1([H|T ], N, M)← H ≤ N ∧max1(T,N,M)
(5) max1([H|T ], N, M)← H > N ∧max1(T,H,M)
(6) length([ ], 0)←
(7) length([H|T ], L)← length(T,K) ∧ L is K + 1

Let us try to specialise this program for calls to max length(x,m, l), which cal-
culate the length and maximum element of a list. One can see that the original
program above is needlessly inefficient at this: it traverses the list x twice, once to
calculate the maximum and then again to compute the length. One might hope that
by specialisation this inefficiency can be removed, i.e., that these two computations
can be “tupled” together. Unfortunately this optimisation is out of the reach of
partial deduction, due to its inability to handle conjunctions at the global level.
For instance, assume that we construct the finite SLD-tree for max length(x,m, l)
depicted at the left in Fig. 6. Now the atoms max 1(x, 0,m) and length(X, l) have
to be specialised separately and the specialised program will contain two predi-
cates each traversing x on its own. The situations remains the same, no matter how
deeply we unfold max length(x, m, l). In other words, partial deduction is incapable
of translating multiple visits of the same data structure into a single visit (called tu-
pling); something which can be achieved using unfold/fold program transformation
methods [39].

To overcome this limitation, [32, 17, 27] present a minimal extension to partial
deduction, called conjunctive partial deduction. This technique extends the stan-
dard partial deduction approach by simply considering a set S = {C1, . . . , Cn} of
conjunctions of atoms instead of just atoms.

Now, as the SLDNF-trees constructed for each Ci are no longer restricted to
having atomic top-level goals, resultants (cf. Definition 25 in the first part of the
course [28]) are not necessarily Horn clauses anymore: their left-hand side may
contain a conjunction of atoms. To transform such resultants back into standard
clauses, conjunctive partial deduction requires a renaming transformation, from
conjunctions to atoms, in a post-processing step. We illustrate this below; the formal
details are in [32, 17, 27].

Let us return to Ex. 6 to illustrate the basic workings of conjunctive partial
deduction. Let S = {max length(x,m, l),max 1(x, n, m) ∧ length(x, l)} be the set
of conjunctions we specialise. Assume that we construct the SLD-trees depicted in
Fig. 6. The associated resultants are {R1,1} and {R2,1, R2,2, R2,3} with:

(R1,1) max length(X, M, L)← max1(X, 0,M) ∧ length(X, L)

(R2,1) max1([ ], N, N) ∧ length([ ], 0)←
(R2,2) max1([H|T ], N, M) ∧ length([H|T ], L)←

H ≤ N ∧max1(T,N,M) ∧ length(T,K) ∧ L is K + 1
(R2,3) max1([H|T ], N, M) ∧ length([H|T ], L)←

H > N ∧max1(T,H,M) ∧ length(T,K) ∧ L is K + 1

Clearly R2,1, R2,2, R2,3 are not program clauses. Apart from that, with the ex-
ception that the redundant variable still has multiple occurrences, the above set of
resultants has the desired tupling structure. The two functionalities (max/3 and
length/2) in the original program have been merged into single traversals. In order
to convert the above into a standard logic program, we will rename conjunctions
of atoms into atoms. Such renamings require some care. For one thing, there may
be ambiguity concerning which conjunctions in the bodies to rename. For instance,
if we have the resultant p(x, y) ← r(x) ∧ q(y) ∧ r(z) and S contains r(u) ∧ q(v),
then either the first two, or the last two atoms in the body of this resultant are
candidates for renaming. To formally fix such choices, we introduce the notion of a
partitioning function p. Second, a particular conjunction in the body might be an
instance of several elements in S (unless S is independent). Finally, we have to fix
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← max (X, M) ∧ length(X, L)

(2)

← max1(X, 0, M) ∧ length(X, L)

← max length(X, M, L)

(4)(1) (3) (5)

2

← length([ ])

(6)

← H > N∧← H ≤ N∧

← H ≤ N∧ ← H > N∧

← max1(X, N, M) ∧ length(X, L)

(7) (7)

length([H|T ], L)
max1(T, N, M)∧

length([H|T ], L)
max1(T, h, M)∧

L is K + 1
length(T, K)∧

max1(T, N, M)∧

L is K + 1
length(T, K)∧

max1(T, H, M)∧

Fig. 6. SLD-trees τ1 and τ2 for Example 6

a mapping α (called an atomic renaming in [32]) from each element Ci of S to an
atom Ai, having exactly the same variables as Ci, and such that each Ai uses a
distinct predicate symbol.

