
ProB: A Model Checker for B

Michael Leuschel and Michael Butler

Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{mal,mjb}@ecs.soton.ac.uk

Abstract. We present ProB, an animation and model checking tool
for the B method. ProB’s animation facilities allow users to gain con-
fidence in their specifications, and unlike the animator provided by the
B-Toolkit, the user does not have to guess the right values for the opera-
tion arguments or choice variables. ProB contains a model checker and
a constraint-based checker, both of which can be used to detect various
errors in B specifications. We present our first experiences in using ProB
on several case studies, highlighting that ProB enables users to uncover
errors that are not easily discovered by existing tools.
Keywords: B-Method, Tool Support, Model Checking, Animation,Logic
Programming, Constraints.

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in a
range of critical domains, most notably railway control.

B is based on the notion of abstract machine and the notion of refinement.
The variables of an abstract machine are typed using set theoretic constructs
such as sets, relations and functions. Typically these are constructed from basic
types such as integers and given types from the problem domain (e.g., Name,
User, Session, etc). The invariant of a machine is specified using predicate logic.
Operations of a machine are specified as generalised substitutions, which allow
deterministic and nondeterministic assignments to be specified. In B refinement,
a machine may be refined by another machine in which the state is represented
by data structures that are more concrete and/or in which operations are more
deterministic and imperative.

There are two main proof activities in B: consistency checking, which is used
to show that the operations of a machine preserve the invariant, and refinement
checking, which is used to show that one machine is a valid refinement of another.
A refinement that is at a sufficiently low level can be translated into code. These
activities are supported by industrial strength tools, such as Atelier-B [33] and
the B-toolkit [4]. A B-tool generates a list of predicate logic proof obligations
(POs). If each of these POs is proved, then the machine is consistent (or a
correct refinement in the case of refinement checking). The B-tools have an
automatic prover and an interactive prover. Typically the more complex POs

are not proved automatically and need to be proved interactively. The tools also
provide automatic translation of low level B specifications into executable code.

The ProB tool introduced in this paper currently supports automated con-
sistency checking of B machines via model checking [12]. For exhaustive model
checking, the given sets must be restricted to small finite sets, and integer vari-
ables must be restricted to small numeric ranges. This allows the checking to
traverse all the reachable states of the machine. ProB can also be used non-
exhaustively to explore the state space and find potential problems. The user
can set an upper bound on the number of states to be traversed or can interrupt
the checking at any stage. ProB will generate and graphically display counter-
examples when it discovers a violation of the invariant. ProB detects attempts
to evaluate undefined expressions, such as the application of a partial function
to arguments outside its domain. ProB can also be used as an animator of B
specifications. So, the model checking facilities are still useful for infinite state
machines, not for verification, but for sophisticated debugging and testing.

ProB also offers an alternative checking method, inspired by the alloy [18,
19] analyzer. In this mode of operation, ProB does not explore the reachable
states starting from the initial state(s), but checks whether applying an individ-
ual operation can result in an invariant violation, independently of the particular
initialization of the B machine. This is done by symbolic constraint solving, and
we call this approach constraint-based checking (another sensible name would be
model finding).
Possible applications of ProB: For finite state B machines it may be possi-
ble to use ProB for proving consistency without user intervention (cf. our case
study in Sect. 8). However, we believe that ProB will be more useful as a com-
plement to the current tools. Indeed, the interactive proof process with Atelier-B
or the B-Toolkit can be quite time consuming: a typical development involves
going through several levels of refinement to code generation before attempting
any interactive proof [22]. This is to avoid the expense of reproving POs as the
specification and refinements change in order to arrive at a satisfactory imple-
mentation. We therefore see one of the main uses of ProB as a complement to
interactive proof, in that some errors will be discovered earlier in the develop-
ment cycle and also that there will be less effort wasted by users trying to prove
incorrect POs. We also believe that ProB will be very useful in teaching B, and
making B more accessible to new users. Finally, even for experienced B users
ProB may unveil problems in a specification that are not easily discovered by
existing tools.

We proceed with an illustration of the use of ProB before continuing to
describe its design.

2 Using ProB

ProB provides two ways of discovering whether a machine violates its invariant:

1. it can find a sequence of operations that, starting from a valid initial state
of the machine, navigates the machine into a state in which the invariant

MACHINE Lift
VARIABLES floor
INVARIANT floor : 0..99
INITIALISATION floor := 4
OPERATIONS

inc = PRE floor<99 THEN floor := floor + 1 END ;
dec = BEGIN floor := floor - 1 END

END

Fig. 1. Lift example in B

is violated. Trying to find such a sequence of operations is the task of the
ProB (temporal) model checker.

2. it can construct a state of the machine which satisfies the invariant, but
from which we can apply a single operation to reach a state which violates
the invariant. Finding such states is the task of the ProB constraint-based
checker.

Let us examine how these approaches work on a simple example. Figure 1
presents a very simple B specification of a lift, which has an operation inc to go
up one floor, and an operation dec to go down one floor.

This B machine does not preserve its invariant and Fig. 2 presents two
counter-examples found by ProB. The left one (a) is produced by the model
checker and shows that it is possible to reach a state where the invariant is vio-
lated, i.e., the floor variable becomes negative. (Usually ProB will only display
the sequence of operations and states that lead to an invariant violation, but for
Fig. 2 we have used ProB to display all the states that were explored until the
invariant violation was found.) The right one (b) is produced by the constraint-
based checker, which has constructed a before state floor = 0 and found the
operation dec which applied to that state yields an invariant violation in the af-
ter state. Note that in this case there is no guarantee that the constructed before
state is actually reachable from the initial state(s), although in this particular
example it is. Also note that the constraint-based checker can determine that
the inc operation will never introduce an invariant violation on its own. Finally,
the constraint-based checker can also be used to find abort conditions, and the
model checker can be used to both detect abort conditions and deadlocks.

