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Abstract

Benefits of literate programming are well-known. The combination of source code and
its documentation can improve the comprehensibility of a program considerably. Jupyter
notebooks are documents corresponding to this idea by consisting of multiple cells that can
either contain rich text or code. Code can be executed with any programming language
for which a so-called kernel exists as an interface between a Jupyter application and the
corresponding language. Support for a new programming language can easily be added by
implementing such a kernel.

To create notebooks with Prolog, the Jupyter kernel Herculog was implemented. It is based
on the default Jupyter kernel IPython for Python and code is executed by communicating
with a Prolog server following a JSON-RPC protocol. It was developed for SICStus Prolog
only at first and later, support was added for SWI-Prolog. Additionally, by providing
configuration options, the kernel was made extensible for further Prolog implementations.
In this thesis, the development of that kernel is presented as well as its application and
extensibility.

Herculog provides almost all basic Prolog functionality. Additionally, some convenience
features are implemented such as defining predicates on the fly and outputting results
in a table. Moreover, it supports the Jupyter features of syntax highlighting and code
completion as well as inspection for some predicates. Therefore, it offers advantages over
the usual Prolog usage and can further facilitate teaching Prolog by documenting source
code and creating student assignments.
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1 Introduction

1.1 Motivation

In 1984, Donald Knuth, the creator of TEX, developed the notion of literate programming [28].
The idea is that programs and their documentation should be seen as works of literature. A
good explanation should facilitate understanding the program and therefore result in less
time spent on debugging. For this, the programming language WEB was developed with
the aim of combining code in Pascal and documentation in TEX in one file.

Jupyter notebook documents are a more recent implementation of this idea. They are
convenient for executing code interactively as well as for documenting it, which is why
they have become popular in scientific contexts. The documents can be edited, viewed,
and converted into other formats with Jupyter web applications such as Jupyter Notebook
and JupyterLab. Each of these frontends communicates with a so-called kernel that is
responsible for code execution. Therefore, the kernel determines the programming language
in which code can be executed.

Even though a multitude of kernels for different languages exist, to the best of the author’s
knowledge, there is no proper Jupyter kernel for Prolog. Moreover, Jupyter applications
are best suited for imperative programming languages. Since Prolog is a declarative
language with its control flow differing considerably, several issues have to be faced when
implementing such a kernel. Nevertheless, to use the Jupyter functionality with Prolog,
the kernel Herculog1 was developed, as is presented in this thesis. Note that parts of
the thesis have been accepted as a paper for the 36th Workshop on (Constraint) Logic
Programming (WLP 2022) [5].

While the kernel was intended for SICStus Prolog [8] only at first, it was later extended for
SWI-Prolog [58], and with some adjustment, it can support further Prolog implementations.
In addition to core Jupyter functionality such as code completion and inspection and
basic Prolog clause definition and query execution, the kernel also provides more advanced
features. These include printing all possible results of a query in a table and reusing the
value of a variable that was assigned to it by a previous query.

Following an introduction to the main Jupyter and Prolog concepts, this thesis presents
the features that Herculog provides for programming in Prolog with a Jupyter notebook.
Additionally, alternative approaches for creating notebook documents with Prolog are
introduced. After explaining the kernel’s general architecture and the design choices made,
details about the implementation are given. Finally, before listing some possible use cases
and future improvements, the extensibility for further Prolog implementations and more
functionality in general is explained while also reporting on issues during the porting to
SWI-Prolog.

1The name alludes to Hercules, who, according to Roman mythology, is the son of Jupiter and known
for his extraordinary strength.
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Figure 1: Cells in a notebook document connected to Herculog. The text in
the middle was written as Markdown. The gray boxes correspond to code cells

followed by their corresponding output.

1.2 From IPython to Project Jupyter

Recently, the usage of systems providing interactive code execution and visualization of
the results accompanying the code has increased. Without having to recompile code
for every change, it can be tested and refactored considerably faster. Furthermore, a
good visualization of the results facilitates the distribution of those, especially in scientific
contexts. That is why the IPython project [37] was developed. The main goal was to
facilitate interactive Python development, which is what the interactive Python shell was
implemented for.

Since the first release of IPython, multiple frontends were developed, some of which support
notebook documents. Additionally, a new two-processes model was created. According to
this, there is a client process responsible for user interaction while a kernel process handles
code execution. In 2014, Project Jupyter [27, 43] evolved from the IPython project. It is an
open-source project with the aim of making the IPython applications accessible for other
programming languages. Today, IPython still provides the interactive Python shell and a
Python kernel. Most other features such as the frontends were moved to Project Jupyter.

1.3 Jupyter Notebooks

Jupyter notebook documents consist of cells which can contain either executable code and
its output or accompanying (rich) text which is not meant for execution (see Figure 1).
Therefore, they can be used to execute code interactively and document it with text and
visualizations. This can be helpful for both code development and documentation. Each
notebook cell can be run and the behavior of the execution depends on the cell’s type. A
cell contains either code, Markdown, or raw text.
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When running a code cell, its content is executed by sending it to the Jupyter kernel the
notebook is connected to. The response is formatted and shown as the cell’s output, which
can be plain text as well as visualizations or other rich output. Each code cell is separate
from the others in that its execution only influences its own output (aside from possible
global program state modifications). Additionally, the content of a code cell can be syntax
highlighted and code completion and inspection can be used for some elements of the code.

Executing a Markdown cell does not produce any output. Instead, the cell’s possibly marked
up content is converted to formatted rich text. These types of notebook cells support any
HTML as well as a subset of LATEX code, which is handled by MathJax [9].

The content of a raw cell does not change when being run, neither does it produce any
output. These cells can be useful when converting the notebook into another format such
as LATEX. The content of a raw cell is included in the created file without being converted.
For instance, this way, LATEX code can easily be inserted in a LATEX file created from a
Jupyter notebook document. If a format is defined for a raw cell, the cell’s content is not
included when converting to any other format. If no format is specified, the content is
always included.

1.3.1 Jupyter Notebook Applications

Internally, Jupyter notebook documents are stored as JSON files with the extension .ipynb
in a specific format [22]. In 2011, the web application Jupyter Notebook [25] (formerly
called IPython Notebook) was released, which provides a convenient way of using Jupyter
notebooks. Multiple notebooks and other text documents can be worked on at the same
time and notebook cells can easily be created, viewed, edited, and run. Additionally,
the documents can be exported to other formats such as PDF, LATEX, or HTML with
nbconvert [20]. This way, a notebooks’s content can be made accessible for others without
the need to rely on Jupyter Notebook.

In 2018, the web application JupyterLab [40] was released, which is planned to replace
Jupyter Notebook eventually. One of the main advantages of JupyterLab is that it is
highly customizable since basically all functionality is provided by extensions. In addition
to the core ones, users can install community-developed extensions or develop their own.
With extensions, new themes, file editors, and viewers can be added as well as menu items,
shortcuts, advanced settings options, and various other features.

In order to be able to distribute the results of a notebook even to a wider audience,
Voilà [55] was developed. One reason for this was that interactive notebooks with code
cells which have to be run are not ideal for non-technical users. Another reason was the
security issue of executing arbitrary code. That is why Jupyter notebooks can be turned
into standalone web applications containing interactive widgets with Voilà since 2019. Just
like JupyterLab, it can be extended and it is language-agnostic so that it works with any
Jupyter kernel. However, a main difference is that it does not allow code execution. Instead,
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User

Jupyter frontend (e.g. JupyterLab)

Jupyter kernel (e.g. IPython)

request execution,
code completion, ...show rich output

send request messagessend reply messages

Figure 2: Diagram showing the handling of user interaction with a Jupyter frontend.

when rendering a notebook with Voilà, all cells are run and the output is collected so that
it can be converted to HTML. However, code cells are hidden by default. On the created
page, interaction with widgets is supported by accessing the corresponding Jupyter kernel.

Another Jupyter web application facilitating the distribution of notebooks is nbviewer [42].
When inserting the URL to a Jupyter notebook document, it is rendered as an HTML
web page. The link to that page can easily be shared with others so that they can view
notebooks without the need of having any Jupyter application installed.

1.4 Jupyter Kernels

Each Jupyter notebook is associated with a kernel, which is a process with the main task of
executing code in a particular programming language. Furthermore, it is also responsible
for code completion and inspection. As depicted in Figure 2, when a user interacts with a
Jupyter frontend, a corresponding request is sent to the connected kernel. After handling
the request, the kernel sends a reply to the frontend, which needs to be handled and
displayed for the user. Because of this decoupling, one kernel can be connected to several
frontends at the same time.

All the Jupyter applications can be used with any programming language for which a kernel
exists. Besides the default IPython one and other popular kernels such as IRkernel for
R [26] and IJulia for Julia [51], there are many community-maintained kernels for various
languages [24].

In addition to connecting kernels to a Jupyter Notebook application, they can be used
with a console frontend. At first, only Jupyter Console [52] existed, which is a terminal
application for interactive computing with a programming language provided by a Jupyter
kernel. Later, the terminal-like frontend QtConsole [53] was developed. On top of the
Jupyter Console functionality, it supports features like rich output and syntax highlighting.
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1.5 SICStus Prolog

Prolog is a logic programming language. According to Colmerauer and Roussel, at first
it was not developed with the aim of creating a new programming language [10]. Instead,
it was implemented to process natural languages. The usual workflow of Prolog starts
with writing a source code file which defines clauses. These correspond to first-order logic
formulas. A clause is a fact or rule and represents properties and relations of objects,
which are called atoms in Prolog. All clauses with the same name and arity (i.e. number of
arguments) define a predicate. To execute code, an interactive Prolog session can be started
in a console. As this can be seen as a so-called Read-Eval-Print Loop (meaning that a user
can continuously type in code that is evaluated and the result of which is output), it will
be referred to as a REPL in the remainder of this thesis. This way, a user can load source
files and query the defined data by calling predicates.

By now, there are multiple Prolog implementations which may differ considerably in
terms of syntax and features. One of them is SICStus Prolog, which is a commercial one
complying with the ISO standard. As described in a paper discussing the evolution of
Prolog implementations, their portability, and future developments, SICStus Prolog started
off as an open-source project originating from the idea of parallel execution [29]. It was
developed to support research in or-parallelization, which means that alternative paths of
an execution are explored in parallel with the aim of considerable speedups. At the time
the development was started, Quintus Prolog was the de facto standard (e.g. for syntax
and libraries). While SICStus was based on and compatible with Quintus Prolog from the
beginning, numerous of its features became part of later SICStus versions. As of today,
SICStus Prolog is still actively maintained, has facilitated further research, and is used for
multiple commercial applications. Reasons for its popularity include its high performance
and advanced support for constraint solving.
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2 Application

This section describes the application of Herculog. Following an explanation of the in-
stallation process, its features are presented along with usage examples. Some features
such as defining predicates and executing queries correspond to basic Prolog functionality.
Additionally, there are special predicates, mostly implemented for user convenience. Almost
all of them are provided with the module name expansion jupyter. Note that most of those
need to be executed as the only goal in a term so that they can be recognized correctly.

To support programming in Prolog with a Jupyter application, one of the main requirements
for the implemented kernel was to replicate the Prolog REPL as closely as possible. Therefore,
any code to be executed needs to be valid Prolog code and the output mostly resembles
console output. Additionally, some Jupyter specific messages are printed. These include
information about the Prolog server (a process responsible for all code execution) being
halted or restarted.

The code cells in notebooks can contain multiple Prolog terms. As another requirement
for the kernel was to enable the definition of predicates on the fly, the terms can be clause
definitions as well as directives or queries. Any variable bindings or other output produced
by the terms is displayed in the cell’s output. To increase ease of use, code can be executed
even if the last term of a cell is missing the terminating full-stop. Thereby, a common cause
for a query not to be run is eliminated. However, it should be noted that if a term does not
terminate, the server gets stuck and no result at all can be displayed. In that case, a server
restart is required by interrupting or restarting the kernel.

Herculog was implemented to create notebooks. Since JupyterLab is the most recent
notebook application, the features are mostly described for that application. During the
development of the kernel for SICStus Prolog, it was extended to support SWI-Prolog
as well. While most functionality is the same for both implementations, there are some
differences which are pointed out. Unless stated otherwise, all screenshots in the remainder
of this section are taken from JupyterLab for SICStus Prolog. Furthermore, most of them
are taken from a notebook explaining the provided functionality and some peculiarities,
which is available with the source code at:

https://github.com/anbre/prolog-jupyter-kernel

Note that the notebook can be accessed with nbviewer without having to install Jupyter
and Herculog:

https://nbviewer.org/github/anbre/prolog-jupyter-kernel/blob/master/
notebooks/feature_introduction/sicstus/using_jupyter_notebooks_with_

sicstus_prolog.ipynb

https://github.com/anbre/prolog-jupyter-kernel
https://nbviewer.org/github/anbre/prolog-jupyter-kernel/blob/master/notebooks/feature_introduction/sicstus/using_jupyter_notebooks_with_sicstus_prolog.ipynb
https://nbviewer.org/github/anbre/prolog-jupyter-kernel/blob/master/notebooks/feature_introduction/sicstus/using_jupyter_notebooks_with_sicstus_prolog.ipynb
https://nbviewer.org/github/anbre/prolog-jupyter-kernel/blob/master/notebooks/feature_introduction/sicstus/using_jupyter_notebooks_with_sicstus_prolog.ipynb
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2.1 Installation

Herculog is provided as a Python package on the Python Package Index [54] and can
be installed with pip. In order to be able to install and use it, Python and a Jupyter
application such as JupyterLab needs to be installed. Additionally, a Prolog implementation
is expected on the PATH environment variable. In general, all further required Python
packages are installed during the installation of the kernel. However, for Windows, installing
Graphviz [13, 50] with pip does not suffice. Instead, a manual installation is necessary.

When all requirements are met, the kernel can be installed with the following two commands:
python -m pip install prolog_kernel
python -m prolog_kernel.install

For the second command, installation options can be specified. These can be listed by
running the command with the –help option.

As stated above, Herculog supports both SICStus and SWI-Prolog. Since in contrast to
SICStus Prolog, SWI-Prolog is not commercial and is therefore used for teaching more often,
the kernel executes code with SWI-Prolog by default. However, as described in Section 6.1,
this behavior can be configured. Furthermore, the kernel can also be configured to be used
with any other Prolog implementation for which a corresponding server exists.

2.2 Basic Prolog Functionality

When programming in a Prolog REPL, clauses of a predicate are usually defined in a source
file which is loaded. They can also be added to the database by consulting the pseudo
file user (e.g. with [user]) or by calling a predicate such as assert/1. In a Jupyter
notebook, programs can be defined on the fly in code cells, which is a major advantage.
However, allowing more types of terms than just queries also brings up the issue of having
to differentiate between them.