For the max length example, we simply use a partitioning function p which splits
the conjunctions

H ≤ N ∧max1(T,N,M) ∧ length(T,K) ∧ L is K + 1
H > N ∧max1(T,H,M) ∧ length(T,K) ∧ L is K + 1

into

{H ≤ N , max1(T,N,M) ∧ length(T,K), L is K + 1}
{H > N , max1(T,H,M) ∧ length(T,K), L is K + 1}

respectively. Let us now map each element of S to an atom:
– α(max length(X, M, L)) = max length(X, M, L) and
– α(max1(X, N,M) ∧ length(X, L)) = ml(X, N,M,L).

S does not contain elements with common instances and for the resultants at hand
there exists only one possible renaming based on α and p.

The conjunctive partial deduction wrt S is now obtained as follows. The head
max length(X, M, L) in R1,1 is replaced by itself. The head-conjunctions max1([ ], N, N)∧
length([ ], 0) and max1([H|T ], N, M)∧length([H|T ], L) are replaced by ml([ ], N, N, 0)
and ml([H|T ], N, M, L).
The three body occurrences max1(X, 0,M) ∧ length(X, L), max1(T,N,M) ∧ length(T,K)
as well as max1(T,H,M)∧ length(T,K) are replaced by the atoms ml(X, 0,M,L),
ml(T,N,M,K) and ml(T,H,M,K) respectively.
The resulting program is:

max length(X, M, L)← ml(X, 0,M,L)
ml([ ], N, N, 0)←
ml([H|T ], N, M, L)← H ≤ N ∧ ml(T,N,M,K) ∧ L is K + 1
ml([H|T ], N, M, L)← H > N ∧ ml(T,H,M,K) ∧ L is K + 1

We were thus able to produce an ordinary logic program in which the two function-
alities of max and length are accomplished in a single traversal.

3.2 Deforestation

In this section we show how conjunctive partial deduction can be used to get rid of
intermediate data structures, something which is called deforestation [49].
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← append(Y, Z, R) ← append(X ′, Y, I ′) ∧ append([H|I ′], Z, R)

← append(X ′, Y, I ′) ∧ append(I ′, Z, R′)

(2)

← append(X, Y, I) ∧ append(I, Z, R)

Fig. 7. SLD-tree for Example 7

Example 7. Let P be the append program from Ex. 1. One way to append three lists
is to use the goal append(Xs,Ys, I) ∧ append(I,Zs, R), which is simple and elegant,
but inefficient to execute. Given Xs,Ys,Zs and assuming left-to-right execution,
append(Xs,Ys, I) constructs from Xs and Ys an intermediate list I which is then
traversed to append Zs to it. We now show how conjunctive partial deduction offers
salvation.

Let S = {append(X, Y, I) ∧ append(I, Z, R), append(X, Y, Z)} and assume that
we construct the finite SLD-tree τ1 depicted in Fig. 7 for the query← append(X, Y, I)∧
append(I, Z,R) as well as a simple tree τ2 with a single unfolding step for ←
append(X, Y, Z), whose resultants are simply the original program P . For τ1 we
get the following resultants:

(R1) append([ ], Y, Y ) ∧ append(Y, Z, R)← append(Y,Z,R)
(R2) append([H|X ′], Y, [H|I ′])∧ append([H|I ′], Z, [H|R′])←

append(X ′, Y, I ′) ∧ append(I ′, Z,R′)
Suppose that we use a partitioning function p which performs no partition-

ing, i.e., p(B) = {B} for all conjunctions B. If we now take an atomic renaming
α for S such that α(append(X, Y, I) ∧ append(I, Z,R)) = da(X, Y, I, Z, R) and
α(append(X, Y, Z)) = append(X, Y, Z) (i.e. the distinct variables have been col-
lected and have been ordered according to their first appearance), then the con-
junctive partial deduction wrt S will contain, in addition to the original program
P (re-created from the resultants of τ2), the following:

(3) da([ ], Y, Y, Z,R)← append(Y, Z, R)
(4) da([H|X ′], Y, [H|I ′], Z, [H|R′]) ← da(X ′, Y, I ′, Z,R′)
Executing G =← append(X, Y, I)∧append(I, Z,R) in the original program leads

to the construction of an intermediate list I by append(X, Y, I), which is then tra-
versed again (consumed) by append(I, Z, R). In the conjunctive partial deduction,
the inefficiency caused by the unnecessary traversal of I is avoided as the elements
encountered while traversing X and Y are stored directly in R. However, the in-
termediate list I is still constructed, and if we are not interested in its value, then
this is an unnecessary overhead. This can be remedied through a post-processing
phase called redundant argument filtering (RAF) presented in [34, 27]. The resulting
specialised program then contains the original append program P as well as:

(3′) da([ ], Y, Z,R)← append(Y, Z, R)
(4′) da([H|X ′], Y, Z, [H|R′])← da(X ′, Y, Z,R′)

The unnecessary variable I, as well as the inefficiencies caused by it, have now been
completely removed; i.e., we have achieved deforestation.

3.3 Diminished Need for Aggressive Local Control

In addition to enabling tupling- and deforestation-like optimisations, conjunctive
partial deduction also solves a problem already raised in [38]. Take for example a
metainterpreter containing the clause solve(X)← exp(X)∧clause(X, B)∧solve(B),



where exp(X) is an expensive test which for some reason cannot be (fully) unfolded.
Here “classical” partial deduction faces an unsolvable dilemma, e.g., when special-
ising solve(s̄), where s̄ is some static data. Either it unfolds clause(s̄, B), thereby
propagating the static data s̄ over to solve(B), but at the cost of duplicating exp(s̄)
and most probably leading to inefficient programs (cf. Ex. 6 in [28]). Or “classi-
cal” partial deduction can stop the unfolding, but then the partial input s̄ can no
longer be exploited inside solve(B) as it will be specialised in isolation. Using con-
junctive partial deduction however, we can be efficient and propagate information
at the same time, simply by stopping unfolding and specialising the conjunction
clause(s̄, B) ∧ solve(B).

In other words, the local control no longer has to be clever about propagat-
ing partial input (s̄) from one atom (clause(s̄, B)) to the other (solve(B)); it can
concentrate solely on efficiency concerns (not duplicating the expensive exp(s̄)).
Conjunctive partial deduction therefore diminishes the need for aggressive unfold-
ing rules (a claim empirically verified in [24, 27]) and allows to reconcile precision
and efficiency.

3.4 Global Control and Implementation

A termination problem specific to conjunctive partial deduction lies in the possible
appearance of ever growing conjunctions at the global level. To cope with this,
abstraction in the context of conjunctive partial deduction must include the ability
to split a conjunction into several parts, thus producing subconjunctions of the
original one (cf. Ex. 6). A method to deal with this problem has been developed in
[17, 9].

Apart from this aspect, the conventional control notions described earlier also
apply in a conjunctive setting. Notably, the concept of characteristic trees can be
generalised to handle conjunctions. The ecce system [26], discussed earlier, has been
extended to handle conjunctive partial deduction and the extensive experiments
conducted in [24, 27] suggest that it was possible to consolidate partial deduction
and unfold/fold program transformation, incorporating most of the power of the
latter while keeping the automatic control and efficiency of the former. There are,
however, still some practical limitations of the ecce system concerning tupling and
deforestation (getting rid of these limitations is a topic of further research, see [24,
27]).

