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Abstract

The aim of this work is to translate files written in railML to the formal B-method to
enable formal verification and validation of the specifications. RailML is an XML-based
format designed to facilitate the exchange of information about railway systems between
railway applications. Since undetected small errors in the modelling can lead to serious
errors in the real system, especially with safety-critical properties such as train protection,
the files should always be subjected to an automatic validation.

The approach developed in this thesis allows automatic syntactic and semantic validation
against predefined rules. For this purpose, ProB and its integrated B-Rules DSL are used
to validate these rules. In addition to the validation, a B-model is presented to animate
the behaviour of the specification, which can also be used for simulations and statistical
tests using SimB. By using generated machines, the user can also define custom rules for
validation using the mathematical expressiveness of the B language. A strategy for creating
visualisations of the topology using Graphviz is presented, which can also be used with
VisB to visualise the current state. The entire process is made available in a user-friendly
way through integration into the ProB2-UI.

Finally, case studies are investigated to show that the implemented validation process can
be efficiently applied to complex models and that errors can be successfully detected in
some of the models.
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1 Introduction

Undetected small errors in safety-critical systems may cause serious accidents. Therefore,
when developing such systems, it is essential to prevent these errors from the beginning and
build correct software by construction. Formal methods can effectively help to achieve this
goal. They enable a mathematical description of the system’s properties and requirements,
and their automatic (and manual) verification. This is often done using so-called state-based
methods, where the current state of the system is considered and, based on this, various
events can occur that lead to further states. Using model checking, it is then possible to
traverse through the entire state space, check the properties in each state, and determine
whether a safety-critical state exists. A prominent example for a state-based method is
the B-method developed by Abrial [Abr96], which is now widely used in both research
and industry. Particularly in the railway sector, the B-method has become established for
verification of railway (interlocking) systems, but in recent decades also for validation of
data from external sources, such as XML files. The B-method and some of its applications
in railways are described in Section 1.1.

The aim of this work is to convert railway system specifications described in the Railway
Markup Language (railML®)[CNC17; Nas+04; Rai23a] to a representation in the B-method
to allow formal verification and validation of the specified system. This is done using
ProB [LB03], an animator, constraint solver, and model checker for the B-method. First,
the data is read from the railML file using an external function and then imported using
ProB’s rule validation language [HSL16]. Syntactic and semantic validation is performed
on the imported data and new data structures are derived. Based on this, the model
can be animated and simulated with SimB [VLM21] using a formal B model developed
for this purpose in classical B. The imported data can also be stored and animated in
separately generated machines. These steps can be carried out in a user-friendly way by a
plugin currently being developed for the ProB2-UI [Ben+21]. It also enables the creation
of configurable visualisations of the topology compatible with VisB [WL20].

The structure of this thesis is based on the sequence of the overall process. After a short
introduction to the B-method and railML 3, Section 2 introduces the language for rule
validation in ProB. Section 3 deals with the import process of railML data into ProB,
including syntactic and semantic validation. Section 4 then goes into the representation
of the data in B and the following Section 5 explains how the animation based on this
is implemented in B. After this, Section 6 elaborates on the advantages on generation
of standalone B machines out of the imported data and describes the implementation.
Simulation using SimB (Section 7) and visualisation using VisB (Section 8) complete the
investigation of the animation model. The following Section 9 presents the current approach
for integrating the developed process into a plugin for the ProB2-UI. Finally, in Section 10,
results for exemplary case studies are discussed and then performance evaluations for
different models are carried out (Section 11).
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1.1 The B-Method in Railway Context

In general, formal methods are of great interest in the railway sector and are recommended
by the EN50128 standard for SIL 3 and SIL 4 systems. Ferrari and Beek [FB22] conducted
research on formal techniques used in the railway industry and found that B is one of the
dominant languages for formal modelling. The most common techniques identified were
model checking at 47% and simulation at 27%, both of which are applied in this work.
This is done using ProB, which is a commonly used tool in this context, appearing in 9%
of the studies examined.

The B-method has already been successfully applied to industrial railway projects in
particular, a famous example being the driverless Paris metro line 14, for which all safety-
critical components of the system were formally developed using B and which has now
been operating safely since 1998 [But+20]. There are many other projects using B and
its successor Event-B, including, for example, a real-time demonstration of ETCS Hybrid
Level 3 using ProB [Leu23].