While terms like directives and clauses with bodies can easily be distinguished from queries,
it is more difficult for clauses without bodies. The expected main application of using Prolog
interactively in a Jupyter notebook is to execute queries, possibly in multiple separate cells.
Therefore, if a cell contains a single potential query, it is interpreted as such instead of a
clause definition. Note that by writing a term of the form foo :- true., a user can still
assert a single term.

A Prolog source file usually contains predicate clauses. However, it is also possible to define
goals which are executed when the file is loaded by extending them with a prefix ?- or :-
for a directive. To mimic this, terms starting with ?- or :- are evaluated as queries even
if the cell contains further terms. If instead, a potential query without prefix or body is
encountered with multiple other terms, it is handled as a clause definition. Further, terms
with bodies are always seen as clause definitions. In each case, as described below, the cell
output lets the user infer how a term was interpreted.
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Figure 3: Predicate (re-)definition.

2.2.1 Predicate (Re-)Definition

All terms of a code cell interpreted as clause definitions (except for PlUnit tests) are added
as dynamic facts to the database. However, this is not the case for predicates loaded from
a file. Further, in the form Head --> Body., a clause can also be defined as a DCG rule.
In all cases, the clauses can be module name expanded (i.e. Module:Head). If no module
name is defined, the module user is chosen by default. To let the user know the exact
predicate that was defined, its specification is output (see Figure 3).

As described previously, the use of Prolog in a Jupyter application is meant for interactive
programming. This involves writing, testing and rewriting clauses rather than adding new
clauses to the fact database. Therefore, by default, when clauses are defined for a dynamic
predicate for which there are existing ones, these are retracted first. This implies that all
clauses of a predicate need to be defined in one cell. If previous clauses are retracted, the
user is informed about the exact clauses.

Adding Further Clauses

Sometimes a user might want to add clauses for a predicate instead of redefining it. This
can be achieved by declaring the corresponding predicate as discontiguous and dynamic.
When removing a predicate with abolish, its properties are removed as well. Therefore,
afterwards, previous clauses are retracted again when new ones are defined. It should be
noted that in case of SICStus Prolog, declarations need to be handled seperately. That
is why all declarations which are to be valid at the same time have to be defined with a
single request. Furthermore, a single cell should not contain both, declarations for predicate
properties and clauses for the same predicate. In that case, the clauses cannot be added to
the database.
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Figure 4: Query execution. Figure 5: Computing the next solution
with jupyter:retry/0.

2.2.2 Query Execution

If a query succeeds and binds any variables, the bindings are shown in the output of the cell
like they would be displayed in a console. Analogously, if there are no bindings or the query
fails, the corresponding output for success or failure is printed (see Figure 4). It should be
noted that, like in a REPL, usually no variable bindings are shown for directives. In every
case, if the execution produces any output, it is displayed preceding the other information.
Additionally, if the query causes an exception, the corresponding error message is printed.

2.2.3 Handling Multiple Solutions

Usually, when a Prolog query succeeds with a choicepoint, further solutions can be requested
via backtracking. Since that is not possible in the same way in a Jupyter application, the
predicate jupyter:retry/0 is implemented to mimic this instead. Whenever a query is
executed, it is seen as the active one as long as there might be further solutions for it.
If there is an active query, by calling the retry predicate in a following query (which is
possible in the same cell), backtracking may be triggered to compute the next solution. As
can be seen in Figure 5, to let the user know which query was retried, a corresponding
message is output.

Additionally, there is the predicate jupyter:cut/0 to cut off choicepoints of the active
execution. A previous query which might have open choicepoints is set as active, and the
user is informed about the new active goal.

Since backtracking is a Prolog feature which is used frequently, these two predicates can
also be called without the module name expansion and cannot be redefined in the user
module. However, note that they do not work unless they are the only goal in a term.

As a user may wish to see the stack of queries which can be retried, the predicate
jupyter:print_stack/0 can be called to output them. The currently active query is
printed at the top and marked by a preceding arrow.
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Figure 6: Loading and using
library(clpfd) with SWI-Prolog.

Figure 7: Defining and running tests
for SWI-Prolog.

2.2.4 Loading Source Files and Libraries

In principle, when running Jupyter locally, source files and libraries can be loaded in the
same way as in a REPL (see Figure 6). However, since user interaction is not possible,
predicates are always re-defined instead of leaving the decision to the user.

A cell can contain both, code for loading a library and terms using predicates from that
library, at the same time. The only special case that does not work is loading a library
which defines new operators and using those operators in a single cell. In that case, when
the server tries to read all terms of the cell, a syntax error is caused by the undefined
operators.

2.2.5 Running Automated Tests

Automated tests can be defined and run with library(plunit). Tests can either be defined
in a file which is loaded or in a cell (see Figure 7). In the latter case, any definition of a
test/1 or test/2 clause needs to be preceded by a begin_tests directive. Additionally, if
there is an optional end_tests directive, it has to follow the test clauses. Otherwise, they
are not recognized as such.

In case of SICStus Prolog, after defining new test clauses in a different cell, tests units of
previous ones still exist, but not the tests themselves. Therefore, all tests which are to be
run at the same time need to be defined in one cell. This is not the case for SWI-Prolog.
Instead, test units defined in separate cells can be run at the same time.
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Figure 8: Printing the call stack with jupyter:trace/1.

2.2.6 Debugging

With Herculog, debugging cannot be performed interactively as user input is not supported.
Thus, switching on trace mode with trace/0 would cause the server to stop at an invocation
and expect interaction, after which a kernel restart would be required. However, the call
stack can be accessed by defining breakpoints which cause debugging messages to be printed.
As this mechanism might be difficult to use, especially when newly learning Prolog, the
predicate jupyter:trace(Goal) was implemented. While the goal Goal is executed, its
trace is computed. To be recognized as a special goal, it needs to be the only one in a term.

By default, all ports are unleashed and included in the output (see Figure 8), which
means that no user interaction is requested when a breakpoint is activated. However, the
leashing mode does not apply to breakpoints. If a breakpoint is created which requires user
interaction, the Prolog server has to be restarted after that breakpoint’s activation.

2.3 Jupyter-Specific Features

2.3.1 Code Completion

In JupyterLab as well as Jupyter Notebook, code completion for the token at the current
cursor position can be requested by pressing the Tab key. If there is a single possible match,
the code preceding the cursor is replaced directly. Otherwise, a list of options is shown
from which the user can choose one (see Figure 9).

Completion can be used for predicates which are built-in or exported by a currently loaded
module. After loading another module, the completion data needs to be updated with
jupyter:update_completion_data/0. Otherwise, completion does not work for predicates
from that module.

The predicate terms with which the current token is compared and replaced are module
name expanded. Therefore, it is possible to see all predicates of a module. This is especially
useful for retrieving all special predicates defined by the module jupyter.
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Figure 9: Completion for token app.

Figure 10: Inspection for token app.

2.3.2 Predicate Inspection

By pressing Shift+Tab in one of the Jupyter notebook applications, inspection for the token
preceding the current cursor position is requested. For SWI-Prolog, documentation for
the token is retrieved with help/1 and shown right away. However, this is not possible
for SICStus Prolog. Instead, for all predicates which the Predicate Index page [38] lists,
a link to the documentation of the corresponding predicate is displayed if the predicate’s
name contains the current token. The data shown about the predicate is the same as
given on the Predicate Index page. In most cases, it includes the predicate’s name, arity,
and information such as if it is built-in or the library’s name. For JupyterLab, clickable
hyperlinks can be displayed (see Figure 10). Since this is not possible for Jupyter Notebook,
the links are only given to be copied.

In contrast to code completion, most predicate names are not module name expanded
as they are not listed that way on the Predicate Index page. Therefore, normally, the
documentation cannot be shown for all predicates from a module. An exception to this
are the predicates from the special module jupyter. The documentation for those is
provided by the module itself and is displayed at the bottom of the text for either Prolog
implementation (see Figure 11).

Additionally, some documentation can be accessed with the predicate jupyter:help/0.
When called, the documentation of all predicates defined in module jupyter is output. In
case of SICStus Prolog, if the predicate is called without the module name expansion and
it is not defined in the current module user, the corresponding error message is displayed
followed by a note that there is jupyter:help/0. However, if user:help/0 is defined,
calling it works as expected without any special output for the jupyter predicate.
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Figure 11: Inspection for token jupyter.

2.3.3 Resetting the Prolog State

As explained in more detail later, all code is executed by a Prolog server (see Section 4.4).
As long as the server is running, the database state with all potential side effects such
as clause assertions is active. However, the user might want to undo all those and reset
everything to a clean state. This is especially useful when all cells of a notebook are to be
run, but not all of them are supposed to work with the same Prolog database. There are
several ways to achieve this.

The most Prolog-like way is to call the built-in predicate halt/0 or jupyter:halt/0, both
of which are handled specially by the server. However, in order to be identified as special
predicates and processed correctly, they need to be the only goal of a query. Moreover, if
halt/0 is called in a different way, the server stops and an error message is output informing
the user that something went wrong and the server needs to be restarted. If the handling
does work as expected, a success message is displayed instead. Additionally, the Jupyter
notebook applications provide buttons for interrupting or restarting the kernel. The same
can also be achieved by pressing the keys I+I or 0+0 (zero) respectively.

All of these options cause the Prolog server to be stopped. The next time code is executed, it
needs to be restarted. In that case, a message is output to let the user know that everything
defined so far has been undone (see Figure 12).
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Figure 12: Resetting the Prolog state. Figure 13: Accessing previous bindings.

2.3.4 Accessing Previous Query Data

When a query is executed, certain data about it is collected, which can be accessed by
following queries. The data includes an atom representing the query, its absolute runtime
in milliseconds, and its variable bindings. Additionally, the number of the execution which
is displayed next to a notebook cell in case of success is collected. This corresponds to the
ID of the request sent to the Prolog server.

Reusing Bindings

SWI-Prolog provides functionality of reusing top-level bindings [45]. When a top-level goal
succeeds, its bindings are asserted in a database. By using a $Var term in a top-level query,
the latest binding for the variable Var can be accessed.

This functionality is also provided for SICStus Prolog by Herculog. Additionally, there
is the predicate jupyter:print_variable_bindings/0 that outputs all stored variable
bindings (see Figure 13).

Accessing the Previous Execution Time

Herculog provides a benchmarking feature. Whenever a query is executed, its runtime is
computed with statistics(walltime, Value). It can then be accessed with the predicate
jupyter:print_query_time/0, which outputs the latest previous query and its runtime in
milliseconds (see Figure 1).
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Figure 14: Collecting previous queries. Figure 15: Reusing bindings to print a
table with jupyter:print_table/2.

Collecting Previous Queries

When writing a new predicate, a user might test its subgoals gradually in separate cells,
potentially using $Var terms to reuse previous results. Once all the parts are written, the
predicate jupyter:print_queries(Ids) can be called to access the previous queries from
cells with IDs in the list Ids. They are printed in a way that they can easily be copied to a
cell and executed right away or expanded with a head to define a predicate (see Figure 14).
If a query contains a $Var term and one of the previously printed queries contains the
variable Var, the term is replaced by the variable name.

2.3.5 Structured Output

Herculog defines two special predicates to display data in a table. With the predicate
jupyter:print_table(Goal), all results of the goal Goal are computed with findall/3.
The corresponding table contains a column for each variable occurring in the goal and a
line for each result.

In order to fill a table with other data than results of findall/3, there is the predicate
jupyter:print_table(ValuesLists, VariableNames). ValuesLists is expected to be a
list of lists where each of these lists corresponds to one row of the table. Therefore, all lists
are required to be of the same length. The argument VariableNames is used to provide
the column headers and needs to be a list of ground terms of the same length as well unless
it equals []. In the latter case, the headers contain capital letters starting from A.

Note that both predicates have to be handled specially and cannot be recognized correctly
unless they are the only goal in a query. Thus, the value for ValuesLists cannot be
computed in the same query. Instead, previous bindings can be reused (see Figure 15).
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Figure 16: Printing a graph resembling an SLD tree.

2.3.6 Printing SLD Trees

Usually, the execution of Prolog queries is based on so-called SLD resolution standing
for selection rule, linear resolution, and definite clauses. The goals called during an
execution can be visualized with an SLD tree. Herculog provides the special predicate
jupyter:print_sld_tree(Goal) with which a graph resembling such a tree can be output
(see Figure 16). In order to be recognized as a special predicate, it needs to be the only
goal of a query.

Note that so far, nodes are only output for invocations at call ports. Therefore, successful
branches cannot be distinguished from failing ones yet. However, visualizing the called
goals in a tree can still facilitate debugging.
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Figure 17: Printing a transition graph.

2.3.7 Creating Transition Graphs

By calling jupyter:print_transition_graph(PredSpec, FromIdx, ToIdx, LabelIdx),
a transition graph can be created. Again, it needs to be the only goal of a query so that it
can be treated specially. In that case, a graph representing the possible transitions between
clauses of the predicate with specification PredSpec is created by computing all solutions
(see Figure 17).

PredSpec needs to be of the form PredName/PredArity or Module:PredName/PredArity.
The index arguments FromIdx and ToIdx point to predicate arguments used as nodes.
LabelIdx points to the argument providing a label for an edge. If LabelIdx equals 0, no
label is shown.
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Figure 18: Changing the active Prolog implementation.

2.3.8 Changing the Prolog Implementation

If implementation-specific data is configured for more than one Prolog implementation (see
Section 6.1), the active Prolog implementation used for code execution can be changed on
the fly with jupyter:set_prolog_impl(+PrologImplementationID). The corresponding
goal needs to be the only one of a query, as otherwise the predicate cannot be recognized
as a special one.

Note that the implementation is changed after all code of the cell has been executed.
Therefore, any code following a jupyter:set_prolog_impl/1 query in the same cell is
still executed with the currently active implementation. Furthermore, the server for the
previously used implementation is kept running so that when changing back, the state has
not changed. For instance, the previous variable bindings and defined predicates still exist
(see Figure 18). However, when the Jupyter kernel is interrupted, all running Prolog server
processes are terminated and need to be restarted the next time code is executed. If a user
wants to restart a single process, jupyter:halt/0 can be called.
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3 Related Work & Alternatives

In order to use a Jupyter notebook for executing code in a target programming language
for which no kernel exists, there are two options. A simple way is to select a kernel for a
language from which the target language can be called. Another approach is to write a new
kernel for the corresponding language. This enables using that language for all Jupyter
applications.