3.5 Conjunctive Partial Deduction and Supercompilation

Partial deduction and related techniques in functional programming are often very
similar [18] (and cross-fertilisation has taken place). Actually, conjunctive partial
deduction has in part been inspired by supercompilation of functional programming
(and by unfold/fold transformation techniques [39]) and the techniques have a lot in
common. However, there are still some subtle differences. Notably, while conjunctive
partial deduction can perform deforestation and tupling, supercompilation [19, 43]
is incapable of achieving tupling. On the other hand, the techniques developed for
tupling of functional programs [5, 6] are incapable of performing deforestation.

The reason for this extra power conferred by conjunctive partial deduction, is
that conjunctions with shared variables can be used both to elegantly represent
nested function calls

f(g(X)) 7→ g(X, ResG) ∧ f(ResG,Res)

as well as tuples

〈f(X), g(X)〉 7→ g(X,ResG) ∧ f(X,ResF )



or any mixture thereof. The former enables deforestation while the latter is vital
for tupling, explaining why conjunctive partial deduction can achieve both.

Let us, however, also note that actually achieving the tupling or deforesta-
tion in a logic programming context can be harder. For instance, in functional
programming we know that for the same function call we always get the same,
unique output. This is often important to achieve tupling, as it allows one to re-
place multiple function calls by a single call. For example we can safely transform
fib(N) + fib(N) into let X = fib(N) in X + X. In the context of logic program-
ming it is, however, generally unsafe to transform the corresponding conjunction
fib(N,R1) ∧ fib(N,R2) ∧ Res is R1 + R2 into fib(N,R) ∧ Res is R + R. If, e.g.,
fib is defined by the facts fib(N, 1) and fib(N, 2) then the first conjunction allows
for three results Res = 2, 3, 4 while the second conjunction only allows Res = 2, 4.
The above transformation is thus generally unsafe, unless we are certain that fib
behaves like a function. Tupling in logic programming thus often requires one to
establish functionality of the involved predicates. This can for instance be done via
the approach presented in the next section or via (correct) user declarations (e.g.,
“:- mode fib(i,o) is determinate.”).

Furthermore, in functional programming function calls cannot fail while predi-
cate calls in logic programming can. This means that reordering calls in logic pro-
gramming can induce a change in the termination behaviour; something which is not
a problem in (pure) functional programming. For instance reordering the conjunc-
tion fail∧loop (where loop is a predicate that does not terminate) into loop∧fail will
change the Prolog termination behaviour: the former conjunction fails finitely while
the latter does not terminate. Unfortunately, reordering is often required to achieve
deforestation or tupling (although it was not required for the examples treated ear-
lier). Let for example r and p be two predicates taking a binary tree as input and
producing a modified tree as output. If we apply conjunctive partial deduction to
r(In, T ) ∧ p(T,Out) we will typically get in the leaf of one of the branches of the
SLD-tree the conjunction r(InL, TL) ∧ r(InR, TR) ∧ p(TL,OutL) ∧ p(TR, OutR)
where InL, TL,OutL (InR, TR,OutR respectively) are the left (right respectively)
subtrees of L, T and Out. To achieve deforestation we need to reorder this conjunc-
tion into r(InL, TL)∧p(TL,OutL)∧r(InR, TR)∧p(TR, OutR) so as to be able to
eventually produce a residual conjunction such as rp(InL,OutL)∧ rp(InR, OutR).
This means that to actually achieve deforestation or tupling in logic programming
one often needs an additional analysis to ensure that termination is preserved [3, 2].

4 Incorporating Abstract Interpretation

The main idea of abstract interpretation [8, 4, 20] is to analyse programs by executing
them over some abstract domain. This is done in such a way as to ensure termination
of the abstract interpretation and to ensure that the so derived results are a safe
approximation of the programs’ concrete runtime behaviour(s).