3 Brief Overview of the System

The ProB system has been developed mainly in SICStus Prolog, with a graph-
ical user interface implemented in Tcl/Tk. An overview of ProB’s main com-
ponents can be found in Fig. 3.

The first implementation problem to be overcome is the translation of spec-
ifications written in B abstract machine notation (AMN) [1] into a notation
convenient for interpretation within Prolog. ProB uses the JBTools package
developed by Tatibouet [34] and the Pillow package [10] to that effect. The
JBTools package permits translation of AMN specifications into XML, while

floor=4

initialise_machine

floor=5

inc

floor=3

decdec

floor=6

inc

inc

floor=2

decdec

floor=7

inc

inc

floor=1

decdec

floor=8

inc dec

floor=9

inc dec

floor=10

inc

inc

floor=0

dec

dec

inc

floor=-1

dec inc

(a)

floor=0

floor=-1

dec

(b)

Fig. 2. Counter-examples for the Lift Machine

the Pillow package allows the conversion of XML files into a Prolog term rep-
resentation. The ProB front end then postprocesses the general Prolog term
tree representation of the Pillow library output into a more structured represen-
tation which will serve as the input to the interpreter. The ProB interpreter
recurses through this structured representation of B machines and makes call to
the ProB kernel, which provides support for the basic datatypes and operations
of the B-language. The ProB kernel itself is written in SICStus Prolog with co-
routining and constraints. The ProB animator and the two model checkers all
make use of the ProB interpreter in various ways, as will be explained later in
the paper.

B Machine
(in AMN) jbtools XML

ProB Front End
(using Pillow)

Prolog
Encoding

ProB
Interpreter

ProB
B-Kernel

ProB
Animator

ProB
Temporal

Model checker

ProB
State-Based

Model checker

Fig. 3. Overview of the ProB System

4 The ProB Kernel and Interpreter

The ProB Interpreter The ProB interpreter is written in a structured oper-
ational semantics [28] (SOS) style. More precisely, given a description σ1 of the
state of a B machine, we describe which operations (and with which argument
values) can be applied in σ1 and which new states can be reached by perform-
ing those operations. For this, the constructs of B were divided into three main
classes:

1. statements which modify the variables of a B machine,
2. expressions which do not modify the variables but return values, and
3. boolean expressions, called predicates in B, which are expressions which re-

turn either true or false.

To manipulate these constructs the ProB interpreter provides Prolog predi-
cates1 to execute statements, compute expressions, and test boolean expressions.
Each one of these predicate has access to the global state of the machine (the
state of the variables of a machine) and a local state which contains the values
for local variables and parameters of operations. In order to manipulate B’s ba-
sic datastructures and operators, the ProB interpreter calls the ProB kernel,
which we discuss later.
1 Note that there is a potential confusion concerning the use of the word “predicate” in

B and in Prolog. From now on, when we use the term predicate, we mean a predicate
in our Prolog implementation and not a boolean expression in a B machine.

Here is a very small part of the interpreter that tests boolean expressions,
responsible for handling the logical connectives “and” and “or”:

b_test_boolean_expression(’And’(_,[LHS,RHS]), LocalState,State) :-

b_test_boolean_expression(LHS,LocalState,State),

b_test_boolean_expression(RHS,LocalState,State).

b_test_boolean_expression(’Or’(_,[LHS,RHS]), LocalState,State) :-

(b_test_boolean_expression(LHS,LocalState,State) ; /* or */

(b_not_test_boolean_expression(LHS,LocalState,State),

b_test_boolean_expression(RHS,LocalState,State)))

The first argument of the predicate is the boolean expression to be tested.2

The second argument (LocalState) of the predicate b_test_boolean_expression

contains the values of all variables local to an operation, i.e., the choice variables
from Any statements and the operation’s arguments. The third argument (State)
contains the values of all “global” variables of the B machine under considera-
tion. The b_test_boolean_expression predicate also has a counterpart, which is
called b_not_test_boolean_expression and is used to check whether a boolean
expression evaluates to false. This is required, as Prolog’s built-in negation is
not sound in general.

While it is clearly difficult to cover the vast syntax of B, the code of the ProB
interpreter is relatively simple. The reason is that the ProB kernel is very flexible
and “hides” a lot of the complexities of B from the ProB interpreter. In fact,
while the ProB interpreter is written in classical Prolog the ProB kernel uses
advanced features of Prolog, such as co-routining and constraints. We discuss the
ProB kernel in more detail below. Also, because of Prolog’s support for non-
determinism it was not too difficult to support non-deterministic operations.

The ProB Kernel First, let us see how some of B’s datastructures are actually
encoded by the ProB Kernel:

B Type B value Prolog encoding
number 5 int(5)
boolean true term(true)

element of a finite set S C fd(3,’S’)
pair (2,5) (int(2),int(5))

sequence [2, 5] cons(int(2),cons(int(5),nil))
set {2, 5} [int(2), int(5)]

As you can see, sets are represented by Prolog lists.3 The Prolog term
fd(3,’S’) means that we are dealing with the third constant of the given set
S. So if S is defined within the B machine by S = {A,B,C, D} then fd(3,’S’)

denotes the constant C. There is also a special symbol abort reserved to indicate
that an abort condition occurred while trying to compute this value. Also note

2 This expression also contains some XML layout information, e.g., in the first argu-
ment of the ’And’ symbol, which is ignored by the interpreter.