For the sake of completeness, note that instead of reusing the existing notebook implemen-
tation Jupyter, it is also possible to implement a new one which corresponds to the idea
of literate programming. However, in the scope of this thesis, a new application could not
have been implemented with significantly more features than basic ones. That is why using
Jupyter and all its functionality was the preferable option.

The following subsections present examples of implementations of the different approaches
for some Prolog versions while pointing out their features as well as limitations.

3.1 Calling Prolog from a Different Kernel

Magic Command

The most straightforward way of calling Prolog from a kernel for a different language is by
using a magic command starting a Prolog session [46]. This can be achieved by defining
an alias for a command using the IPython magic command %%script. With that IPython
command, a program such as Prolog can be defined with which the rest of the cell is run.
For SICStus Prolog as well as SWI-Prolog, the pseudo file user can be consulted. This way,
facts and rules can be defined in a REPL or, in this case, from a notebook cell. By default,
everything is interpreted as a clause and the code that is to be executed needs to be a
directive or a query starting with ?-.

An example of the command definition and SICStus Prolog code execution is shown in
Figure 19a. In every cell, Prolog code needs to be preceded by the magic command starting
a new session. Thus, all cells are independent of each other, which implies that defining
clauses and querying them cannot be split into separate cells. Therefore, this approach is
useful for executing small Prolog programs or showing simple examples. However, it is not
suitable for writing and documenting large programs.
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(a) Using a magic command.

(b) Using PySwip.

Figure 19: Calling Prolog code from a Jupyter notebook associated with a Python kernel.
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Calling Prolog Code from Python

Another way of executing Prolog code from a Jupyter notebook is by using a kernel for
a programming language from which Prolog can be called. For instance, for a Python
kernel this is possible with a Prolog interpreter written in Python such as Pyrolog [3],
pytholog [14], or the Simple Prolog Interpreter in Python [47]. Another option is
to use an interface between Python and Prolog such as Picstus [12] for SICStus Prolog or
PySwip [49] for SWI-Prolog. However, these implementations do not claim to provide a
complete representation of all available Prolog features or, in some cases, to work properly.

Nevertheless, they can be used for calling small Prolog programs from within other programs.
This can be convenient for a computation for which Prolog is more suitable than the
embedding programming language. However, since these implementations mix Prolog and
Python code, they can neither be used without having any Prolog experience nor do they
facilitate learning Prolog and its syntax properly.

The PySwip interface is used and referenced by a couple of other implementations and
publications. For code execution in SWI-Prolog, its foreign language interface to C is
used. PySwip provides methods such as asserta, assertz, retract, and query, which
can be called to define and query Prolog facts and rules. In contrast to the magic command
approach, each of them exists as long as the kernel is running. That is why cells containing
facts and rules should normally not be executed more than once. When querying data, all
possible solutions are returned as a generator. As can be seen in Figure 19b, each of them
is a dictionary with the variable names as keys and their corresponding values as values.

Additionally, with PySwip, source files can be loaded with the method consult. However,
there is no method for loading a library directly. Instead, a source file loading the library
needs to be consulted. Even though this way a library can be used, there are further
drawbacks. For instance, in the case of library(clpfd), variables which are bound by
constraints are output correctly, but for the ones which have been assigned a domain instead,
no information is provided. The other implementations for calling Prolog code from Python
listed above share similar limitations.

3.2 Prolog Kernels

As mentioned before, there are numerous community-written Jupyter kernels for various
programming languages including Prolog implementations. Some of these are presented in
the following.

One of them is the Calysto Prolog kernel [6, 35], which is a wrapper kernel extending
the Metakernel (for further information about wrapper kernels, see Section 4.2). Code
execution is based on a Prolog interpreter written in Python [33]. Each term ending with a
? is interpreted as a query, and other terms are used to define new Prolog facts and rules.
The kernel is suitable for defining and querying simple facts and even computing alternative
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(a) Calysto Prolog kernel.

(b) jswipl kernel.

Figure 20: Jupyter notebooks associated with kernels for Prolog.



3.2 Prolog Kernels 23

solutions with a magic command. However, more complex but still basic functionality such
as querying rules and producing output does not seem to work. Furthermore, no helpful
error messages are printed (see Figure 20a).

Another Prolog kernel is jswipl [11], which was inspired by SWI-Prolog-Kernel [32].
Both of them are Jupyter kernels for SWI-Prolog. However, for the SWI-Prolog-Kernel,
no proper installation instructions exist. It seems to work by writing Prolog code to a file
which is executed in a subshell. This means that like in the case of using a magic command,
all cells are independent of each other. It is therefore not possible to define clauses in one
cell and query them in another. Queries are marked as such by enclosing them between
lines containing QUERYSTART and QUERYEND.

The other SWI-Prolog kernel jswipl uses the SWI-Prolog and Python interface PySwip
introduced above for code execution. As can be seen in Figure 20b, Prolog facts and rules
can be defined and queried. Contrary to PySwip, each term added to the database exists
as long as the kernel is running. Therefore, cells containing facts and rules should not be
executed more than once. A query needs to start with ?- and if there is more than one
solution, by default, up to 10 answers are printed. This limit can be adjusted with special
syntax.

The jswipl kernel does not claim to be complete or tested properly. In contrast to the
Calysto Prolog kernel, there are some cases in which the jswipl kernel prints error messages.
However, neither kernel provides more advanced features such as producing output or
supporting DCG rules.

It is important to note that the kernels need to be able to differentiate between facts and
queries. When using Prolog in the standard way, predicates are defined in a file and they
can be queried by starting a Prolog REPL and loading the source file. When using a Jupyter
kernel for Prolog instead, the executed code can either be a query or a clause definition.
Therefore, the kernels introduced above expect queries to be somehow marked. While in
the case of jswipl using ?- preceding a query, this corresponds to valid Prolog code, the
other kernels expect syntax which does not comply with the one that could be used in a
Prolog REPL.

The need for marking queries can lead to unexpected or incorrect execution results and
cause overhead. If a user forgets to mark a query and types in code that would be handled
as a query in a Prolog REPL, it is added as a fact instead. Therefore, the kernel first needs
to be restarted and some code cells may have to be rerun before the query can be executed
correctly.

All of this shows that these approaches have major drawbacks, especially when it comes
to advanced functionality. Furthermore, they do not seem to be maintained any more.
Nevertheless, they can facilitate learning Prolog including its syntax better than calling
Prolog from a Jupyter kernel for a different language.
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Figure 21: Example of a notebook and debugging in SWISH.

3.3 Implementing a Notebook Application

Instead of extending an existing notebook application, a new one can be implemented for a
given programming language. Such a specific implementation has advantages such as being
tailored to the corresponding language. Thus, it can provide all desired functionality, which
might improve the ease of use and therefore facilitate learning and using the language.
However, a major drawback is the amount of work that needs to be invested in implementing
features which might already exist for other applications. Furthermore, it is basically not
possible to test a new application as extensively as an existing one which might have been
used for years and therefore has been tested by its users implicitly.

SWISH [2, 57, 59] is a notebook application especially developed for SWI-Prolog, and it
is meant to facilitate sharing Prolog code. When saving a file, a user can decide if it is
public, in which case other users can search for it. While Torbjörn Lager was the one who
originally started developing it, the current version was implemented by Jan Wielemaker,
the main developer and maintainer of SWI-Prolog.

Figure 21 is a depiction of the SWISH environment, where the left-hand side shows an
example of a notebook. Each of the notebook cells can contain a Program, Query, Markdown,
or HTML text. Code defined in a Program cell can be configured to be either callable from
queries below the cell only or from all queries in the notebook. Query cells can be run and
the number of desired solutions can be defined. In addition to that, queries can also be
executed in a separate Prolog REPL as shown on the right-hand side of Figure 21. If a
query succeeded with a choicepoint, additional solutions can be requested. Furthermore,
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there is the option of displaying results as a table as well as download them as a CSV file.
Moreover, by printing the whole notebook, it can be converted to a PDF file.

When running a query in the aforementioned REPL, information about some elements can
be accessed by hovering over them. For example, for own predicates, the line of the first
defined clause is shown and a description can be seen for SWI-Prolog predicates. For these
queries, some interactive debugging features are available. The execution can be traced
and there are buttons for continuing the execution, stepping into, out of, or over a goal,
and retrying or aborting the execution. An example of this and a query without debugging
is shown on the right-hand side of Figure 21. For each compound term in a result or trace,
its arguments can be listed horizontally, vertically, or be omitted.

In contrast to the other approaches of using Prolog in a notebook document presented
above, SWISH supports most functionality of SWI-Prolog including producing output.
Furthermore, especially its debugging functionality is a considerable advantage over a
normal Prolog REPL. However, it was implemented solely for SWI-Prolog and, as opposed
to Jupyter, it is not meant for being extended for any other programming language.
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4 Architecture and Communication

As can be seen from the approaches of using notebook documents with Prolog so far,
creating a new Jupyter kernel is the best option for supporting the execution of valid Prolog
code without needing to spend too much work on implementing basic notebook features.

There is more than one approach for writing a Jupyter kernel. As described above, the
kernel is responsible for handling requests from a frontend such as JupyterLab and sending
responses. This communication (see Section 4.1) needs to be taken into account when
deciding for an implementation method.

The following subsections list some options for writing a Jupyter kernel (Section 4.2) and
for interfacing SICStus Prolog with a different language (Section 4.3). Finally, the choices
which were taken for Herculog are summarized and an overview of its architecture is given
(Section 4.4).

4.1 Communication between a Jupyter Frontend and a Kernel

A Jupyter frontend communicates with a kernel by sending JSON messages complying with
a specific message protocol over ZeroMQ [19, 56]. There are several types of messages for
the available actions. In general, the frontend sends a request message of a specific type
and expects a reply of the same type. However, it does not get a reply if the kernel does
not support that type of message.

Among others, there are the following message types:

• Kernel info:
Used to access core kernel information such as the programming language, its version
number and the CodeMirror mode used for syntax highlighting.

• Kernel status:
The kernel status is starting when the kernel is starting, busy in case a message
is currently being handled, and idle otherwise. Whenever the status changes, the
kernel publishes a status message.

• Execution:
When the user wants to execute code, the frontend sends an execution request to the
kernel. If the execution was successful, the reply contains the result and the status
ok. Otherwise, the status is error or aborted.

• Introspection:
Introspection can be used to access additional information about some elements of
the code. The kernel is responsible for the information being displayed and how it is
formatted.
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• Completion:

Upon request, the kernel returns all available matches for the code that is to be
completed.

• Interrupt:

Used to interrupt the kernel.

• Shutdown:

The client can either request a final shutdown or a restart, which is preceded by a
shutdown.

While all kernels are required to support kernel info, kernel status and execute messages,
the other types of messages are optional.

4.2 Writing a Jupyter Kernel

When developing a new Jupyter kernel for a particular target language, the communication
with the frontend described above needs to be implemented. This can either be done by
writing a so-called wrapper kernel which extends another kernel handling the communication
or by implementing everything from scratch.

While the latter option takes more work initially, it also has benefits. In such a case, the
kernel can be written in the target language, making it a so-called native kernel. Thus, the
execution of code received from the frontend is straightforward. Furthermore, the users of
the kernel know the language it is written in, which means that it is more likely for them
to contribute to it.

Writing a wrapper kernel is usually easier and quicker. This is the case if there are good
wrappers for the target language so that it can be driven from the language of the extended
kernel. This way, the messaging protocol does not need to be implemented again. Instead,
only the language-specific part has to be written, which includes the execution of code,
code completion, and inspection. However, a disadvantage is that the code execution is
not as straightforward as for native kernels, since an interface between the languages is
required.

There are several kernels which are a good base for being extended by a wrapper kernel.
The following are examples for which good documentation for possible extensions exist:

• IPython kernel [16]:

The default Python kernel.

• Metakernel [7, 35]:

Another Python kernel providing additional magic functions.
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• xeus [30]:

A C++ version convenient for target languages that can be driven from C or C++.

• Jupyter JVM BaseKernel [36]:

A Java implementation of the communication protocol which should be used for target
languages running on the JVM only.

4.3 Interfacing SICStus Prolog with other Languages

As described in its user manual, there are several ways of interfacing SICStus Prolog
with other programming languages [31]. While the interface for C or C++ and Prolog
is built-in, there are libraries for other languages. The libraries library(jasper) and
library(prologbeans) can be used for mixing Prolog and Java and the latter also serves
as an interface with .NET. Additionally, library(jsonrpc) provides examples of calling
Prolog from a client process in a language such as Python, C#, C and Java by using
JSON objects for communication. This way, Prolog code can be called from basically any
programming language with which JSON messages can be sent.

Using Java or .NET requires the extra dependencies of a JVM or .NET SDK respectively
which a potential user might have to install first. Because of this and other reasons described
in the following section, these languages were not used for Herculog. Those reasons are also
arguments against mixing Prolog with C or C++ with the built-in mechanism. Furthermore,
the C interface is rather complex, especially when it comes to computing more than one
solution. In that case, it is important to understand the underlying structure of the Prolog
term and query handling. This would make the maintenance of anything using this interface
more complicated.

Therefore, no additional information about mixing Prolog with Java, .NET, C or C++
with the specific interfaces is provided here. Moreover, since the implemented kernel was
intended for SICStus Prolog only at first, no interfaces of SWI-Prolog were taken into
account. Thus, only library(jsonrpc) is introduced in more detail in the following.

library(jsonrpc)

The examples of library(jsonrpc) work by starting a Prolog server subprocess from a
client process, which can basically be written in any language. Among others, examples
are given for Prolog, Java, and Python. The processes communicate by sending JSON
messages over the standard streams according to the JSON-RPC 2.0 protocol [34]. The
client sends request messages, which are JSON objects. The objects need to contain the
members jsonrpc and method. These provide the version of the JSON-RPC protocol,
which is required to be "2.0" in this case, and a method name respectively. Additional
parameters for the method can be provided with params.
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{
"jsonrpc": "2.0",
"id": 1,
"method": "call",
"params": {

"goal": "X is a."
}

}

(a) Request message.

{
"jsonrpc": "2.0",
"id": 1,
"error": {

"code": -4712,
"message": "Exception",
"data": "type_error(evaluable,a/0)"

}
}

(b) Response message.

Figure 22: Messages sent between a Prolog JSON-RPC 2.0 server and a
client for an execution throwing an exception.