Abstract interpretation has already been used successfully as a post-processing
optimisation [10, 14, 11] and it is often felt that there is a close relationship between
abstract interpretation and program specialisation. Recently, there has been a lot of
interest in the integration of these two techniques [30, 23, 41, 40, 47, 29, 48]. In this
section we illustrate, on a simple example in the context of logic programming, why
this integration is a worthwhile goal.

Example 8. Take the following simple program:
app last(L,X)← append(L, [a], R) ∧ last(R,X)
append([], L, L)←
append([H|X], Y, [H|Z])← append(X, Y, Z)



last([X], X)←
last([H|T ], X)← last(T,X)

One would hope that some of the specialisation techniques we have seen so
far are sufficiently strong to infer that a query ← app last(L,X) only produces
answers where X = a. Unfortunately, this is not the case. Even more surprisingly,
most abstract interpretation techniques proposed in the literature, such as [22, 15,
37], on their own are incapable of deriving this result.

This is a very simple example where a statically known value (a) is stored (us-
ing append) in an unknown datastructure (L) and then later consulted (using last).
More involved and realistic examples occur in, e.g., interpreters for imperative lan-
guages (where variable bindings are stored in some environment and then later
consulted again) or explicit unification algorithms. Not being able to solve Ex. 8
means that any value stored in some (partially) unknown datastructure is lost for
successive specialisation. This limitation is thus very regrettable for a lot of practical
applications.

?

← app last(L, X)

← append(L, [a], R), last(R, X)

? ?
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← append(L′, [a], R′), last(R′, X)2

← append(L, [a], R), last(R, X)

← last([a], X) ← append(L′, [a], R′), last([H|R′], X)

Fig. 8. SLD-trees for Ex. 8

The reason why most abstract interpretation techniques are incapable of solving
Ex. 8 is that they analyse atoms separately. In this program (and many, much more
relevant others), we are interested in analysing the conjunction append(L, [a], R) ∧
last(R,X) with a linking intermediate variable (whose structure is too complex for
the particular abstract domain). If we could consider this conjunction as a basic
unit, and therefore not perform abstraction on the separate atoms, but only on
conjunctions of the involved atoms, we would retain a precise side-ways information
passing analysis. This is exactly what can be achieved by combining the abstract
interpretation with conjunctive partial deduction (the latter can also propagate goal
dependent information).

Let us illustrate how conjunctive partial deduction combined with a simple ab-
stract interpretation technique from [36] does solve Ex. 8. Starting from the atom
app last(X) and using straightforward control for conjunctive partial deduction
[24], we can obtain S = { app last(X), append(L, [a], R) ∧ last(R,X) } and the
corresponding SLD-trees in Fig. 8.

Using a renaming transformation based on α(append(x, y, z) ∧ last(z, u)) =
al(x, y, z, u) the resulting transformed program is:



app last(L,X)← al(L, [a], R, X)
al([], [a], [a], a)←
al([H|L′], [a], [H|R′], X)← al(L′, [a], R′, X)

Notice that conjunctive partial deduction alone does not yet produce the desired
result (X is not instantiated to a in the first clause). This is due to a lack of inference
of global success information, i.e., being unable to extract information from an
infinite number of different computation paths. If the length of the list L were
given, then (conjunctive) partial deduction could obtain the desired result simply
by unfolding. Here, however, the length of L is unknown, and an infinite number of
unfoldings would be required. It is here that abstract interpretation comes to the
rescue, as it can infer information about an infinite number of different computation
paths. One way [36] this can be done, is by examining the above program bottom-up:

1. Start by assuming that every call fails: we approximate the success set (i.e.,
those atoms that succeed) by S1 = ∅ and set i = 1.

2. Unify every atom in the body of a clause with an element of Si and instantiate
the head accordingly. Put the so obtained heads into Si+1.