3 To be able to detect typing errors, B lists are not represented as standard Prolog
lists but use the special cons symbol instead.

that the above types can in principle be arbitrarily nested, e.g., we may have
sets of sets of sequences of pairs.

There is nothing special about this mapping from B to Prolog, and one may
wonder where the difficulties in writing an interpreter lie. To highlight these
difficulties, let us examine the following non-deterministic B operation, that
finds a symmetric partial function on a finite set Name:

cc <-- symmetric = ANY nn WHERE nn = nn~ & nn: Name +-> Name

THEN cc := nn END;

Now, when the ProB interpreter reaches the construct nn = nn~ it does not
yet have any information about nn. This will only be provided “later” when
interpreting the construct nn: Name +> Name. When writing an interpreter for a
“classical” programming language things are much simpler: within a statement
we typically would know the type and value of any variable. But in B this is
not the case, and the value of a variable might depend on many constraints,
some of which may not yet have been encountered by the ProB interpreter.
We have overcome this problem by using the co-routining facilities of SICStus
Prolog, which allow one to suspend goals until sufficient information is available
to evaluate them. For example, the inversion operator ~ is implemented by a
binary Prolog predicate invert_relation, which will automatically suspend until
enough information is available. This is done as follows:

invert_relation(R,IR) :- when((nonvar(R);nonvar(IR)),inv_rel2(R,IR)).

inv_rel2([],[]).

inv_rel2([(X,Y)|T],[(Y,X)|IT]) :-

when((nonvar(T);nonvar(IT)),inv_rel2(T,IT)).

The when co-routining predicate will suspend until its first argument becomes
true, in which case it will then call its second argument. From a logical point of
view, the when declarations can be ignored, as they are just annotations guiding
the Prolog execution engine; they do not change the logical meaning of a Prolog
program.

The co-routining has made the invert_relation much more robust and
usable. As the following two queries show, it can now handle information that is
incrementally provided about its arguments (both of these queries would have
looped without the when declarations):

| ?- invert_relation(R,R), R=[(int(1),int(2))].

no

| ?- findall(R,(invert_relation(R,R), R=[(X,int(2))]),Answers).

Answers = [[(int(2),int(2))]] ?

yes

When the ProB interpreter encounters the expression nn = nn~ in the above
B operation symmetric, it would basically call the ProB kernel as follows:
invert_relation(NN,InvN),equal_object(NN,InvN).4 Now, the ProB kernel will
4 One has to use ProB’s equal object predicate instead of Prolog unification because

the same B set can be represented by different Prolog lists.

not compute any value for the variable NN, it will simply suspend and wait for
NN to be further instantiated. So, how does ProB get concrete values for the
ANY statement?

To understand this, we have to examine how the kernel treats the expression
nn: Name +> Name. In fact, any global set of the B machine, such as Name, will be
mapped to a finite domain within SICStus Prolog’s CLP(FD) constraint solver
[11]. A finite domain within CLP(FD) is a finite set of integers, typically an
interval. CLP(FD) provides a wide variety of constraints that can be expressed
on such domains, and it provides a way of enumerating all concrete solutions
(called labeling).

For example, supposing that Name is mapped to the finite domain {1, 2}, the
expression n: Name will be mapped to the SICStus Prolog code N = fd(C,’Name’),

C in 1..2, where C in 1..2 is a CLP(FD) constraint.
To force the enumeration of concrete values and thus force the execution of

suspended goals we use CLP(FD)’s labeling operation.5 Note that this enumer-
ation is only used as a last resort: sometimes operations can be fully evaluated
without having to enumerate at all.

Note, for our approach to work we have to be sure that we will not generate
infinitely many solutions or candidate solutions for an ANY statement. This is
achieved by requiring that every choice variable of an ANY statement is given
a finite type. For example, ANY x WHERE x:NAT THEN is not supported by ProB.
However, the above operation symmetric is supported by ProB, and all possible
symmetric partial functions over Name will be generated by the interpreter.

5 The ProB Animator

The ProB animator was developed using the Tcl/Tk library of SICStus Pro-
log 3.10. The user interface was inspired by the arc tool [17] for system level
architecture modelling and builds upon our earlier animator for CSP [23].

Our animator supports (backtrackable) step-by-step animation of B-machines,
and supports non-deterministic operations. As can be seen in Fig. 4 it presents
the user with a description of the current state of the machine, the history that
has led the user to reach the current state, and a list of all the enabled ope-
rations, along with proper argument instantiations. Thus, unlike the animator
provided by the B-Toolkit, the user does not have to guess the right values for
the operation arguments. The same holds for choice variables in ANY statements,
the user does not have to find values which satisfy the ANY statement. If the
number of enabled operations becomes larger, one could envisage a more refined
interface were not all options are immediately displayed to the user.

To extract all possible values for operation inputs and choice variables from
the ProB interpreter, the ProB animator uses Prolog’s findall construct to-
gether with the CLP(FD) labelling operation. For this to work properly, we re-

5 For more complicated types we may actually have to use the hypercall primitive
discussed later in Sect. 6.

Fig. 4. Animation of the E-Travel Agency Case Study (c.f., Sect. 8)

quire that all operation arguments are mapped finite types. For example, while
it is admissible to have an operation:

add(nn) = PRE nn:0..10 THEN n := n +nn END

it is not allowed to have untyped or unbounded operation arguments, such as:

addinf(nn) = PRE nn:NAT THEN n := n +nn END

The same holds for set assignments, i.e., it is allowed to use x:: BOOL but
it is not allowed to use x::NAT. However, it would be possible to extend the
animator so that it allowed such constructs, but only provided values up to a
certain limit.