If no id is included, the request is assumed to be a notification. Otherwise, the server is
required to reply with a response object where, in general, the value of id is expected to
be the same as the value of the request object. Additionally, the JSON-RPC version "2.0"
has to be provided as the member jsonrpc. If the invocation of the requested method was
successful, the response object will contain a member result. Otherwise, the value of the
member error needs to be an error object containing values for code, message, and data.
The response object for the request shown in Figure 22a is depicted in Figure 22b.

4.4 Herculog

As can be seen from the sections above, there were several options for developing a Jupyter
kernel for Prolog. This section lists those options and gives an explanation of why the
corresponding approach was chosen before presenting the architecture of Herculog.

The following were the main options for writing the kernel:

• Create a native kernel and implement the communication with a Jupyter frontend
via ZeroMQ in Prolog.

• Write a wrapper kernel in Java based on the Jupyter JVM BaseKernel and com-
municate with Prolog via one of library(prologbeans), library(jasper), and
library(jsonrpc).

• Implement a wrapper kernel in C based on xeus and interface with Prolog directly or
by using library(jsonrpc).

• Use any other language for which a wrapper kernel can be written and which can
send JSON requests to a Prolog server like the one provided by library(jsonrpc).



30 4 ARCHITECTURE AND COMMUNICATION

Herculog

Jupyter frontend
(e.g. JupyterLab)

Kernel extension for Prolog (Python class PrologKernel)
(extends the IPython kernel)

Default kernel implementation (Python)
(class PrologKernelBaseImplementation)

SICStus implementation (Python)
(class PrologKernelImplementation)

SWI implementation (Python)
(class PrologKernelImplementation)

Prolog server (Prolog)
(conditional compilation for SICStus and SWI-Prolog)

ZeroMQ

method calling

extends extends

JSON-RPC 2.0 JSON-RPC 2.0

Figure 23: Diagram showing the architectural components and their communication methods.

Since the amount of work that could be invested for this thesis was limited, implementing
Herculog as a wrapper kernel instead of writing the communication protocol in Prolog
was preferable. This way, more effort could be concentrated on developing additional
functionality.

Extending the Jupyter JVM BaseKernel requires a JVM, which is not needed for Prolog.
Because this dependency should not be added unless necessary, the Prolog kernel was not
implemented in Java.

Instead of using the interface to C, which is built-in, the decision was made in favor of
library(jsonrpc). One reason for this is that the C interface is more complicated, which
would make the kernel more error-prone and difficult to maintain. Furthermore, the interface
is SICStus-specific. By basing the kernel on the examples of library(jsonrpc) instead,
the kernel can communicate with an independent Prolog server. This way, it can be made
extensible for other Prolog implementations, which corresponds to the Jupyter notion of
keeping things language-agnostic.

When writing a Jupyter kernel communicating with an independent Prolog server, the
kernel can basically be written in any language. As Jupyter originates from a Python
context and IPython is the default kernel, extending this kernel seemed most natural.
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{
"jsonrpc": "2.0",
"id": 0,
"method": "dialect"

}
(a) Request message.

{
"jsonrpc": "2.0",
"id": 0,
"result": "sicstus"

}
(b) Response message.

Figure 24: Examples of messages sent between the Prolog server and the
Python client for the method dialect.

Architecture and Communication

All of the above were reasons for deciding on the architecture and communication methods
as depicted in Figure 23. Herculog is a wrapper kernel extending the IPython kernel. It
communicates with a frontend by sending messages over ZeroMQ, which is handled by the
IPython kernel.

The extension is written in Python and it does not interpret Prolog code itself. Instead, it
starts a Prolog session as a subprocess and communicates with it over the standard input
and output streams according to the JSON-RPC 2.0 protocol. For any code execution
request the kernel receives from the frontend, a request message is sent to the Prolog
server containing the code. The server then handles the execution and sends a response.
Depending on the type of that response, a reply is sent to the frontend and displayed for
the user.

To make Herculog extensible for basically any Prolog interpreter or customize its behavior,
there is the additional layer of a kernel implementation in between. When the kernel is
started, it loads a configuration file which can contain paths to interpreter-specific Python
class files (see Section 6.1 for an explanation of the configuration options). The classes
need to be extensions of the default implementation PrologKernelBaseImplementation
called PrologKernelImplementation. They are responsible for basically all functionality
including starting and communicating with the Prolog server. For almost all requests
the kernel receives from the frontend, a PrologKernelBaseImplementation method is
called, which sends a response after processing the request. For SICStus and SWI-Prolog,
corresponding implementation classes are provided by Herculog. Note that instead of writing
such a class for a new interpreter, it is also possible to use the default implementation.
Additionally, the kernel can be configured to start a different Prolog server.
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{
"jsonrpc": "2.0",
"id": 1,
"method": "call",
"params": {

"code": "member(M, [1,2,3])."
}

}

(a) Request message.

{
"jsonrpc": "2.0",
"id": 1,
"result": {

"1": {
"status": "success",
"type": "query",
"bindings": {

"M": "1"
},
"output": ""

}
}

}
(b) Response message.

Figure 25: Examples of messages sent between the Prolog server and the
Python client for a successful execution.

Messages

As mentioned before, for each of the messages, a method is specified. In addition to call,
dialect, enable_logging, and jupyter_predicate_docs, there is the method version
for SICStus Prolog. While call messages are sent for code execution requests, the other
ones are used to retrieve the current dialect, create a log file, access the documentation of the
special jupyter predicates, and get the SICStus Prolog version respectively. For all methods
except call, the corresponding message does not contain any additional parameters (see
Figure 24a). As mentioned before, if the handling of the request is successful, the JSON
response object sent by the server will contain the member result. In case of a method
other than call, the corresponding value is a string representing the result (see Figure 24b).

The messages sent for call requests are more complex. The additional parameters given as
params correspond to an object providing the code to be executed as code (see Figure 25a).
Since a notebook cell can contain multiple terms, the result value of the response represents
those terms’ results. They are given as an object where the members are numbers starting
from 1. Each of the results is an object with a status which is either halt, success, or
error. Depending on the status, a corresponding reply is sent to the Jupyter frontend.

In case a term was executed successfully, its result object will additionally contain values
for type, bindings, and output. The member type corresponds to the type of the term
and can be one of directive, clause_definition, and query. If the execution caused
variables to be bound, the value of the bindings member will be an object corresponding
to those bindings. It contains the variables’ names and values. Any output produced by
the execution is given as output.
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{
"jsonrpc": "2.0",
"id": 1,
"result": {

"1": {
"status": "error",
"error": {

"code": -4711
"message": "Failure"
"data": {

"prolog_message": "",
"output": "test"

}
}

}
}

}

Figure 26: Response message as sent by the Prolog server for a failing term producing output.

For some terms handled separately, additional information is required. To provide this to
the kernel implementation, the result objects can contain further members. Among others,
these are retracted_clauses so that the potentially retracted clauses can be shown for
clause definitions and print_table providing data to be output in a table.

If a term causes an exception or fails, the corresponding term result object will be of the
type error. In that case, the result contains an error object. This corresponds to an
error object as defined by the JSON-RPC 2.0 protocol. Thus, it contains values for code,
message, and data. In this case, the data value is an object providing a Prolog message as
prolog_message. Usually, this is the exception message as it would normally be output in
a REPL. Figure 26 shows the response object for code printing output before failing.
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5 Implementation

This section presents some implementation details of Herculog. Since one of the requirements
was to replicate the Prolog REPL, the input needs to be valid Prolog code and the output
should mostly resemble console output. This is supposed to facilitate learning Prolog and
being able to transfer the knowledge to a console with minimal need for adjustment. Since
none of the approaches introduced in Section 3 meet these requirements sufficiently and
could easily be extended, the implementation is not based on any of them.

Instead, Jupyter’s default IPython kernel is extended (Section 5.1). Further, the specific
implementation details are handled by a class which can be extended for Prolog implemen-
tations different from the supported SICStus and SWI-Prolog (Section 5.2). For most of
its features, the kernel needs to communicate with a Prolog server which executes code
(Section 5.3). In addition to standard kernel functionality, the server provides some more
specific features, mostly for convenience (Section 5.3.7).

For Jupyter notebooks, a single cell type is available for code, which aligns with the
fundamentals of a typical imperative programming language. Prolog being a declarative
language and its control flow differing significantly causes issues for various aspects of the
implemented kernel. For instance, in addition to executing queries, it should be possible
to define and modify a Prolog program in a Jupyter notebook. Distinguishing between
program code and queries would be most straightforward with different types of cells.
However, in order to keep compatibility with all Jupyter frontend applications, adding such
cell types would be infeasible. For the same reason, no buttons can be implemented for
cycling through several solutions or for providing debugging functionality as is the case for
the notebook application SWISH. Instead, workarounds needed to be implemented (e.g. in
the form of special jupyter predicates).

5.1 IPython Kernel Extension

Herculog is a wrapper kernel based on the IPython kernel. The latter provides the class
Kernel, which handles the communication with a Jupyter frontend over ZeroMQ. Whenever
the kernel receives a request message (e.g. for execution, inspection, or completion), a
corresponding method is called. These methods must or may be overridden when writing a
wrapper kernel [18].

In addition to those methods, there are attributes containing metadata about the kernel
which a wrapper kernel needs to implement. One of them is language_info, which is a
dictionary containing information about the target language of the kernel. This information
is included in the JSON file of notebooks associated with the corresponding kernel. The
attributes implementation and implementation_version refer to the kernel and its version.
When used in console UIs, the value of the attribute banner is shown before the first prompt.
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The implemented Prolog kernel provides the class PrologKernel in the file kernel.py.
By extending the IPython class Kernel, the communication mechanism can be reused
so that only code execution and some additional features a kernel may have need to be
implemented.

The actual kernel code is not provided by this class itself. Instead, it mostly handles the load-
ing of potential configuration files and creating an implementation object defining the actual
kernel behavior accordingly. There is the file prolog_kernel_base_implementation.py
which defines an implementation class named PrologKernelBaseImplementation. When
Herculog is started, a (sub)object of this class is created. The implementation object handles
the starting of and communication with the Prolog server. For all execution, shutdown, com-
pletion, and inspection requests the kernel receives, a PrologKernelBaseImplementation
method is called.

Among other options, the kernel can be configured to use a specific Prolog implemen-
tation. In case the provided implementation ID equals swi or sicstus, by default, the
subclass which needs to be called PrologKernelImplementation is loaded from one of
the files swi_kernel_implementation.py or sicstus_kernel_implementation.py respec-
tively. Otherwise, if no path to a file containing a valid subclass is configured, the default
implementation class PrologKernelBaseImplementation is used. For more information
about how to configure Herculog, see Section 6.1.

If configured accordingly, the Prolog implementation can be changed while the kernel is
running. In that case, the previously active Prolog server is kept running so that it can be
reactivated when the implementation is changed back to the previous one. Therefore, there
can be multiple Prolog server processes running at the same time for a single Herculog
instance.

Installation Files

A Jupyter frontend works with any of the kernels available on the system. As described in
the Jupyter Client documentation, to retrieve all available kernels, specific locations are
searched for directories containing kernel spec information [17]. For each kernel, one of
these directories exists. It is a common practice to create a kernel spec directory which
is copied to one of the kernel locations on installation. This directory can contain the
following installation files:

• kernel.json:

Should contain a JSON dictionary providing information about the kernel such as its
name, the programming language, and how it can be started.

• kernel.js:

Can be created to define custom syntax highlighting.
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• css files:

Can accompany the kernel.js file to further customize syntax highlighting.

• logo image files:

Shown when selecting a kernel in a user interface.

The kernel.json file is the main file, and it is the only one mandatory in a minimal setup.
It provides kernel information in form of a JSON dictionary. Among others, this includes
the name of the corresponding programming language and the kernel’s name, which may
be displayed when selecting a kernel for a Jupyter frontend. Furthermore, command line
arguments with which the kernel can be started need to be specified. These normally include
the text {connection_file}. This text will be replaced with the path to a connection
file a kernel is given when it is started by a frontend. That file contains all information
necessary to establish a connection with the corresponding frontend such as the ports of
the sockets used for communication.

A kernel can support syntax highlighting by specifying a CodeMirror mode [15] for its
programming language. If there is no such mode for the corresponding language yet, a
new one can be defined in the file kernel.js. While this enables syntax highlighting for the
application Jupyter Notebook, for JupyterLab, an extension can be written instead. The
file is expected to contain JavaScript code for defining syntax highlighting by parsing the
source code. In order to further customize the highlighting (e.g. by adjusting colors), css
files can be created.

If the installation files contain logo image files, these are shown in a corresponding
frontend when a kernel is to be selected. In case no such files exist, a default image of the
first letter of the kernel’s name is shown.

For Herculog, the mandatory kernel.json file is provided as well as a kernel.js file
defining a simple CodeMirror mode for Prolog.

5.2 Kernel Implementation

As stated above, the code for the actual kernel implementation is provided by the class
PrologKernelBaseImplementation. It handles the starting of a Prolog server and com-
municates with it. Additionally, code completion and inspection are implemented. Thus,
it is responsible for almost all features Herculog provides. These are explained in detail
in the following subsections. All of them except interruption and syntax highlighting are
implemented by overriding methods from the extended IPython kernel.
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5.2.1 Execution

In order for the kernel to be able to execute code, the method do_execute needs to be
overridden. This method is called whenever the kernel receives an execution request, and it
is the only one which is mandatory for a wrapper kernel. One of its parameters is the code
that the user inputs.

When Herculog is started, it starts a Prolog server subprocess which is responsible for
all code execution. The code to be executed is sent to it without any modification. This
is done by writing a corresponding JSON message to the standard input stream of the
subprocess. For each request sent to the server, the client expects a corresponding response
representing a valid JSON being written to the processes’ standard output stream in a
single line. If no response is received, the client cannot be stopped from waiting unless it
is interrupted, shutdown, or restarted. If a response is received which is no valid JSON
object or if any other error occurs while processing the response, an error message is sent
to the Jupyter frontend and the server process is terminated. This is necessary since in
that case, the server process might be in a state from which it cannot recover to handle
further requests from the client.

A request can contain multiple terms, which are executed successively. For each execution,
the server computes a result object of a specific type. If the execution was successful, it
creates a success result. If it failed or caused an exception, an error result is created
instead. Additionally, there is the type halt which needs to be treated separately. Once all
terms have been processed, a response is sent containing all the term results. The remainder
of this section describes how the results are handled by the kernel implementation.

Halt

By executing a term halt or jupyter:halt, a user can request to stop the Prolog server.
In that case, the active process is terminated and the user is informed about it. The next
time code is to be executed, a new process is started first.