3. Apply the msg predicatewise to Si+1 and stop if Si+1 = Si; otherwise increment
i and goto step 2.

Performing these steps on our residual program, we obtain the following scenario.
First we unify the body atoms with elements of S1 = ∅:

app last(L,X)← fail
al([], [a], [a], a)←
al([H|L′], [a], [H|R′], X)← fail

Examining each clause we get as second approximation of the success set S2 =
{al([], [a], [a], a)}. Unifying the body atoms with elements of S2 gives:

app last([], a)← al([], [a], [a], a)
al([], [a], [a], a)←
al([H], [a], [H, a], a)← al([], [a], [a], a)

We thus get as third approximation of the success set S3 = {al([], [a], [a], a), al([H], [a], [H, a], a),
app last([], a)}. To ensure termination we apply the msg predicate-wise and obtain
S3 = {al(X, [a], Y, a), app last([], a)}. Unifying the body atoms with elements of S3

gives:

app last([], a)← al([], [a], R, a)
al([], [a], [a], a)←
al([H|L′], [a], [H|R′], a)← al(L′, [a], R′, a)

At the next step we obtain S4 = {al(X, [a], Y, a), app last(L, a)} as well as the
instantiated program P4:

app last(L, a)← al(L, [a], R, a)
al([], [a], [a], a)←
al([H|L′], [a], [H|R′], a)← al(L′, [a], R′, a)

We now obtain S5 = S4 and our abstract interpretation is complete. This residual
program P4 now explicitly contains the information that X = a in app last(L,X).
According to the results in [36] we can actually use this program in place of the
original residual program delivered by conjunctive partial deduction (computed an-
swers and finite failure is preserved; however, infinite failure might be replaced by
finite one).

Note, that the above technique fails to deliver this information when applied
to the original program, even after a magic-set transformation (see [30, 27]). Via



filtering and redundant argument filtering (cf. Section 3.2) we can even further
simplify this into the “optimal”2 program:

app last(L, a)← al(L)
al([])←
al([H|L′])← al(L′)

In addition to the already stated applications, the combination of conjunctive
partial deduction and abstract interpretation is an elegant way to infer functionality
of predicates [30, 27], perform some basic inductive theorem proving tasks3 [30, 27],
sophisticated program inversion tasks, as well as software verification tasks such as
model checking. For further details, comprising algorithms and technical results, we
refer to [30, 27, 29].

5 Conclusion and Outlook

In Section 2 we have investigated the problematic question of when is it sensible
to generate different specialised versions for a particular predicate and when is it
sensible to perform abstraction instead. For this recurring, difficult problem, termed
the control of polyvariance problem, we presented the advantages of characteristic
trees over a purely syntactic approach. We thereafter illustrated some of the tech-
nical difficulties of using characteristic trees in practice, related to precision and
termination, and have shown how they can be overcome.

The control of polyvariance problem occurs in different disguises in many areas
of program analysis, manipulation and optimisation. We therefore believe that the
presented techniques can be adapted for other (declarative) programming paradigms
and that they might prove equally useful in the context of, e.g., abstract interpre-
tation systems or optimising compilers.

Section 3 was aimed at augmenting the power of partial deduction. Indeed,
partial deduction was heretofore incapable of performing certain useful unfold/fold
transformations, like tupling or deforestation. We presented the framework of con-
junctive partial deduction which, by specialising conjunctions instead of individual
atoms, is able to accommodate these optimisations. Deforestation and tupling like
transformation are useful even in the absence of partial input. This warrants the in-
tegration of the presented techniques into a compiler, as their systematic use might
prove to be highly beneficial and allow users to more easily decompose and combine
procedures and programs without having to worry about the ensuing inefficiencies.

In Section 4 we illustrated that abstract interpretation and (conjunctive) partial
deduction have limitations on their own and that a combination of these techniques
might therefore be extremely useful in practice. We have illustrated how this can
be accomplished on a simple example and have hinted at the benefits of such an
integration for practical applications.
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2 In the absence of type information we have to keep the call to al(L), ensuring that we
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been raised several times in the literature [45, 16, 46].
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