The ProB animator also provides visualization of the state space that has
been explored so far, and provides visual feedback on which states have been fully
explored and which ones are still “open.” One can also find the shortest trace

(given the state space explored so far) to the current state. For the visualization
we make use of the dot tool of the graphviz package [3].

Another noteworthy feature of the animator is its ability to perform symbolic
animation as well as concrete, ordinary animation. This allows a user to trace
a B-machine symbolically, without providing actual values for the parameters;
the animator will set up constraints which the parameters have to satisfy (and
checks whether concrete values exist which satisfy the constraints). This enables
a symbolic exploration of the state space, but the user can at any time force the
animator to provide concrete values. In some cases the symbolic exploration will
result in a much smaller state space.

6 Consistency Checking in ProB

As we have seen in Sect. 2, ProB provides two ways of consistency checking:
1. a model checking which tries to find a sequence of operations that, starting
from an initial state, leads to a state which violates the invariant (or exhibits
some other error, such as deadlocking or abort conditions); and 2. a constraint-
based checking, which finds a state of the machine that satisfies the invariant,
but where we can apply a single operation to reach a state that violates the
invariant (or again exhibits some other error).

Suppose that we have a B-machine with an incorrect invariant. In such a case
proving the verification conditions will be impossible, but might not necessarily
give the user feedback on why the machine is incorrect; it could even be correct
but just very hard to prove.

If the model checker finds a counter-example then there is clearly a problem: a
sequence of operations will lead from a valid initial state to an invariant violation,
and the B machine has to be corrected. Now, if the constraint-based checker finds
a counter-example then, even though the invariant violation may not reachable
from a valid initial state, we also have a problem as at least one B verification
condition will be wrong (i.e., in logical terms there is a model which makes the
formula false), and we will never be able to prove the machine correct using
the B proof rules. Take a look at the machine in Fig. 5. There is no sequence
of operations that will lead to n = 2, but we can find the state n = 1 which
satisfies the invariant and after applying inc we obtain the state n = 2 which
violates the invariant.

MACHINE counter
VARIABLES n
INVARIANT n : 0..10 & n /= 2
INITIALISATION n := 3
OPERATIONS

inc = PRE n<10 THEN n := n + 1 END
END

Fig. 5. A simple counter machine with an error

From an implementation point of view, the model checking approach is sim-
pler as every single state is clearly determined, and we can use our ProB in-
terpreter to compute all possible successor states of any given state, and then
perform a search on the right sequence of operations.

For the constraint-based approach things are more complicated. Indeed, even
though we know there is only a single operation to apply, we initially have little
information about the state of the B machine under consideration. One could
of course try to enumerate all possible states of a B-machine, and then call the
ProB interpreter to check whether any given state satisfies the invariant, and
if it does call the ProB interpreter to compute and check the successor states.
However, this will be highly inefficient and even very small machines will not be
checkable in this way. To overcome this problem we have developed a symbolic
approach, which makes use of Prolog’s co-routining and constraint facilities.

Below, we present these two components of ProB in more detail. In Sect. 8,
we will then show how we have successfully applied these components to verify
various non-trivial machines.

Temporal Model Checking By manually exploring a B-machine it is possible
to discover problems with a machine, such as invariant violations or even dead-
locks (states where no operation is applicable). We have implemented a model
checker which will do this exploration systematically and automatically. It will
alert the user as soon as a problem has been found, and will then present the
shortest trace (within currently explored states) that leads from an initial state
to the error. The model checker will also detect when all states have been ex-
plored, and can thus also be used to formally guarantee the absence of errors.
This will obviously only happen if the state space is finite, but the model checker
can also be applied to B machines with infinite state spaces and will then explore
the state space until it finds an error or runs out of memory.

To detect whether a given state has already been explored, we implemented
a normalisation procedure for states. Because the temporal property we need to
check (i.e., all reachable states satisfy the invariant) is a safety property [12] a
relatively simple, but liberal exploration algorithm can be used. Our exploration
is an adaptation of the A* algorithm with cycle detection, and can be tuned to
perform in the extreme cases as either a depth-first or breadth-first exploration.
In the default setting of ProB, every new node has a 25% chance of being
treated in a depth-first manner, which turned out to be a good compromise in our
experiments: pure depth-first search employed by many model checkers is often
very bad at finding even very short counter-examples (and is not guaranteed to
find counter-examples present in infinite state systems), whereas pure breadth-
first is bad at finding long counter-examples.

The visited states are stored in Prolog’s clause database. While this is not as
efficient as for example tabling6, it allows the model checking state to be easily
6 A tabled logic programming systems such as XSB [31] provides very efficient datas-

tructures and algorithms to tabulate calls, i.e., it remembers which calls it has already
encountered. This can be used to write very efficient model checkers [29, 26].

queried (e.g., for visualization) and saved to file. Anyway, for a formalism as
involved as B, most of the model checking time will be spent computing new
states and the time needed to look up whether a given state has already been
encountered is probably insignificant.

Constraint-Based Checking We achieved the constraint-based checking by
delaying the state enumeration as long as possible. The idea is to first set up
constraints which assert that the first state of the B-machine under consideration
satisfies the invariant. We then apply an operation and set up constraints which
assert that the invariant is no longer satisfied in the after state. In ProB this is
done by the following code:7

constraint_check(OpName,State,Operation,NewState) :-

b_extract_types_and_invariant(Variables,VarTypes,Invariant),

b_set_up_variable_types(Variables,VarTypes,State),

b_set_up_variable_types(Variables,VarTypes,NewState),

b_test_boolean_expression(Invariant,[],State),

b_not_test_boolean_expression(Invariant,[],NewState),

b_execute_operation(OpName,Operation,State,NewState,_Abort).