Success

In case of a successful execution, the client receives a response containing the term type of
the input, variable bindings, and any output that was produced. Further, for terms that
need to be treated specially, the server can send additional information. If there is such
data, it is handled first and any potential output is displayed in the frontend. Afterwards,
if the term execution produced output, it is shown followed by variable bindings or a term
representing success, which is yes in case of SICStus and true for SWI-Prolog. However,
for directives, no bindings or success message is output.
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There are six optional members a term result object can contain for additional data. They
are processed in the following way:

• predicate_atoms:

The user requested to update the predicate data available for code completion. The
given value is stored internally so that it can be accessed when the kernel receives a
completion request.

• print_sld_tree:

The provided data is a string corresponding to the content of a file defining a graph.
It is used to render an SVG file with dot, the content of which is then read in and
sent to the frontend so that the graph is displayed.

• print_table:

To display the results of a query in a table, a dictionary is provided with the members
ValuesLists and VariableNames. The first one is a list of lists, for each of which a
row of the table is computed. The latter is a list of strings from which the header of
the table is created.

• print_transition_graph:

The given data is processed in the same way as for print_sld_tree.

• retracted_clauses:

When defining new clauses for a predicate, previous ones might be retracted first. In
that case, a string representing them is computed and sent by the server so that it
can be displayed to the user. Since this might not always be of interest, a message
informing about retractions is shown which can be expanded to show the exact clauses.

• set_prolog_impl_id:

The switching between Prolog implementations needs to be handled by the class
extending the IPython kernel. If there is a running server for the implementation
with the given ID, it is activated. Otherwise, the implementation-specific data is
loaded (which starts a new server) and set as the active one. The previous server is
kept running so that it can be re-activated again later.

The variable bindings are provided as a dictionary, where the keys are strings representing
the variable names and in most cases the values correspond to the variable values. For
each of them, a term of the form Name = Value is displayed, which resembles the Prolog
REPL output. However, if library(clpfd) is used, there might be domain variables which
have been assigned a domain instead of a single value. In that case, the variable value in
the dictionary corresponds to another dictionary where the value Dom of dom is a string
representing the domain. For these variables, results are printed in the form Name in Dom.
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Error

In case the execution did not succeed, the server sends a message containing an error code.
Among others, this code might stand for failure or an exception. Like in the case of success,
if output was produced, it is displayed. If the code execution failed, no or false is output.
In case an exception occurred, the result object contains the error message which would
normally be printed to a console. This message is sent to the frontend.

5.2.2 Completion

Code completion is implemented by overriding the IPython method do_complete. When
the Herculog kernel is started, a request is sent to the server for terms of all predicates
exported from currently loaded modules and built-in ones. To find matches for code
completion, the current token is retrieved and compared to the available predicates by
checking if it is contained in the corresponding term.

5.2.3 Introspection

For an introspection request for the token preceding the current cursor position, the method
do_inspect is called. The Prolog server provides the jupyter module which defines some
predicates available to the user. Additionally, documentation is defined for them. The
default kernel implementation loads these on kernel startup and receives a dictionary
where the keys are module name expanded predicate specifications and the values are the
corresponding documentation strings. After computing the current token, it is compared to
the predicates. The documentations of all predicates for which the specification contains
the token is collected to be displayed by the frontend.

For the remaining predicates, inspection needs to be handled differently for SICStus and
SWI-Prolog. That is why it is implemented in the files swi_kernel_implementation.py or
sicstus_kernel_implementation.py. In case of SWI-Prolog, when inspection is requested,
predicate help is requested by calling help/1 with the current token as argument. Its
output is prepended to potential jupyter documentation.

For SICStus Prolog, supporting predicate inspection is more complex. Documentation can
be retrieved from the Predicate Index page [38], which lists predicates and provides links to
documentation pages. On kernel startup, all links are read for the current SICStus version,
which is requested from the Prolog server. Most of the link texts consist of the predicate
specification followed by additional information (e.g. append/3 (built-in, ref page):).
The predicate names are compared to the current token. For all names containing the token,
the corresponding links are collected and prepended to potential jupyter documentation.
Since most predicate names are given without a module name, the module name the current
token might have is not taken into account for the comparison.
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5.2.4 Interrupt

When the interruption signal is sent, the active Prolog server receives this signal as well.
Since it cannot recover from that to handle further requests, it needs to be shut down and
restarted the next time code is to be executed.

5.2.5 Shutdown

When the kernel is shut down or restarted, the method do_shutdown is called. As a wrapper
kernel, Herculog only needs to take care of its specific cleanup and the IPython kernel
handles everything else. Since a single kernel might have started multiple Prolog server
processes, all of them need to be terminated on shutdown. Otherwise, numerous stray
processes might be caused.

5.2.6 Syntax Highlighting

Syntax Highlighting in Jupyter notebook applications can be activated by specifying a
CodeMirror mode. Since there was none for Prolog, a simple mode was written for Herculog.
For Jupyter Notebook, the corresponding code can be provided in the file kernel.js. For
JupyterLab, however, an extension based on a Cookiecutter template [41] was implemented,
which is available at:

https://github.com/anbre/jupyterlab-prolog-codemirror-extension

With this extension, it is also possible to activate syntax highlighting for basic Prolog files
in JupyterLab. The corresponding language can be chosen by selecting View > Text Editor
Syntax Highlighting > Prolog. Note that by default, the language Perl is selected for files
ending with pl.

5.3 Prolog JSON-RPC Server

The source code of the Prolog JSON-RPC server is split into several modules. The diagram
in Figure 27 illustrates those modules and their dependencies. The top section of each
box contains the module name which equals the file name without the .pl extension. The
bottom one contains all exported predicates of a module. If a module uses another one, this
is indicated by an arrow pointing to the latter. Note that all names start with jupyter_ to
avoid conflicts with other modules loaded by the user.

https://github.com/anbre/jupyterlab-prolog-codemirror-extension
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jupyter_server

jupyter_server_start/0

jupyter_request_handling

loop/3

jupyter_term_handling

assert_sld_data/4
declaration_end/1
handle_term/6
pred_definition_specs/1
term_response/1
test_definition_end/1

jupyter_jsonrpc

json_error_term/5
next_jsonrpc_message/1
parse_json_terms_request/3
send_error_reply/3
send_json_request/6
send_success_reply/2

jupyter_query_handling

call_query_with_output_to_file/7
call_with_output_to_file/3
delete_output_file/1
query_data/4
redirect_output_to_file/0
remove_output_lines_for/1
retrieve_message/2
send_reply_on_error/0
debug_mode_for_breakpoints/0

jupyter

cut/0
help/0
print_queries/1
print_query_time/0
print_sld_tree/1
print_stack/0
print_table/1
print_table/2
print_transition_graph/4
print_variable_bindings/0
retry/0
set_prolog_impl/1
trace/1
update_completion_data/0

jupyter_variable_bindings

store_var_bindings/1
term_with_stored_var_bindings/4
var_bindings/1

Figure 27: Diagram representing the modules of the Prolog server and
their dependencies.
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The only source code files belonging to the Prolog server which are not shown in the diagram
are jupyter_server_tests.pl and jupyter_logging.pl. The former file contains tests
for different types of JSON request messages sent to the server. When running the kernel,
the Prolog execution part cannot simply be debugged and writing to the standard output
stream would send messages to the Python client. Therefore, the file jupyter_logging.pl
defines a module which can be used to write logging messages to a file.

The following are the remaining modules implementing the features provided by the server:

• jupyter_server:

The main module of the server. It is the one with which the process is started.

• jupyter_request_handling:

Used for starting a loop which reads requests, handles them and sends a response.

• jupyter_jsonrpc:

Provides predicates for creating JSON terms and for reading from and writing to the
standard input and output streams.

• jupyter_term_handling:

Implements the handling of different term types.

• jupyter_query_handling:

Handles the actual execution of queries and their output while collecting query data.

• jupyter:

Provides some special predicates available to the user (e.g. jupyter:trace/1).

• jupyter_variable_bindings:

Handles bindings of previous queries.

In the following subsections, each module is explained in more detail. The source code files
contain code for both SICStus and SWI-Prolog by making use of conditional compilation
with the directives if(...), else, and endif. Most code is compatible with both Prolog
implementations. However, there are major differences, as pointed out in the description.

5.3.1 jupyter_server

The jupyter_server module is the main one of the Prolog server. It exports the predicate
jupyter_server_start/0 with which the server can be started. This is done by calling
the predicate loop/3 from the module jupyter_request_handling, which starts a loop
handling requests from a client. Additionally, it contains implementation-specific code
needed for the setup, especially for enabling tracing. Further, the printing of some special
messages is defined.
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5.3.2 jupyter_request_handling

The module jupyter_request_handling exports the predicate loop/3 starting a loop
to read and process JSON requests and Prolog terms. It reads a message from the
standard input stream and parses it with jupyter_jsonrpc:next_jsonrpc_message/1. If
the message represents a valid request, it is handled according to the provided method.

The method call is used for calling Prolog code, of which the result is returned to
the client. In that case, the request is expected to contain code which is parsed with
jupyter_jsonrpc:parse_json_terms_request/3. If it contains a syntax error and there-
fore cannot be parsed correctly, an error reply is sent to the client. In case the code does
not contain any term (i.e. it only contains comments), the server replies with a success
message. Otherwise, the request contains one or more Prolog terms. Before handling the
first term with jupyter_term_handling:handle_term/6, the remaining terms are asserted
so that they can be retrieved by the next call of the loop/3 predicate. Once all terms of a
request have been processed, a response containing the terms’ results is sent to the client.
Afterwards, the next message is tried to be read.

With the method enable_logging, a log file is created to which log messages can be written.
Additionally, the Herculog kernel needs some further information which can be accessed
with the remaining request methods. The method dialect is provided to retrieve the
current dialect. The documentation of the special predicates defined in module jupyter
can be accessed with the method jupyter_predicate_docs. Additionally, for SICStus
Prolog, the current version is requested from the server with version.

5.3.3 jupyter_jsonrpc

All reading, writing, and parsing of JSON messages is handled by the jupyter_jsonrpcmod-
ule based on the files jupyter_server.pl and jsonrpc_client.pl from SICStus (version
4.5.1). The predicate next_jsonrpc_message/1 is used to read the next message from the
standard input stream. If it corresponds to a call request, parse_json_terms_request/3
is called to parse the given code. This is done by reading Prolog terms from the code
with read_term/3 or read_term_from_atom/3 depending on the Prolog implementation.
By reading the terms with the option variable_names(Variables), a list of Name = Var
terms is retrieved. Name is an atom representing the name of a variable in the term and
Var is the corresponding variable. In case the term is a query which is called, the variables
might be bound. This way, the bindings can be output as the result of the term.

If the execution of a query results in an error, a JSON error term is created with the
exported predicate json_error_term/5. Further, success or error replies are sent with
send_success_reply/2 or send_error_reply/3 respectively by writing them to the stan-
dard output stream. Additionally, send_json_request/6 is defined for testing the server by
writing messages to the input stream and reading their responses from the output stream.
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5.3.4 jupyter_term_handling

The module jupyter_term_handling is responsible for the actual handling of terms from
a call request. The main predicate it exports is handle_term/6. It processes a term
according to its type, which is either a directive, clause definition, or query. Furthermore,
for each of the types there are terms which need to be processed separately. If a term has a
result, it is asserted in the database so that it can be sent to the client when all terms of a
request have been processed.

As mentioned before, distinguishing clause definitions from queries is not always straightfor-
ward. One option for differentiation would have been to expect all queries to be somehow
marked. However, this would likely cause frustration for users forgetting about it because
they are used to a Prolog REPL where no such marking is required. Since most single terms
appearing in a cell are likely to be queries, they are interpreted as such. Additionally, terms
starting with ?- and most directives starting with :- are handled as queries even in cells
with multiple other terms. In all other cases, the terms are treated as clause definitions.

Directives

The directives begin_tests/1, begin_tests/2, and end_tests/1 provided by the library
library(plunit) must be handled seperately. To use PlUnit tests with Herculog, the tests
need to be written to a file which is loaded. In general, such a test definition file is loaded
after processing all terms of a request or when a run_tests query is to be called. When
the first begin_tests directive of a request is encountered, a file is created and opened for
writing. The corresponding stream is asserted so that it can be accessed to write to the file.
The following test definitions and end_tests (in case of SICStus Prolog also begin_tests)
directives are written to the file.

With SWI-Prolog, reloading a file which does not define a test unit that has been loaded
from it before, causes an error. Furthermore, when a test unit was loaded from a file, a
unit with the same name cannot be loaded from a different file afterwards. Therefore,
every test unit is written to a file of which the name contains the unit name. Every time a
begin_tests directive is encountered, the previous file is loaded and a new one is opened.

In principle, the same could be done for SICStus Prolog. However, each time a file defining
tests is loaded, a redefinition warning for unit_body/4 is displayed if the file name differs
from the previous test definition file. This would be the case for every test unit. Instead,
for SICStus Prolog, all test definitions of a cell can be written to the same file. Moreover,
the file is always called the same and loaded once all terms of a request have been handled.
Note that all tests which are to be run at the same time have to be defined by the same
request. Otherwise, a previously defined test unit still exists, but not the tests in it. This
is different in the case of SWI-Prolog, for which all test units defined in the current server
session can be run at the same time, even if they were defined by separate requests.



5.3 Prolog JSON-RPC Server 45

For SICStus Prolog, declarations need to be treated specially as they must not appear in a
query. Therefore, like in the case of test definitions, all declarations of a request are written
to a file which is loaded. This implies that all declarations which are to be valid at the
same time, need to be defined with a single request. The declaration file is loaded when all
terms of a request have been handled. When declaring a property of a predicate for which
clauses had been asserted before, these do not exist any more after the declaration. Thus,
a cell declaring predicate properties cannot define clauses for the same predicate.

In general, the execution of any other directive starting with :- is the same as for a query,
which is described below. The only differences are that for directives, backtracking is not
possible and variable bindings are not displayed, which corresponds to the REPL behavior.

Clause Definitions

When it comes to clause definitions, there are two predicates which need to be treated
specially. These are test/1 and test/2. If they are preceded by a begin_tests directive,
the corresponding clause is written to a test definition file as described above. Otherwise,
they are not interpreted as test definitions, but handled as regular clause definitions instead.

In general, for any other clause definition, the clause is added to the database with
assertz/1, making it a dynamic predicate. Optionally, clauses can be module name
expanded and if they are not, module user is chosen by default. If the term is a DCG rule,
it is expanded with expand_term/2 (or dcg_translate_rule/2 in case of SWI-Prolog)
before further processing.