Originally the classical B-method [Abr96] has been developed for creation of safety-critical
software by formal specifications based on set theory and first-order logic. Abstract machines
are refined by adding more details in each refinement step until a concrete specification is
reached which can then be used for code generation. A machine in classical B can basically
have the following components: CONSTANTS that are described by PROPERTIES; SETS for the
definition of new types; VARIABLES that must always fulfil certain INVARIANTs and whose
initial values are set in the INITIALISATION; OPERATIONS that change the state, i.e. the
variable assignment, and can only be executed if their preconditions (guards) are fulfilled.
In ProB, DEFINITIONS can also be used, which, among other things, allow access to external
functions (e.g. for loading XML files). These formal B models can then be animated,
model checked, visualised, and also simulated to verify that the specification fulfils the
(safety) requirements and allow domain experts to investigate whether the specified model
behaves as expected. To enable this for the models specified in railML, a B model has
been developed based on the simple interlocking system model by Abrial [Abr10].

Besides formal modelling of systems, formal data validation has emerged as another
useful application area of the B-method in recent decades, also with several successful
projects [But+20; PK21]. The aim is to validate static input parameters (constants)
of a specification against previously defined requirements and assumptions. Ordinary
B machines, but also domain-specific languages, can be used to formulate the rules that
formally capture these assumptions [HSL16; LM16; Lec+17]. Here, this approach is used
to formally validate the railML data against syntactic and semantic rules formulated using
ProB’s built-in rule validation language before animating the system, which is documented
in detail in Section 2. Since this translates the rules into an internal representation using
classical B (cf. Appendix E), all machines are written in the classical B notation.
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1.2 RailML 3

The purpose of railML is to enable a standardised data exchange between different rail-
way applications. Based on XML, it has four main sub-schemas: Infrastructure (IS),
Rollingstock (RS), Timetable (TT), and as of railML 3 also Interlocking (IL). RailML 3
uses a completely new approach based on the RailTopoModel (RTM) [Rai23c], which is
not backward compatible with railML 2. Since interlocking data is of great interest for
verification of safety properties with the formal B-method, this work focuses on the current
version of railML 3, namely railML 3.2. The following section provides a brief introduction
to the parts of railML 3 that are later used in the B model. How these elements are
modelled in B is described in Section 4. Due to the high level of detail of the entire
railML schema, only a subset of all properties is implemented in this work. The complete
documentation of the railML 3 schema can be obtained from the railML 3 wiki [Rai23b].
Some general concepts of railML 3 and the integrated RTM are addressed by Kolmorgen
et al. [Kol+23].

In some places there are references to the Simple Example, the Advanced Example, or
Norwegian examples. These refer to railML sample files that were used as case studies to
test the implementation and are introduced in more detail in Section 10.

Topology The entire model of railML 3 is based on the RTM, which is a multi-level
approach for definition of topologies. It uses a basic node-edge-model for description of
connected elements on a certain level of the topology. In railML 3, the nodes are so called
netElements which are connected by edges defined in netRelations. In a further section
networks all topology elements can be assigned to different networks and within them to
one of the three level types (micro, meso, and macro) that are given by the RTM. Elements
at micro level are closely related to the infrastructure, such as net elements that form a
track or contain signal locations. Meso and macro level elements describe a coarser view of
the topology, such as connections between operational points or stations. The B model in
its current form aims to use only elements that are located at micro levels, as the model is
intended to investigate the infrastructure and interlocking data, which mostly happens at
micro level. Also, the grouping of net elements is currently not considered by the formal
model, as these properties are only relevant for grouping lower level elements to connect
them to a higher level element. Further details on the linking of net elements in the RTM
and differences between the levels are elaborated by Bollig [Bol20], Hlubuček [Hlu17], and
Wunsch and Jaekel [WJ17] (in German).

In railML 3, the topology data is specified in the topology section of the infrastructure
schema1. An example of a simple definition is given in Listing 1, which encodes the topology
shown in Figure 1. Each of the specified netElements induces a corresponding system of
intrinsic coordinates ranging from 0.0 to 1.0, where a coordinate indicates the position
relative to the endpoints of the netElement. A netRelation connects the endpoints of

1https://wiki3.railml.org/wiki/IS:topology (accessed on 22/10/2023)

https://wiki3.railml.org/wiki/IS:topology
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two different netElements as given by the attributes positionOnA/B. They can take the
two values 0 and 1 to specify the intrinsic end coordinate to which the relation should be
connected. For example, the two coordinates (ne02, 1.0) and (ne04, 0.0) are connected by
a relation. For each relation, it is also possible to provide information about the usable
direction of a relation by setting navigability. In the example of Listing 1 there is a
triangular relationship between ne02, ne03 and ne04. As the relation between ne03 and
ne04 is non-navigable (line 23), there must be a switch between ne02, ne03, and ne04.
Finally, all elements are declared to be a networkResource of the microscopic level lv01.