Calling constraint check will involve no enumeration and thus no search,
and may still discard a big part of the search space by partially instantiating
variables and arguments. However, calling constraint check on its own will not
yet give us any counter-example, as many of the predicates it calls will suspend.

To extract solutions from constraint check, we have developed a new Pro-
log built-in, the so-called hypercall primitive. This primitive takes its argument,
executes it until only suspended goals remain, applies the CLP(FD) labeling ope-
ration, and then selects one of the suspended goals for a single expansion step. It
then repeats the same procedure until there are no more suspended goals. For ex-
ample, while calling invert relation(R,R) from Sect. 4 will suspend and not
give any information about R, hypercall(invert relation(R,R)) will enu-
merate all possible solutions for R. The ProB constraint-based checking is then
simply achieved by calling hypercall(constraint check(opname,S,Op,NS)).
If we manage to find a solution for this query, we have uncovered a counter-
example to the B machine’s invariant.

Which checker to use? A user could run either or both of our model checkers
before attempting to prove a certain B-machine correct using existing B-tools.
If our model checking tool uncovers a counter-example it is clear that proving
it will be in vain. Not only have we spared the user a lot of effort, the user also
has a counter-example at his or her disposal which will hopefully make it easier
to correct the B-machine’s specification.

7 Observe that the variables in the after state NewState are given correct types by
b set up variable types, ensuring a finite search space. We suppose that invariant
violations due to type errors will be caught by a standard B type checker.

An obvious question is, when would one prefer using one approach over the
other. In general, the temporal model checking approach will be more efficient,
simply due to the fact that the underlying machinery is simpler and the induced
overhead is smaller. However, constraint-based checking can still be more efficient
for some applications, especially as we can focus on checking a single operation.
This can be especially useful in circumstances where one has modified or added
a single operation of a (previously verified) big machine. Also, constraint-based
checking can proceed even if the initialisation operation is too restrictive or too
expensive to perform exhaustively (e.g., if the initialisation chooses any state that
satisfies the invariant). Finally, we believe that the constraint-based checking is
easier to parallelise; something which we intend to exploit in future research.

7 Relationship with the Classical B Proof Method

In this section we outline how exhaustive temporal checking of a (finite) B ma-
chine entails standard B consistency. Consistency in B is defined by treating
statements as predicate transformers. For statement S, and postcondition P ,
[S]P represents the weakest precondition under which S, if it is enabled, is guar-
anteed to terminate in a state satisfying postcondition P . A machine is said to
be consistent wrt an invariant I provided for each operation Si of the machine8:

I =⇒ [Si]I

Often an invariant I ′ which is stronger than I needs to be found (by adding
conjuncts to I) so that

I ′ =⇒ I and I ′ =⇒ [Si]I ′

A successful exhaustive temporal model check computes the set of reachable
states R and will have checked that all of those states satisfy the invariant I.
This set of reachable states R corresponds to a stronger invariant I ′ above.

To show the formal correspondence between the consistency checking and
exhaustive temporal checking, we make use of the set theoretic model of B which
is defined in [1]. In this model, the state space of a machine is defined as the
cartesian product of the types of each of the machine variables. Given a statement
S, pre(S) represents the set of states satisfying the precondition of S, while rel(S)
is the binary relation corresponding to the statement relating before states to
after states. The set transformer model of a statement, str(S), is a function from
sets of after states to sets of before states, modelling the way in which a predicate
transformer maps postconditions to preconditions. Given a set of after states q,
we have [1]:

str(S)(q) = pre(S) ∩ rel(S)−1[q]
8 The initialisation of a machine must also establish the invariant. Also, in standard B,

the outermost precondition of an operation also appears as an antecedent to the proof
obligation. This is equivalent to treating it as a guard rather than a precondition.
Here we assume that the outermost precondition is included in Si as a guard. ProB
also treats the outermost precondition as a guard.

Here R[s] is the relation image of set s under relation R, and s is the complement
of set s. Writing I to represent the set of states satisfying the invariant, the proof
obligation for consistency is characterised in the set transformer model as

I ⊆ str(S)(I)

It is relatively straightforward to show, by structural induction over the state-
ment constructs, that the Prolog interpretation of a statement S used in ProB
corresponds to rel(S). A successful exhaustive temporal model check on a ma-
chine with invariant (set) I computes a set of reachable states R which is a
subset of I, satisfying the following properties for each operation Si:

R ⊆ pre(Si)
rel(Si)[R] ⊆ R

From this, it is straightforward to prove that the machine is consistent wrt
invariant set R, i.e., that for each operation i:

R ⊆ str(Si)(R)

8 Applications and Case Studies

Volvo Vehicle Function We have tried our tool on a case study performed at
Volvo on a typical vehicle function. The largest B machine had 15 variables, 550
lines of B specification, and 26 operations. This B specification was developed
by Volvo as part of the European Commission IST Project PUSSEE (IST-2000-
30103, http://www.keesda.com/pussee/).

We have first used ProB to animate the B machine, which worked very well.
The machine was already finite state (apart from an auxiliary natural number
variable which was used to make proofs possible). We have then used ProB
to verify the B-machine using the temporal model checker. ProB managed to
explore the entire state space of the B-machine in a few minutes, covering 1360
states and 25696 transitions, thereby proving the absence of invariant violations
and deadlocks. However, ProB managed to identify a slight anomaly in the B
machines behaviour: a crucial operation was only enabled in 8 of the 1360 states.
This shows that ProB might be used to identify problems that would otherwise
only emerge at implementation time.