To be able to redefine a predicate without having to remove its clauses first, previous clauses
are retracted automatically by default. Whenever a clause is to be defined for a predicate
for which there already are clauses, these are retrieved with listing/1 before retracting
them. To inform the user about the retraction, the term result contains the corresponding
atom as data for the additional member retracted_clauses. Note that this mechanism
implies that all clauses of a predicate usually need to be defined by one request.

However, it is also possible to define a predicate in separate cells by declaring it as discon-
tiguous. In that case, new clauses are added to the database without retracting the previous
ones first. For SWI-Prolog, there is the predicate property discontiguous which can be
checked. Since such a property does not exist for SICStus Prolog, for each clause declared
as discontiguous during the current server session, a jupyter_discontiguous(PredSpec)
fact is asserted. When a user removes a predicate with abolish, the corresponding clause
is retracted. However, the predicate cannot be recognized unless the call to abolish is the
only one in a term.
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Queries

The Prolog server provides the functionality of using a term of the form $Var in a query to
access the latest value the variable Var has been bound to by a previous query. In order for
this to work, before a query is processed, any of its subterms of the form $Var are replaced
accordingly. In case of SWI-Prolog, this mechanism is built-in. Instead, for SICStus Prolog,
the handling of $Var terms is provided by the module jupyter_variable_bindings. In
either case, the original term needs to be asserted so that previous queries can be accessed
in a state before unification assigned values to any of their variables. This is needed for the
special predicate jupyter:print_queries/1 described below (see Section 5.3.7).

Some predicates that need to be treated separately are listed at the end of this section.
For any other query, jupyter_query_handling:call_query_with_output_to_file/7 is
called, which is introduced in the next section.

To be able to reuse bindings with $Var terms, in case a query was executed successfully,
previous bindings are updated with the ones from the current query. Additionally, before
asserting the term result, it needs to be made sure that the variable values do not cause
an exception when sent to the client. For instance, this would be the case for uninstan-
tiated variables or compound terms, as these cannot be parsed to JSON terms with the
corresponding Prolog library. Therefore, in most cases, the values are converted to atoms.
However, with library(clpfd), there might be domain variables which have been assigned
a domain instead of a single value. The term representing that domain of a variable X is
retrieved with clpfd:fd_dom(X, Range). Usually, the variable bindings list sent to the
client contains elements of the form Name=Var, where Var is the variable which might have
been bound by the query. Instead, for domain variables, Var corresponds to a JSON object
where the member dom provides an atom representation of the domain Range. This way,
the client is informed about the special case and can display the result accordingly.

As described above, all requests are processed in a loop. In general, after asserting a term
result, the current predicate is exited and the loop continued. However, if a query execution
is successful, instead of continuing the current loop, a new recursive loop is started with
jupyter_request_handling:loop/3. In that case, the current goal is seen as the active
goal which can be retried or of which choicepoints can be cut off if there are any. This is
possible because of call_query_with_output_to_file/7 leaving a choicepoint. When a
retry request is encountered, the current loop iteration fails, causing the active goal to
backtrack. One argument of the loop/3 predicate is a list of atoms representing the queries
which were called. This way, it is possible to keep track of the called queries (resembling a
call stack), which is needed for some special predicates.

The predicates treated specially are listed in the following. Note that all of them are
required to be the only query in a term to be recognized correctly. Otherwise, an error
message might be output or the query might produce unexpected results. Additionally,
for some of the predicates the result object contains additional data. Others are treated
separately because they require data such as the call stack or variable bindings.
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• retry or jupyter:retry:

The user requested to retry the active query. The current predicate fails into the caller
jupyter_query_handling:call_query_with_output_to_file/7 so that backtrack-
ing is caused. Before failing, a clause is asserted to inform the caller about the retry.
In that case, the actual goal which is called is output. Usually, before calling a query,
all output is redirected to a file and statistics/2 is called to compute its runtime.
This also needs to be done before backtracking.

• cut or jupyter:cut:

The predicate jupyter_query_handling:call_query_with_output_to_file/7 is
the one which actually executes queries. By cutting off all its possible choicepoints, a
potentially active goal cannot be retried. Afterwards, a previous query is seen as the
active one and the user is informed about the new active goal.

• jupyter:print_stack:

While looping over terms and requests, a stack of previously called queries is built.
These are the goals which can be retried. All elements of this stack can be printed
with the currently active query displayed at the top and indicated by a preceding ->.

• halt or jupyter:halt:

When the halting of the Prolog server is requested, the loop reading and processing
messages is stopped so that the server process is stopped as well. In order to inform
the client about this, a success reply of type halt is sent. This way, the next time
code is to be executed, a new server is started.

• jupyter:print_table(+Goal) or
jupyter:print_table(+ValuesLists, +VariableNames):

When the server sends a response object containing data for the additional member
print_table, it is displayed in a table. The value needs to be an object itself with
the members ValuesLists and VariableNames. The first one is a list of lists where
each of them corresponds to one row of the table. The latter is a list of names for
computing the header of the table.

In case of jupyter:print_table(Goal), the table will contain the results of the goal
Goal computed with findall/3. The header will consist of the names of the variables
occurring in the goal (which were extracted when reading in the term). Note that
like in any other case, if the goal does not terminate, no data at all can be sent to
the client and therefore displayed. Instead, the server needs to be restarted.

The predicate jupyter:print_table(ValuesLists, VariableNames) can be used
to print given data in a table. The arguments mostly correspond to the object
members of the same names described above. However, before sending the response,
it has to be ensured that all terms are JSON parsable. VariableNames is either of
[] or a list of ground terms which are required to be of the same length as the values
lists. If no names are provided, capital letters are used instead.
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digraph {
"1" [label="app([1,2],[3],A)"]
"2" [label="app([2],[3],B)"]
"3" [label="app([],[3],C)"]
"1" -> "2"
"2" -> "3"

}

Figure 28: Content for a file representing a graph resembling an SLD tree.

• jupyter:print_sld_tree(+Goal):

To output a graph resembling the SLD tree of the goal Goal, during its execution,
required data about the invocations at call ports is collected with debugging features.
The collection of the data differs between SICStus and SWI-Prolog. In case of
SICStus Prolog, a breakpoint is added before and removed after the execution.
For SWI-Prolog, a dynamic fact collect_sld_data is asserted before calling the
goal and retracted afterwards. Its existence is checked by the dynamic predicate
prolog_trace_interception/4, which is called before the debugger displays a goal.

After collecting the data, content for a file representing the graph is created which
can be rendered with Graphviz. For the file content, nodes are defined by an ID and
labelled with the string representing the corresponding goal. Directed edges are added
from a parent invocation to the child invocation (see Figure 28). A string representing
the file content is sent to the client as additional data for print_sld_tree.

Since so far, data is collected for call ports only, no leaves are shown marking a
successful or failing branch. In order to add such leaves, invocation data needs to be
collected for other ports as well. Then, to add a failure or success leaf, the first fail or
exit port for a call needs to be determined.

• jupyter:print_transition_graph(+PredSpec, +FromIdx, +ToIdx, +LabelIdx):

Like in the case of SLD trees, in order to display a transition graph, content for
a file representing that graph is computed. The data is provided to the client as
print_transition_graph. The transitions between the clauses of the predicate with
specification PredSpec are computed with findall/3. For each of them, a line
representing an edge is added to the computed file content.

• jupyter:set_prolog_impl(+PrologImplementationID):

In case the user requested to change the active Prolog implementation, all the server
needs to do is to return the corresponding PrologImplementationID back to the
client as set_prolog_impl_id. This way, the client is informed about the request
and can handle it accordingly.
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• jupyter:update_completion_data:

The user requested to reload the data used for code completion. All built-in and
exported predicates of currently loaded modules are computed and sent to the client
as additional data predicate_atoms.

• run_tests/0, run_tests/1, or run_tests/2:

Before running tests, it needs to be checked if any tests were defined by previous
terms of the current request. In that case, the created test definition file is loaded.
Afterwards, a run_tests query is handled like any other query. This way, any output
representing the test results is displayed for the user.

• trace/0, trace/1, or trace/2:

When running the implemented Prolog server, trace mode should not be turned on
by a user. This is the case because debugging messages are not printed in a way that
they can be read in and sent to the client. That is why rather than calling anything,
an error message is output for calls of a trace predicate. Instead, jupyter:trace/1
can be used to print the trace of a goal.

• leash/1:

By default, leashing is turned off for all ports so that no user interaction is expected
when tracing a call for jupyter:trace/1. As mentioned above, trace mode should
not be turned on by a user. Therefore, changing the leashing would not have an effect
anyway. Thus, an error message is output when it is tried to be changed.

• abolish/1, or abolish/2:

In case of SICStus Prolog, predicates declared as discontiguous need to be treated
specially. As explained before, for all predicates that were declared as such, a
jupyter_discontiguous/1 clause is added to the database. When removing a predi-
cate with abolish, the corresponding clause needs to be removed as well.

5.3.5 jupyter_query_handling

As mentioned above, the output of a query is contained in the term result sent to the
client. To access it, the module jupyter_query_handling provides predicates to redirect
all output to a file and read it from that file. This is done when calling one of the predicates
call_with_output_to_file/3 and call_query_with_output_to_file/7. Before calling
the goal provided as an argument, a file is opened. The corresponding stream is set as
the current output, standard output, and error stream so that all output and debugging
messages are written to the file. In case of SWI-Prolog, this is done with set_stream/2.
For SICStus Prolog, the current output stream needs to be set with set_output/1 and for
the other ones, set_prolog_flag/2 is called.
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The given query is executed with the built-in predicate catch/3 to catch any exception that
might be thrown. Note that if the execution does not terminate (e.g. because something
goes wrong unexpectedly), the server is stuck and cannot send a response to the client. In
case of an exception, an error result with the corresponding error message is created. When
asserting that term result, the message is retrieved from the given error term. This is done
with jupyter_query_handling:retrieve_message/2 by redirecting the error stream to a
new file, printing the message with the built-in print_message/2, and reading the content
from the file.

If an exception was thrown by the execution of a jupyter:trace(TraceGoal) goal, trace
mode needs to be switched off. However, in case of SICStus Prolog, if breakpoints exist,
debug mode is switched back on so that these breakpoints can be activated in following
queries. Furthermore, for SICStus Prolog, some message lines might be output which should
not be shown to the user. Therefore, these are removed after reading the output from
the file. For instance, this is the case when producing the trace for jupyter:trace/1 and
switching on or off trace mode outputs corresponding messages.

Additionally, when calling the predicate call_query_with_output_to_file/7 for a query,
its runtime is computed with statistics(walltime, Value). This and some more infor-
mation about the query (including the ID of the request and an atom representing the query
term) is asserted with the dynamic predicate query_data/4. The data is needed for some of
the jupyter predicates. In contrast to that, the predicate call_with_output_to_file/3
can be called when the output of a goal is needed, but no query data should be collected.
For instance, this is the case when loading a test definition file. Note that for most of the
terms handled specially by the module jupyter_term_handling, neither of these predicates
is called. Therefore, no query data that could be accessed later is collected for them.

5.3.6 jupyter_variable_bindings

The jupyter_variable_bindings module provides predicates to enable reusing previous
variable bindings in a query. It is based on the module toplevel_variables from version
8.4.2 of SWI-Prolog. Since the mechanism is already built-in for SWI-Prolog, predicates
from this module are called for SICStus Prolog only.

When a query is executed which contains a term of the form $Var, it is tried to be replaced
by the latest value that has been assigned to the variable Var by a previous query. In
order for this to be valid syntax, $ is defined as an operator. Before a query is called, the
term can be expanded with term_with_stored_var_bindings/4 by replacing all terms of
the form $Var with the corresponding value. If there is no previous value for one of the
variables, an exception is thrown.

The dynamic predicate var_bindings/1 is used to remember the values of variables from
previous queries. Its argument is a list containing Name=Var pairs, where Name is the name
of a variable Var of the latest query in which a variable of this name was bound to a value.
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After a successful query execution, the predicate store_var_bindings/1 from this module
is called with a list containing the names and values of all the variables occurring in the
query. The only variables excluded from this are singleton variables starting with an
underscore. The list of variables stored as var_bindings/1 is updated with the variables
that were instantiated by the current query.

5.3.7 jupyter

The Prolog server provides some special predicates which can be called by a user. To not
block any predicate names so that they cannot be used by a user, most of them are defined
in the module jupyter and need to be called with the module name expansion. The only
exceptions are retry, cut, and halt, which can also be called without the module name.

As described above, some of these predicates need to be treated separately. They have
to be the only goal of a query to be recognized correctly. Further, for those, the module
defines clauses throwing an error when called so that the user is informed about this.

The following are the exported predicates which do not require special handling:

• jupyter:help/0

For each predicate defined by the module there is a clause providing its predi-
cate specification and the corresponding documentation as an atom. When calling
jupyter:help/0, these documentation atoms are collected and output. The docu-
mentation is the same as used for predicate inspection.

• jupyter:print_queries(+Ids)

This predicate causes the previous queries from requests with IDs in Ids to be output.
Each query is printed on a separate line followed by a comma or full-stop in case of
the last query. This way, they can be copied to a notebook cell and executed right
away or expanded with a head to define a clause.

As mentioned before, query data is collected by the module jupyter_query_handling.
This is done by asserting a clause of the following predicate:

query_data(CallRequestId, Runtime, TermData, OriginalTermData)

The arguments TermData and OriginalTermData are terms of the following form:

term_data(TermAtom, NameVarPairs)

TermAtom is the representation of a term as an atom and NameVarPairs is a list of
Name=Var pairs, where Name is the name of a variable Var from that term. This list
is needed for the replacement of $Var terms. If the query contained any of those
terms, TermData contains data about the term after the replacement. In that case,
OriginalTermData is the data of the term before replacement. Otherwise, it equals
the atom same.
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For each of the queries to be printed, it is checked if it contains any $Var terms. If
not, the query can be printed right away. Otherwise, the original term is expanded.
If any of the previously printed queries contains the variable Var, it is replaced by
the variable’s name. Otherwise, the $Var term is not replaced.

• jupyter:print_query_time/0

By calling statistics(walltime, Value) right before and after calling a query,
its runtime is computed. In order for this information to be accessible later, it is
asserted with the predicate query_data/4 from the module jupyter_query_handling.
Thereby, jupyter:print_query_time/0 can output the latest previous goal followed
by the time in milliseconds it took the query to complete.

• jupyter:print_variable_bindings/0

In case of SWI-Prolog, variable bindings from previous queries are output with
print_toplevel_variables/0. For SICStus Prolog, the variable bindings stored by
the module jupyter_variable_bindings are displayed in the same format.