Listing 1: Simple Topology Encoded in RailML 3
1: <railML version ="3.2">
2: <infrastructure id="is01">
3: <topology >
4: <netElements >
5: <netElement id="ne01"/>
6: <netElement id="ne02"/>
7: <netElement id="ne03"/>
8: <netElement id="ne04"/>
9: </ netElements >

10: <netRelations >
11: <netRelation id=" nr0102 " positionOnA ="1" positionOnB ="0"

navigability ="Both">
12: <elementA ref="ne01"/>
13: <elementB ref="ne02"/>
14: </ netRelation >
15: <netRelation id=" nr0203 " positionOnA ="1" positionOnB ="1"

navigability ="Both">
16: <elementA ref="ne02"/>
17: <elementB ref="ne03"/>
18: </ netRelation >
19: <netRelation id=" nr0204 " positionOnA ="1" positionOnB ="0"

navigability ="Both">
20: <elementA ref="ne02"/>
21: <elementB ref="ne04"/>
22: </ netRelation >
23: <netRelation id=" nr0304 " positionOnA ="1" positionOnB ="0"

navigability ="None">
24: <elementA ref="ne03"/>
25: <elementB ref="ne04"/>
26: </ netRelation >
27: </ netRelations >
28: <networks >
29: <network id="nw01">
30: <level id="lv01" descriptionLevel ="Micro">
31: <networkResource ref="ne01"/>
32: <networkResource ref="ne02"/>
33: <networkResource ref="ne03"/>
34: <networkResource ref="ne04"/>
35: <networkResource ref=" nr0102 "/>
36: <networkResource ref=" nr0203 "/>
37: <networkResource ref=" nr0204 "/>
38: <networkResource ref=" nr0304 "/>
39: </level >
40: </network >
41: </networks >
42: </topology >
43: </ infrastructure >
44: </railML >
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ne01 ne02nr0102 0

1

ne03nr0203 1

1

ne04nr0204 01

Figure 1: Graph Visualisation of the Example Topology

Infrastructure Elements After specifying a topology, infrastructure elements can be
defined that are located in the topology. This is done in the section functionalInfra-
structure, where all infrastructure elements can be specified grouped by type. Basically,
an ID and a position must be provided for each element. Further properties can be provided
through attributes or child elements, which may also contain additional details. The most
important elements for use in the B model are all movable elements (i.e. derailers, crossings
and switches), tracks, train detection elements and signals. As an example, Listing 2
defines a switchable train movement signal with the name “69W04Y” located at the net
element "ne_b05" (taken from the “Simple Example” by railML.org).

Listing 2: Signal Encoded in RailML 3 on Infrastructure Side
1: <functionalInfrastructure >
2: <signalsIS >
3: <signalIS id="sig08" isSwitchable ="true">
4: <name name="69 W04Y" language ="en"/>
5: <spotLocation id=" sig08_sloc01 " netElementRef =" ne_b05 "

applicationDirection =" normal " pos="100.0"/>
6: <isTrainMovementSignal />
7: </signalIS > [...]
8: </signalsIS > [...]
9: </ functionalInfrastructure >

The RTM allows to specify the location of infrastructure elements pointwise, linearly or as
an area. For specifying location data, three corresponding types can be used in railML 3,
namely areaLocation, linearLocation, and spotLocation. The areaLocation-type is
currently not yet used in the B model since areas occur very rarely when describing locations
on a microscopic level. The type linearLocation can be used to indicate the location of
an element that extends linearly over several net elements like a track or platform. It is
also possible to use several parallel linear sections, for example for tunnels. To specify a
single location, as for the signal in Listing 2, the type spotLocation is used. Each location
consists of a net element in conjunction with an intrinsic coordinate on that element.