To better test the model checkers, we have also injected a subtle fault into
the specification, which both the temporal and the constraint-based checker
managed to unveil fully automatically within a couple of minutes.
Discussion on efficiency: Exploring 1360 states and 25696 transitions within
a few minutes on a 1Ghz Powerbook G4 might seem slow compared to “classical”
model checking using tools such as SMV or SPIN. Note, however, that ProB has
not yet been tuned for speed. More importantly, the input language (B) is here
of a much higher level, that every state contains information about 15 variables
and that computing successor states for B is a quite expensive operation in itself

(especially when ANY statements are involved, as they were for this example).
Indeed, recent experiences show that a model checker in Prolog need not be
much slower than tools such as SPIN, while being able to handle problems of
similar size and allowing one to more easily check high-level languages [27].

E-TravelAgency Within our ABCD9 project we have developed various B
models for a distributed online travel agency, through which users can make hotel
and car rental bookings. The models were developed jointly with a Java/JSP
implementation. The B model contains about 6 pages of B and, as can be seen in
Fig. 4, has 11 variables with non-trivial types. Attempting to check consistency
of the ETravelAgency using Atelier-B resulted in a total of 206 POs. 156 of
these were proved automatically by the Aterlier-B autoprover (75%), leaving 50
POs to be proved interactively.

ProB was very useful in the development of the specification, and was able to
animate all of our models (see Fig. 4). The ProB model checker also discovered
several invariant violations, e.g., related to incorrect responses or illegal multiple
bookings. It was also able to discover a deadlock in one of the models, which
was due to the fact that “session identifiers” were not properly recycled, meaning
that after a while no new customers could log into the system. Such an error
would have been more difficult to uncover within Atelier-B or the B-Toolkit.

9 Discussions

Scaling We have already applied ProB on reasonably sized, industrial exam-
ples. Still, a big question is: how well will ProB scale for even larger specifica-
tions. First, concerning the animation, we do not believe that the size of the B
machine and the number of the B machine’s variables are an important factor.
We conjecture that ProB should be able to handle B machines with hundreds
of operations and thousands of variables. Of course, there will be a user inter-
face issue on how to display a large number of variables and options (e.g., a
hierarchical view of enabled operations and of the state space could be added to
Fig. 4), but there should not be an intrinsic computational problem. Indeed, to
prove this point we have constructed several artificial specifications (the largest
one having 240 operations, 80 variables of type partial function, 80 conditions
in the invariant) and have been able to successfully animate them.

The limiting factor of animating B, will be more the complexity of the ANY
statements and the complexity of the datastructures that are passed as operation
arguments. The latter will probably be less of a problem, as arguments typically
have to be “B0 typed” in order for machines to be implementable (as arguments
cannot be refined). However, a single ANY statement with a very large domain
(e.g., Fermat’s last theorem on a large domain) could break the animator. The

9 “Automated validation of Business Critical systems using Component-based Design,”
EPSRC grant GR/M91013.

same would be an ANY statement involving say a search over a function satisfying
a certain property: ANY fun WHERE fun = ~fun & fun: 0..100 +-> 0.100 THEN.

It is well known that due to the state space explosion problem, model checking
does not scale easily to large systems. Manual abstractions are still the key in
many successful applications of model checking to larger examples. The same will
be true here, at least if one wants to exhaustively explore the state space. ProB
can still be used non-exhaustively to explore the state space and find potential
problems. So, the model checking operations can still be useful for very large
machines, not as a verification tool but as a sophisticated debugging tool.

Related Work We are not the first to realise the potential of logic program-
ming for animation and/or verification of specifications. See for example [7],
where an animator for VERILOG is developed in Prolog, or [5] where Petri
nets are mapped to CLP. Also, the model checking system xmc contains an
interpreter for value-passing CCS [29, 13]. A logic programming approach to en-
code denotational semantics specifications was applied in [21] to verify an Ada
implementation of the “Bay Area Rapid Transit” controller.

Probably the most strongly related work is [6, 2], which uses a special pur-
pose constraint solver over sets (CLPS) to animate B and Z specifications using
the so-called BZ-Testing-Tools. Unfortunately we were not able to get hold of
either CLPS or of the B-tool built on top of it, hence we cannot perform a de-
tailed comparison of the animation facilities of ProB and the BZ-Testing-Tools.
Indeed, our own B-Kernel, can be viewed as constraint solver over finite sets
and sequences (it seems that sequences are not yet supported by [2]). At a
higher level, [6, 2] put a lot of stress on animation and test-case generation, but
do not seem to cater for model checking nor constraint-based checking. Indeed,
to our knowledge we developed the first temporal model checker and the first
constraint-based checker for consistency checking in B. Bellegarde et al [15] de-
scribes the use of SPIN to verify that finite B machines satisfy LTL properties
(though the translation from B to SPIN does not appear to be automatic). This
differs from the ProB approach in that it does not check for standard B invari-
ant violation, rather it checks for satisfaction of LTL properties, which are not
part of standard B. Finally, while [6, 2] can handle Z as well as B specifications,
we have interpreters for process languages such as CSP [23, 24] and StAC [16].
These can now be easily coupled with ProB to achieve an integration like [8],
where B describes the state and operations of a system and where the process
language describes the sequencing of the individual operations.

Another constraint solver over sets is CLP(SET) [14].10 While it does not
cater for sequences or relations, we plan to investigate whether CLP(SET) can
be used to simplify the implementation of ProB. Still, it is far from certain
whether CLP(SET) will be flexible enough for constraint-based checking.