• jupyter:trace(+Goal)

When it comes to debugging, there are major differences between SICStus and
SWI-Prolog. Therefore, the trace of a goal needs to be computed differently.

In case of SWI-Prolog, the tracer is switched on before calling the goal Goal and
switched off afterwards. Further, debug mode is switched on again so that any break-
points which might exist can still be activated after the query execution. Because of a
user:prolog_trace_interception/4 clause defined in jupyter_server.pl, debug-
ging messages are printed to the current output without requesting user interaction.

For SICStus Prolog, trace mode is also switched on before the call of the goal and
switched off afterwards. Additionally, before activating trace mode, it needs to be
checked if the debugger was already switched on. In that case, messages are output
which should not be shown to the user. By asserting a clause that is checked when
retrieving the output of the goal, these can be removed. Furthermore, the message
printed when switching on trace mode is removed from the output. Afterwards, if any
breakpoints exist, debug mode is switched back on again so that the debugger can
stop at a breakpoint for following queries. Since all ports are unleashed, the debugger
usually does not stop at an invocation to wait for user input. However, breakpoints
are not affected by this.
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6 Extensibility

The Herculog kernel was built to be highly extensible. For instance, it can be configured
to run with a different Prolog server or Python kernel implementation. Thereby, it can
run with another Prolog interpreter altogether, which might not be supported by default.
The available configuration options are further explained in Section 6.1. In addition to
supporting further Prolog implementations, which is described in more detail in Section 6.2,
it might also be desirable to provide more convenience features, e.g. by adding jupyter
predicates (see Section 6.3).

6.1 Configuration

The implemented Prolog Jupyter kernel can be configured by defining a Python configuration
file. The kernel will look for files named prolog_kernel_config.py in the current working
directory and the Jupyter config path, which can be retrieved with jupyter --paths. Note
that if a config file exists in the current working directory, it overrides values from previously
loaded configuration files. An example of such a file with an explanation of the options and
their default values commented out can be found in the GitHub repository of the kernel [4].
The following options can be configured:

• jupyter_logging:

If set to True, the logging level is set to DEBUG by the kernel so that Python debugging
messages are logged. The messages are printed to the console from which the Jupyter
application was started. Additionally, they can be accessed in JupyterLab with the
menu View > Show Log Console or by right-clicking in a notebook and selecting Show
Log Console. Then, in a drop down-menu, the log level needs to be set to level Debug.

Note that this way, logging debugging messages can only be enabled after reading a
configuration file. Thus, the user cannot be informed that no configuration file was
loaded if none was defined at one of the expected locations. To switch on debugging
messages by default, the development installation described in the GitHub repository
can be followed and the logging level set to DEBUG in the file kernel.py (which
contains a corresponding comment). However, note that this causes messages to be
printed in the Jupyter console applications, which interferes with the other output.

• server_logging:

If set to True, a log file is created by the Prolog server. The name of the file consists
of the implementation ID preceded by .prolog_server_log_.

• implementation_id:

The ID of the Prolog interpreter for which the server is started. To use the default
SICStus or SWI-Prolog implementation, the ID sicstus or swi is expected.
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• implementation_data:

The implementation-specific data needed to run the Prolog server for code execution.
This is required to be a dictionary containing at least an entry for the configured
implementation_id. Each entry needs to define values for the following:

– failure_response: The output which is displayed if a query fails.

– success_response: Output if a query succeeds without any variable bindings.

– error_prefix: The prefix printed for error messages.

– informational_prefix: The prefix for informational messages.

– program_arguments: Command line arguments to start the Prolog server. For
SICStus and SWI-Prolog, the default server provided by Herculog can be used
by configuring the string "default".

Additionally, a kernel_implementation_path can be provided, which needs to be an
absolute path to a Python file. The corresponding module needs to define a subclass
of PrologKernelBaseImplementation named PrologKernelImplementation. As
described in Section 6.2.3, this can be used to override some basic kernel behavior.

Note that if the program_arguments for SICStus Prolog are invalid (e.g. the source code
file does not exist), the kernel waits for a response from the server which it will never receive.
In that state, it cannot log any exception and instead, nothing happens. To facilitate
finding the cause of the error, before trying to start the Prolog server, the arguments and
the directory from which they are tried to be executed are logged (if logging is configured).

6.2 Supporting Further Prolog Implementations

For code execution, the Herculog kernel communicates with a Prolog server process over
JSON-RPC 2.0. Basically, by replacing this server with another one, the kernel can easily
be extended for a different Prolog implementation. As described above, this can be done by
configuring the kernel and specifying program_arguments to start a differing server process.
In the following, some details about the server are given which might serve as guidance for
creating a new one.

Most of the server code is compatible with both SICStus and SWI-Prolog. Since this is
expected to be similar for other Prolog implementations as well, extending the existing server
should usually suffice (see Section 6.2.1). However, in rare cases it might be required to write
a new server from scratch (see Section 6.2.2). For instance, when trying to support Prolog
derivatives like Mercury [48]. Additionally, supporting another Prolog interpreter could
require adjustment of basic kernel behavior by overriding the Python base implementation
class PrologKernelBaseImplementation (see Section 6.2.3).
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6.2.1 Extending the Existing Prolog Server

Originally, Herculog was built for SICStus Prolog only. Later, the server code was extended
to support SWI-Prolog as well by making use of conditional compilation. Since most code
is compatible with both implementations, no major adjustments were required to support
basic functionality such as query execution. However, this was different for some other
features, especially the ones provided by the module jupyter.

When extending the server code for further Prolog interpreters, similar portability obstacles
as for SWI-Prolog might occur. Since the issues or general differences might serve as
guidance for potential required adjustments, some of them are listed in the following.
Additionally, the tests from the file jupyter_server_tests.pl can help to detect problems.
However, note that since test definitions may also differ considerably depending on the
implementation, running them might not be possible without major adjustments.

The differences between SICStus and SWI-Prolog encountered during the server extension
include the following:

• Some of the predicates which are built-in for one implementation need to be loaded
from a library for the other one. Furthermore, some libraries are named differently and
predicates with the same functionality are provided under different names. Examples
for the latter case include the following:

– For SWI-Prolog, new message types are defined with prolog_exception_hook/4
instead of user:portray_message/2.

– Instead of setting standard output and error streams with set_prolog_flag/3,
set_stream/2 needs to be called for SWI-Prolog.

– In case of SWI-Prolog, DCG rule terms need to be expanded with the predicate
dcg_translate_rule/2 instead of expand_term/2.

• The arguments for starting the server process differ.

• Reading in terms from an atom is more complex in SWI-Prolog when a helpful error
message is required in case of syntax errors.

• To write a message to a single line with json_write/3, the option width(0) needs
to be specified instead of compact(true) for SICStus.

• In SWI-Prolog, using $Var terms to access previous variable bindings is built-in.

• The handling of breakpoints and debugging in general differs. In SICStus Prolog,
by turning leashing off for all ports, the debugger does not stop at any invocation
without a breakpoint to wait for user interaction. For SWI-Prolog, this needs to be
handled by defining a clause for user:prolog_trace_interception/4.

• In case of SICStus Prolog, declarations must not appear in a query. Instead, they
need to be loaded from a file.
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• Even though the SICStus library(plunit) is based on the one from SWI-Prolog,
there are major differences between them. These include the following:

– The options available for begin_tests/2, test/2, and run_tests/2 differ.

– With SWI-Prolog, a true option cannot be contained multiple times in the
options specified for a test/2 clause definition, which is possible for SICStus.

– The loading of files defining test units differs considerably. For SICStus Prolog,
the best option for the server is to write all test units to the same file, which is
named the same for every request. For SWI-Prolog, this would cause an error if
the file did not define a test unit any more which was loaded from it previously.
Instead, for each test unit, a separate file is created which contains the unit
name so that a unit can be reloaded from the same file again.

• In case of SICStus Prolog, a website listing links to documentation of all predicates is
accessed for providing inspection information. For SWI-Prolog, there is the predicate
help/1, with which help for predicates can be output.

Debugging

Usually, if the execution of a goal causes an exception, the corresponding Prolog error
message is computed and displayed in the Jupyter frontend. However, in case something
goes wrong unexpectedly or the query does not terminate, the Prolog server might not be
able to send a response to the client. In that case, the user can only see that the execution
does not terminate without any information about the error or output that might have been
produced. However, it is still possible to write logging messages and access any potential
output, which might facilitate finding the cause of the error.

Debugging the server code is not possible in the usual way by tracing invocations. Further-
more, all messages exchanged with the client are written to the standard streams. Therefore,
printing helpful debugging messages does not work either. Instead, if server_logging is
configured, messages can be written to a log file by calling log/1 or log/2 from the module
jupyter_logging. By default, only the responses sent to the client are logged.

When a goal is executed, all its output is written to a file named .server_output, which is
deleted afterwards by jupyter_query_handling:delete_output_file. If an error occurs
during the actual execution, the file cannot be deleted and thus, the output can be accessed.
Otherwise, the deletion can be prevented.

Furthermore, the server might send a response which the client cannot handle. In that
case, logging for the Python code can be enabled by configuring jupyter_logging. For
instance, by default, the client logs the responses received from the server.
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6.2.2 Writing a New Prolog Server

Instead of basing a new Prolog server on the existing one, it can be created from scratch. In
that case, it is required to know the types of messages which are sent. As mentioned before,
the Python kernel implementation communicates with the Prolog server by sending JSON
messages over the standard streams according to the JSON-RPC 2.0 protocol. Section 4.3
gives an introduction to the general structures of such messages by providing examples.
The format of the actual messages that are sent by the kernel’s Prolog server is explained
in Section 4.4.

Furthermore, to provide some more functionality than the basic one, for some requests, addi-
tional data needs to be sent by the server. This can be done by sending a value for one of the
members predicate_atoms, print_sld_tree, print_table, print_transition_graph,
retracted_clauses, and set_prolog_impl_id. Most of them are sent for special jupyter
predicates and the values which are expected are explained in Section 5.3. Further, the
description of the server implementation in that section gives a good overview of what
behavior is expected. Additionally, the tests in jupyter_server_tests.pl can serve as
help for getting to know the format of responses that is expected by the client for specific
request messages.

Note that once the Python kernel implementation tries to read a response message, it
cannot be stopped from waiting without shutting down the kernel. Thus, for every request
sent to the Prolog server, a single response messages is expected on a single line.

6.2.3 Extending the Kernel Implementation

The actual kernel code determining the handling of requests is not implemented by the
class PrologKernel itself. Instead, for every request, a PrologKernelBaseImplementation
method is called. By creating a subclass named PrologKernelImplementation and defining
the path to the corresponding Python file in a config file as kernel_implementation_path,
the actual implementation code can be replaced. If no file containing a valid class is found, a
default implementation is used instead. Besides PrologKernelBaseImplementation, there
are default classes for SICStus and SWI-Prolog. The only basic kernel code that differs
between the implementations is for predicate inspection.

The PrologKernelImplementation needs to handle the starting of and communication
with the server. The following main methods are defined for that, which can be overriden:

• start_prolog_server:

Tries to (re)start the Prolog server process with the configured arguments.

• kill_prolog_server:

Terminates the Prolog server process if it is still running.
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• retrieve_predicate_information:

Requests data from the Prolog server needed for code completion and inspection.

• Request methods which are called by the PrologKernel for a corresponding request
received from the frontend:

– do_shutdown: Executes kernel-specific shutdown actions.

– do_execute: Executes code and computes its output.

– do_complete: Finds possible predicate completions.

– do_inspect: Computes introspection results for predicates.

• server_request:

Sends a request to the Prolog server and reads the JSON response before deserializing
and returning it.

• handle_success_response:

Handles a success response by computing output for each term result and sending it
to the frontend.

• handle_error_response:

Handles an error response by sending an error message to the frontend.

• send_response_display_data:

Sends a response to the frontend as plain text.

• handle_additional_data:

Handles additional data which might be provided by a term result. Checks if
the given dictionary contains any predicate_atoms, print_sld_tree, print_table,
print_transition_graph, retracted_clauses, or set_prolog_impl_id key. If so,
one of the following methods is called, the purpose of which can easily be inferred
from their names:

– handle_completion_data_update

– handle_print_graph

– handle_print_table

– handle_retracted_clauses

– handle_set_prolog_impl
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6.3 Adding Convenience Predicates

All special predicates of the Herculog kernel are provided with the module name expansion
jupyter. To add more such convenience features, further jupyter predicates can be
implemented. However, one needs to differentiate between predicates requiring additional
data such as the variable name and variable pairs read from the corresponding term and
ones that can be processed without further information.

The first kind of predicates is not actually defined in the jupyter module’s source file.
Instead, the execution is handled by the module jupyter_term_handling. Before processing
a query, it is checked if it corresponds to a special one with handle_query_term_/8, where
the first argument is the query term. Therefore, by adding a clause, a new predicate can be
supported. The additional data accessible at that point is the stack of queries that can
be retried, the variable name and variable pairs of the term, data about the query before
potential $Var terms were replaced, and information about if the query was called as a
directive. Note that in this case, the predicate can only be determined as a special one
if it is the only one in a term. In order to inform the user about this in case it is called
differently, a clause throwing an error can be added to the jupyter source file.

If none of the listed additional data is required, a new predicate can be defined in the
jupyter module instead. For both types of convenience features, there is the special case
of data about previous queries which can be accessed. This data is asserted by the module
jupyter_query_handling as query_data/4 after calling a query. It includes the ID of
the request, the query runtime, an atom representing the query before any $Var term
replacements (if there were any), and an atom corresponding to the actual query term that
was called.

In all cases, the specification of the newly defined predicate should be added to the predicate
list of the module declaration so that it can be shown for code completion. Furthermore, in
order to support inspection, a new clause for predicate_doc/2 providing a documentation
string needs to be defined.
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7 Use Cases

One of the main reason for implementing a Jupyter kernel for Prolog was that using
Jupyter notebooks could facilitate teaching Prolog in an educational context. This section
presents some more specific use cases. Again, since Jupyter Notebook is to be replaced
by JupyterLab, any Screenshots are taken from the latter application. However, some
explanations are given for Jupyter Notebook as well.

Note that all the example notebook documents mentioned in the following are available in
the GitHub repository of the Herculog kernel [4].

7.1 Prolog REPL Extension

As stated before, any Jupyter kernel can be used with the applications Jupyter Console and
Qt Console. Since Herculog provides convenience features in addition to basic Prolog REPL
functionality, it can be seen as an extension of the REPL. One of the major advantages of
this extension is that predicates can be defined on the fly. Additionally, by not requiring
a terminating full-stop, a main reason for queries not to be run right away is eliminated.
Furthermore, code completion is supported for some predicates.

Executing Prolog in a Jupyter notebook provides even more functionality. In addition
to producing special output such as tables and requesting inspection, the documents can
be saved. Thus, a REPL session can be looked at and executed again later and even
distributed to others so that they can execute it. However, all cells can be changed at any
time. Therefore, it should be mentioned that the order of the cells might not correspond to
the order in which they can actually be executed. Furthermore, the output might not be
reproducible at all with the provided code.

7.2 Source Code Documentation

Since a Jupyter notebook document can contain code accompanied by text, it is ideal for
source code or other documentation. In addition to code cells defining Prolog predicates
or executing queries, text can be written explaining those predicates and their execution.
Moreover, it can facilitate understanding the code even better since it can easily be executed
as is or adjusted to experiment with it. The Herculog GitHub repository contains notebooks
explaining its features for SICStus and SWI-Prolog. These can be seen as examples of
documentation notebooks.

To distribute a notebook to others without them needing a Jupyter application, the
document can be exported to other formats with nbconvert. Among others, it can be
converted to a PDF, LATEX, or HTML file. Additionally, the Jupyter applications Voilà and
nbviwer introduced before facilitate the distribution of notebook documents.
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Figure 29: A slide created from a Jupyter notebook with RISE.

7.3 Lecture Slides

Since Jupyter notebooks can facilitate explaining source code, creating lecture notes is an
obvious use case. While a notebook can be presented or distributed as is, it can also be
converted to other formats, such as HTML slides. Furthermore, a live slideshow supporting
cell execution can be created with the Jupyter Notebook extension RISE [1].

For every slide, arrows are shown in the bottom-right corner (see Figure 29). The right
one of these is enabled if there is a next slide. If there is a sub-slide or fragment, the down
arrow can be clicked. To configure this, for each cell, a slide type can be chosen from one
of the following options in a drop-down menu:

• Slide: The content of the cell will appear on a new slide.

• Sub-Slide: The cell content will appear on a new sub-slide.

• Fragment: With the down arrow, the content is added to the current (sub-)slide.

• Skip: Not part of any slide.

• Notes: Not part of any slide.

• -: When the last part of the slide or sub-slide is shown (e.g. by clicking the down
arrow), the cell’s content is added to the current slide or sub-slide.
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Figure 30: Defining the slide type in JupyterLab.

In JupyterLab, the menu can be accessed in the Property Inspector tab from the right side
bar (see Figure 30). In Jupyter Notebook, a cell toolbar showing the menu in the upper
right corner of a cell can be enabled by clicking View > Cell Toolbar > Slideshow.

7.4 Assignments

A further use case for Jupyter notebooks are student assignments. These can be created
as documents containing task descriptions, sample or skeleton code, and cells for the
students’ solutions. In order to facilitate this, nbgrader [21, 44] was developed, of which
the application with Herculog is presented in the following. Note that in most cases, the
usage for JupyterLab is described only. However, most steps can also be performed from
the command line.

With nbgrader, instructors can create assignments as Jupyter notebooks and generate
student versions from it. Furthermore, it aids grading, especially by providing automatic
grading for some types of notebook cells. Additionally, the tool can be integrated with
JupyterHub [39], an application for serving notebooks for multiple users. This simplifies
the process of distributing and collecting assignments for instructors as well as accessing and
submitting them for students. To inform users about the extensive functionality, nbgrader
comes with detailed documentation as well as examples explaining the workflow.
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Setup

As described in the documentation, each nbgrader course directory has a specific struc-
ture [23]. Summarized briefly, the source and release directories contain the instructor
and student assignment notebooks respectively. Notebooks handed in by students are
collected in submitted with a separate directory for each student. The same is the case
for the autograded and feedback directories, which contain executed notebooks after
autograding and generated HTML feedback files to be returned to the students respectively.
With the nbgrader quickstart command, an example source directory with some source
files can be created as a quick starting point.

When installing nbgrader, any required extensions are installed as well. For instance, this
includes an extension for JupyterLab adding the toolbar Create Assignment with which a
type can be specified for each cell. For Jupyter Notebook, a corresponding cell toolbar can
be enabled by clicking View > Cell Toolbar > Create Assignment. As described in more
detail below, the type of a cell determines how its content may be changed when generating
student notebooks.

Among other options, some specifics of the cell types can be configured by creating a
nbgrader_config.py file, which should normally be located in the directory from which
nbgrader commands are run (e.g. to generate the student versions of assignments). The
Herculog GitHub repository provides a directory with example course files including such a
configuration file. Note that in order for all nbgrader functionality to work properly, the
Jupyter application needs to be started from the course directory.

During generation of the student version of an assignment, (parts of) the content of some
cells are removed or replaced. For instance, if an answer cell contains the delimiters BEGIN
SOLUTION and END SOLUTION, anything between them will be replaced with YOUR ANSWER
HERE for Markdown cells or a code stub in case of code cells. If no solution delimiters are
present, the entire cell content will be replaced. Otherwise, the cell can contain an answer
stub providing some help for the students. By default, there are code stubs for programming
languages such as Python and Java. In order to add one for Prolog, the config option
ClearSolutions.code_stub needs to be set. In the example from the GitHub repository,
the following stub is specified as replacement:

% YOUR CODE HERE
throw(jupyter(no_answer_given)).

Note that the way the stub is written and Prolog terms are handled, the markers should
only be placed as the last goal of a clause or enclose all code of a cell (the student version
cell can still contain comments). Otherwise, the generated content is no valid Prolog code.
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(a) Instructor version.

(b) Student version.

Figure 31: An assignment created as a Jupyter notebook with nbgrader.
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Cell Types

The type of a cell determines how its content may be adjusted for a student notebook.
Examples of the instructor and student version of a notebook can be seen in Figure 31.
Note that the path to the file containing the header for the student version is configured.

Due to the vast amount of functionality available for the cell types, not all details can be
listed here. The following information is considered to be especially helpful:

• Manually graded answer:

Defines a cell of which the content (usually a free-response answer) needs to be graded
manually. For these cells, the number of points the answer is worth needs to be
specified. Unless the cell contains BEGIN SOLUTION and END SOLUTION markers, the
entire content will be replaced with a configurable text or code stub.

• Manually graded task:

This type of cell is similar to a manually graded answer cell. However, the task is not
to be performed in the cell itself, but with other cells instead. This can be useful if in
order to solve a task, multiple cells need to be created. A special syntax allows the
instructor to insert text which will be visible in the feedback and when grading, but
not in the student version. Any text between the delimiters BEGIN MARK SCHEME and
END MARK SCHEME will be removed for the student version.

• Autograded answer: (available for code cells only)

If students are to write code, this type of cell can be selected. By using the BEGIN
SOLUTION and END SOLUTION delimiters, a method stub can be provided for students.
Otherwise, the entire cell content will be replaced with the configured code stub. The
points the answer is worth are not specified for the cell itself. Instead, they need to
be given for the tests used to grade the given answer (see the next bullet point).

• Autograder tests: (available for code cells only)

These cells contain tests which are run during autograding. They can also be run with
the Validate button to validate the solution. This can be useful for both, instructors
before generating the student version and students before submitting the assignment.
If the tests succeed, students will receive the number of specified points. Note that if
no points are set, a failure of this kind of cell does not affect the validation result.

The content of these cells cannot be modified by students. By default, the tests will
be visible in the student version. However, there is special syntax to hide tests. Any
text between the BEGIN HIDDEN TESTS and END HIDDEN TESTS markers is removed
when generating the student version.

• Read-only:

As the name suggests, a cell of this type cannot be modified by a student.
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Figure 32: Validation error window.

Validation and PlUnit Tests

Once assignments have been created, the student versions can be generated either with the
command generate_assignment or by using the formgrader extension. The latter can be
accessed with the JupyterLab menu Nbgrader > Formgrader. In Jupyter Notebook, the
corresponding nbgrader menus including Formgrader are shown in the top bar instead.
Under Manage Assignments, all assignments of the course are listed (see Figure 33a). By
clicking on the Generate button for one of them, the corresponding student version is
created, which can then be accessed with the Preview button.

Before submitting the solution as well as before releasing the assignment to students, a
user can validate the given answers with the Validate button. Basically, this causes the
kernel to be restarted and all cells to be run. However, validation can succeed even if there
are erroneous cells. The only cells affecting the validation result are autograder tests for
which more than zero points are specified. If any of those cells fails or causes an exception,
the validation fails. In that case, the content of the failing cell is displayed as well as an
error trace. For Prolog, this is the first failing term’s result (i.e. the output and error
message or failure text). When validating the example notebook from Figure 31 without
any adjustments, the window shown in Figure 32 pops up, which displays the result.



7.4 Assignments 67

(a) List of assignments.

(b) List of submissions.

Figure 33: Data available in the nbgrader Formgrader view.

When it comes to test results, again, SICStus and SWI-Prolog differ significantly. In case
of SICStus Prolog, when running tests, by default, the user is informed about the number
of tests that passed or failed. However, even if there are failing tests, the corresponding
run_tests goal can succeed anyway. Thus, in order to cause the validation to fail for
failing tests, run_tests(all, [failed(0)]). can be called. For SWI-Prolog, calling
run_tests/0 instead is sufficient as the goal fails for any failing test.

Furthermore, it might be advisable to turn off informational messages for SICStus Prolog.
Otherwise, long messages are printed for the loading of library(plunit) and the file in
which the tests are defined. This can make the error message that might be shown for a
validation unnecessarily complex. Note that this also causes the number of successful and
failed tests not to be printed. However, in case of a test failure, a corresponding message is
output anyway.

As mentioned above, any cell containing a failing term or resulting in an exception causes
the validation to fail. Therefore, it is not mandatory to use PlUnit tests for autograder
tests. Instead, it suffices to call corresponding queries right away.

Grading

When collecting the submissions in the submitted directory, it is expected to contain a
subdirectory for each student with the corresponding notebooks. The structure should look
like the following:

submitted/{student_id}/{assignment_id}/{notebook_id}.ipynb



68 7 USE CASES

The list of assignments as shown in Figure 33a displays the number of submissions. By
clicking on it, all of them can be accessed (see Figure 33b). With the Autograde button,
individual submissions can be autograded. From the command line, the autograder can be
run for all students at once with the nbgrader autograde command. In either case, the
autograded versions of the notebooks will be written to the autograded directory.

Afterwards, the submissions are available for manual grading via the Manual Grading
button. Now, instructors can award points and comment on the students’ answers. By
clicking on the Generate Feedback button, HTML files containing feedback are created in a
feedback directory. These show the notebook cells with output and additional nbgrader
information such as scores and comments.
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8 Future Work

The Herculog kernel provides most basic features as well as some more specific functionality
for programming with Prolog. However, it could still be improved by implementing even
more features as discussed in the following. While some of them correspond to rather minor
improvements of convenience features, the implementation of others would imply more
extensive changes.

The kernel already supports creating and displaying a graph resembling an SLD tree.
However, it contains nodes for call ports only. By adding leaves representing failure or
success (by showing the empty clause), it can be turned into an actual SLD tree. Further,
to allow customization of the visualization, the corresponding predicate could be extended
with an additional argument containing options for the graph creation. This would also
be beneficial for the other jupyter predicate creating a transition graph. Moreover, those
graphs cannot contain nodes without any edges. Therefore, supporting such nodes would
be a practical improvement.

Another feature that would benefit from further implementation is introspection. So far,
the documentation of Prolog predicates can be displayed. Since Herculog supports reusing
bindings from previous queries with $Var terms, it would be convenient to see the latest
binding when inspecting a variable. This way, the user could see that value without the
need of executing a query to retrieve it. Furthermore, code completion can be used for
predicates which are built-in or exported by a loaded module. As predicates defined in a
Jupyter notebook are added as dynamic clauses, completion does not work for them. Thus,
adding support for this would make for another helpful adjustment.

As pointed out by the analysis of available Prolog implementations and their portability,
there are major differences between them [29]. More precisely, the available features differ
considerably. Thus, it would be an immense gain to combine the strengths of several
interpreters by computing data with one and then reusing it with the other implementation.
The Herculog kernel can already be connected with multiple Prolog instances and it is
possible to switch between them on the fly. Once a Prolog server was started for one
implementation, it is kept running until the server is interrupted, restarted, or shutdown.
Since reusing results from one Prolog server for another one is likely to be relatively easy,
implementing this idea should not take too much effort.

Moreover, executing queries with multiple Prolog instances at the same time could be
interesting. The benchmarking mechanism can then aid in comparing the performance.
This could be simplified by implementing a predicate switching on or off printing the
execution time for every query by default. In order for this to be even more helpful, an
obvious improvement for the kernel is the extension for further Prolog implementations or
even different versions of the same implementation. By facilitating detecting differences
in their behavior, this could especially be of interest for Prolog implementors and (ISO)
standard maintainers.
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9 Conclusion

While there were multiple options for supporting literate programming for SICStus Prolog,
to the best of the author’s knowledge, writing a Jupyter kernel was the preferable one
for this thesis. Even though this means that the notebook application is not tailored for
Prolog and thus cannot provide some desirable functionality (such as dedicated cell types
for predicate definitions or queries and interactive debugging support), this shortcoming is
outweighed by the benefits that come with Jupyter.

The implemented kernel is based on the default IPython kernel and at first, it was created
for SICStus Prolog only. During the development process, it was extended for SWI-Prolog
as well. Additionally, it was made extensible for further implementations by configuration.
With some adjustment, the kernel could even be used to combine strengths of different
interpreters or facilitate the comparison of them. Code is executed by communicating with
a Prolog server, which is implemented with conditional compilation to be compatible with
both SICStus and SWI-Prolog. Messages are written to the standard input and output
streams and follow a JSON-RPC protocol.

The extension for SWI-Prolog exposed the difficulties that result from the lack of portability
for some Prolog features. The code for basic functionality was mostly compatible with
both implementations. However, more complex features such as retrieving the stack trace
required significant adjustments. Standards for libraries (e.g. for tests) and debugging
would have facilitated this work considerably.

In addition to basic functionality for SICStus and SWI-Prolog, the implemented kernel
provides some more advanced convenience features. For instance, functionality such as
code completion and inspection or the ability to define programs on the fly and execute
queries without a terminating full-stop offers advantages over programming in a Prolog
REPL. Further, as pointed out, Jupyter does not only allow the handling of notebooks for
interactive programming and code documentation. Since the documents can additionally
be turned into lecture slides and aid in creating and grading student assignments, Herculog
might be a good tool for teaching Prolog.
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