Another related work is [35], which presents an animator for Z implemented in
Mercury. Mercury lacks the (dynamic) co-routining facilities of SICStus Prolog,
10 There are many more constraint solvers over sets; but most of them require sets to

be fully instantiated or at least have fixed, pre-determined sizes, c.f., [14].

and [35] uses a preliminary mode inference analysis to figure out the proper order
in which B-Kernel predicates should be put. It is unclear to us whether such an
approach will work for more involved B machines, and we believe that such
an approach will not be able to cope with constraint-based checking. Another,
recent animator for Z is ZANS [20]. It has been developed in C++ and unlike
ProB only supports deterministic operations (called explicit in [20]).

Our constraint-based checker is strongly related to the alloy analyzer devel-
oped by Jackson [18, 19]. alloy is a special purpose lightweight object language
which does not have the same penetration as B, but is well suited to constraint
checking. The tool uses SAT solvers to find counter-examples in which an ope-
ration relates a consistent before state to an inconsistent after state. The ProB
constraint-based checker has been heavily inspired by alloy and it would be
interesting to compare the performance of alloy’s SAT solving approach with
ProB’s constraint solving technique.

Future Work A lot of avenues can be pinpointed for further work. There
are still a few features of B left that we need to support, so as to cover the
whole language. For example, currently ProB does not yet support multiple
machines or abstract constants of complex type (such as functions). An example
of such an abstract function may be found in [9] where a constant net is used
to model the connectivity between track sections in a railway network: net ∈
SECTION ↔ SECTION . The specification includes properties restricting the
number of sections that can be directly connected. The relation is not given
explicitly, so there will be many models for net , depending on the size of the
given type SECTION .

Another obvious step is, in addition to supporting invariant and abort con-
dition model checking, to allow refinement checking. Both the temporal and
constraint-based checker can in principle be extended to check whether a refine-
ment machine is a proper refinement of a specification machine, much like FDR
checks refinement between CSP processes [30].

Also, it is possible to apply the constraint-based checker on B’s proof obli-
gations. If one could extract from say Atelier-B, the unproved proof obligations
of a B machine, then one could apply ProB to try to find counter-examples for
those proof obligations. This would be of great help in assisting the user, and
could prevent him from spending a lot of time trying to prove an unprovable
proof obligation.

We are also currently working to extract test cases for boundary conditions
from within ProB. ProB is already capable of driving a Java implementation in
synchrony with the animator. The hope is to develop a system that can generate
test cases and verify them directly on an implementation. Another plan for
further work is to link ProB with our U2B converter [32] which is a tool that
converts UML models to B specifications.

We would also like to extend ProB so that it can check more complicated
temporal properties. Indeed, consistency checking basically amounts to checking
the temporal logic formula AlwaysGlobally(¬invariant violated), but it may be

interesting to check more involved properties, e.g., that whenever one executes
an operation Request eventually the Acknowledge operation will become enabled.
Ideally one could also try to port the ProB system to XSB-Prolog, so as to
obtain efficient model checking via tabling in the style of [29, 26]. Unfortunately,
XSB Prolog does neither support finite domain constraints nor sophisticated co-
routining; hence this will be a major undertaking. However, for those cases where
ProB can construct the full state space of a B machine it is already possible to
use our model checker [26] to verify CTL [12] formulas.

Finally, now that ProB has acquired sufficient functionality to be practically
useful, we can focus some of our efforts on improving the performance of ProB.
To that end we plan to compile B machines before animation or model checking,
using our partial evaluation system logen [25]. We hope that this will yield a
substantial performance improvement.

Conclusion We have presented the ProB animation and model checking tool
for the B method. We believe that this tool will be of high value to people
developing B specifications, and our first case studies confirm this. ProB’s an-
imation facilities have allowed our users to gain confidence in their specifica-
tions, and has allowed them to uncover errors that were not easily discovered
by Atelier-B. ProB’s model checking capabilities have been even more useful,
finding non-trivial counter-examples and allowing one to quickly converge on a
correct specification.

In one case, the Volvo vehicle function machine, ProB was actually able to
prove the absence of errors (no counter-example exists and model checking was
performed on the original unsimplified machine) fully automatically. (Note that
it was a non-trivial task to prove this machine correct using Atelier-B.) So, one
could argue that we have made it possible to use B without proof. In general,
however, it will still be necessary to manually prove the B machine using Atelier-
B or the B-Toolkit. Nonetheless, after the model checking a lot of errors should
have already been found and corrected, and hopefully proof should be successful.

While it still remains to be seen how ProB will scale for very large B ma-
chines, we have demonstrated its usefulness on medium sized specifications. We
also believe that ProB could be a valuable tool to teach beginners the B method,
allowing them to play with and debug their first specifications.

We plan to release the tool later this year, and make it available at the
following URL: http://www.ecs.soton.ac.uk/~mal/systems/prob.html.

Acknowledgements

We would like to thank Laksono Adhianto, Stefan Gruner, Leonid Mikhailov, and
especially Carla Ferreira for their help in implementing and testing ProB. We
are very grateful to Andy Gravell, Daniel Jackson, Cliff Jones, Steve Schneider,
and to anonymous referees of FM’03 for their valuable feedback.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, M. Ut-

ting, and N. Vacelet. BZ-testing-tools: A tool-set for test generation from Z and
B using constraint logic programming. In Proceedings of FATES’02, Formal Ap-
proaches to Testing of Software, pages 105–120, August 2002. Technical Report,
INRIA.

3. AT&T Labs-Research. Graphviz - open source graph drawing software. Obtainable
at http://www.research.att.com/sw/tools/graphviz/.

4. B-Core (UK) Limited, Oxon, UK. B-Toolkit, On-line manual., 1999. Available at
http://www.b-core.com/ONLINEDOC/Contents.html.

5. B. Bérard and L. Fribourg. Reachability analysis of (timed) petri nets using real
arithmetic. In Proceedings of Concur’99, LNCS 1664, pages 178–193. Springer-
Verlag, 1999.

6. F. Bouquet, B. Legeard, and F. Peureux. CLPS-B - a constraint solver for B. In
J.-P.Katoen and P.Stevens, editors, Tools and Algorithms for the Construction and
Analysis of Systems, LNCS 2280, pages 188–204. Springer-Verlag, 2002.

7. J. Bowen. Animating the semantics of VERILOG using Prolog. Technical Report
UNU/IIST Technical Report no. 176, United Nations University, Macau, 1999.

8. M. Butler. csp2B: A practical approach to combining CSP and B. Formal Aspects
of Computing, 12:182–198, 2000.

9. M. Butler. A system-based approach to the formal development of embedded
controllers for a railway. Design Automation for Embedded Systems, 6(4):355–366,
2002,.

10. D. Cabeza and M. Hermenegildo. The PiLLoW Web Programming Library. The
CLIP Group, School of Computer Science, Technical University of Madrid, 2001.
Available at http://www.clip.dia.fi.upm.es/.

11. M. Carlsson and G. Ottosson. An open-ended finite domain constraint solver. In
H. G. Glaser, P. H. Hartel, and H. Kuchen, editors, Proc. Programming Languages:
Implementations, Logics, and Programs, LNCS 1292, pages 191–206. Springer-
Verlag, 1997.

12. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
13. B. Cui, Y. Dong, X. Du, N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan,

A. Roychoudhury, S. A. Smolka, and D. S. Warren. Logic programming and model
checking. In C. Palamidessi, H. Glaser, and K. Meinke, editors, Proceedings of
ALP/PLILP’98, LNCS 1490, pages 1–20. Springer-Verlag, 1998.

14. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic program-
ming. ACM Transactions on Programming Languages and Systems (TOPLAS),
22(5):861–931, 2000.

15. F.Bellegarde, J. Julliand, and H. Mountassir. Model-Based Verification through
Refinement of Finite B Event Systems. In Formal Methods B Users Group Meeting
(FM’99 B UGM Meeting), September 1999.

16. C. Ferreira and M. Butler. A process compensation language. In T. Santen and
B. Stoddart, editors, Proceedings Integrated Formal Methods (IFM 2000), LNCS
1945, pages 424–435. Springer-Verlag, November 2000.

17. P. Henderson. Modelling architectures for dynamic systems. In A. McIver and
C. Morgan, editors, Programming Methodology. Springer-Verlag, 2003.

18. D. Jackson. Alloy: A lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11:256–290, 2002.

19. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In
ACM SIGSOFT Conference on the Foundations of Software Engineering / Euro-
pean Software Engineering Conference (FSE / ESEC ’01), pages 256–290, Septem-
ber 2001.

20. X. Jia. An approach to animating Z specifications. Available at
http://venus.cs.depaul.edu/fm/zans.html.

21. L. King, G. Gupta, and E. Pontelli. Verification of a controller for BART. In
V. L. Winter and S. Bhattacharya, editors, High Integrity Software, pages 265–
299. Kluwer Academic Publishers, 2001.

22. J.-L. Lanet. The use of B for Smart Card. In Forum on Design Languages (FDL02),
September 2002.

23. M. Leuschel. Design and implementation of the high-level specification language
CSP(LP) in Prolog. In I. V. Ramakrishnan, editor, Proceedings of PADL’01, LNCS
1990, pages 14–28. Springer-Verlag, March 2001.

24. M. Leuschel, L. Adhianto, M. Butler, C. Ferreira, and L. Mikhailov. Animation
and model checking of CSP and B using Prolog technology. In Proceedings of
VCL’2001, pages 97–109, Florence, Italy, September 2001.

25. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic
Programming, 2004. To appear.

26. M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialisation. In A. Bossi, editor, Logic-Based Program Syn-
thesis and Transformation. Proceedings of LOPSTR’99, LNCS 1817, pages 63–82,
Venice, Italy, 2000.

27. M. Leuschel and T. Massart. Logic programming and partial deduction for the
verification of reactive systems: An experimental evaluation. In G. Norman,
M. Kwiatkowska, and D. Guelev, editors, Proceedings of AVoCS 2002, Second
Workshop on Automated Verification of Critical Systems, pages 143–149, 2002.
Available as Technical Report CSR-02-6, University of Birmingham.

28. G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

29. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution. In
O. Grumberg, editor, Proceedings of the International Conference on Computer-
Aided Verification (CAV’97), LNCS 1254, pages 143–154. Springer-Verlag, 1997.

30. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1999.
31. K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database

engine. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 442–453, Minneapolis, Minnesota, May 1994. ACM.

32. C. Snook and M. Butler. Verifying Dynamic Properties of UML Models by Trans-
lation to the B Language and Toolkit. In UML 2000 WORKSHOP Dynamic
Behaviour in UML Models: Semantic Questions, October 2000.

33. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 1996.
Available at http://www.atelierb.societe.com/index uk.html.

34. Tatibouet, Bruno. The JBTools Package, 2001. Available at http://lifc.univ-
fcomte.fr/PEOPLE/tatibouet/JBTOOLS/BParser en.html.

35. M. Winikoff, P. Dart, and E. Kazmierczak. Rapid prototyping using formal spec-
ifications. In Proceedings of the 21st Australasian Computer Science Conference,
pages 279–294, Perth, Australia, February 1998.