The infrastructure elements are defined independently of each other, which means they usu-
ally do not refer to each other and mainly describe the location, the physical characteristics
and capabilities of the element. Behaviour, dependencies and references are introduced in
the interlocking logic, which is why there is often one type for each of the schemas.
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Interlocking The interlocking schema defines the interlocking logic for assets in its
assetsForInterlockings section. Important concepts are track vacancy detection sections
(tvdSections) for information about the occupation of track sections between certain
trainDetectionElements and routes that can be reserved by trains. A route specification
looks like the example in Listing 3. A routeEntry and a routeExit, usually a reference to
an interlocking signal, must be specified and required switch positions for the uniqueness
of the connected path can be specified. Similarly, TVD sections can be linked to the route
and overlaps to the route exit. An overlap secures an additional section after the route
exit. Further safety requirements such as flank protection for a route can be specified by
routeRelations.

Listing 3: Route Encoded in RailML 3
1: <route id="rt1">
2: <facingSwitchInPosition inPosition ="right">
3: <refersToSwitch ref=" il_swi1 "/>
4: </ facingSwitchInPosition >
5: <routeEntry id=" ren_rt1 ">
6: <refersTo ref=" il_sig1 "/>
7: </routeEntry >
8: <hasTvdSection ref="tvd1"/>
9: <routeExit id=" rex_rt1 ">

10: <refersTo ref=" il_sig2 "/>
11: <hasOverlap ref="ovl1" />
12: </routeExit >
13: </route >

The assets for interlocking include the already mentioned twin elements on interlocking
side for the infrastructure elements, which is especially the case for the movable elements.
For example, there is exactly one switchIS element and one switchIL element referencing
the infrastructure element for each ordinary switch. On the interlocking side the branches
from the track perspective, the throw times and any associated sections for controlling
the track vacancy are specified, while on the infrastructure side mainly the position of the
switch and its branches in the topology are described.

There are other subsections in the interlocking scheme. In the signalBoxes section, proper-
ties of the signal boxes themselves can be defined, for example the behaviour of the signals
controlled by signal plans (implementsSignalplan) having different aspectRelations.
The specificInfrastructureManager section contains further infrastructure manager
related properties such as the possible signal aspects or reset strategies of TVD sections.
For signals, for instance, the individual aspect is mapped by hasAspect to a generic aspect,
which can then be used in the formal modelling.

Some further details, including the other railML schemas (e.g. for visualisation), will be
introduced as their use in the B-model is explained.
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2 The Rule Validation Language in ProB

In addition to modelling the behaviour of system specifications, formal methods have also
evolved towards data validation. The objective is to validate static properties, which may
originate from external sources such as XML or CSV files, against previously developed
rules. According to Lecomte et al. [Lec+17], this type of verification was still done manually
around the year 2000, which is a very error-prone and time-consuming process. The use of
formal methods, including the B-method, considerably simplifies this process, as the rules
can be formally coded and usually be verified automatically within a much shorter time.
In order to enable easy access to the capabilities of the B language for formulation of such
rules by domain experts, domain-specific languages (DSL) have been developed. Lecomte
et al. [Lec+17] also provide an example of a “verification rule” (Fig. 4).

ProB has its own rule-based language for convenient data validation based on classi-
cal B [HSL16; Hei18], which has similarities to the example mentioned above. By formulat-
ing so-called rules and computations, it is possible to check the rules and compute variables
depending on success or failure of rules. The first section of this chapter begins with a
detailed introduction to the rule validation language implemented in ProB, which has been
similarly added to the ProB documentation2 as part of this project. This is followed by a
description of how the mechanisms for loading and validating XML files can be applied.

2.1 General Usage

The rule validation language, hereafter referred to as B-Rules DSL, mainly provides opera-
tions for data validation. Rules allow checking for expected properties, while computations
can be used to define and compute variables based on the successful execution of certain
rules. Furthermore, functions allow values to be computed multiple times depending
on different inputs. Rules machines are stored in .rmch-files. The general setup for the
machine header is:

RULES_MACHINE machine_name REFERENCES list of rules machines.

The latter allows the inclusion of other rules machines and ordinary B machines that
contain only constants, but not yet any other B machines. Below, SETS, DEFINITIONS,
PROPERTIES or CONSTANTS can be used as in a normal B machine. Note that VARIABLES
are not allowed as they are set by rule based computations.

Rules Rules can be defined in the OPERATIONS-section of a rules machine. Depending on
whether the expectations are met, a rule returns SUCCESS or FAIL. If a rule fails, additionally
provided string messages are returned as counterexamples. The general structure of a rule
in the B-Rules DSL is presented in Listing 4.

2https://prob.hhu.de/w/index.php?title=Rules-DSL (accessed on 25/10/2023)

https://prob.hhu.de/w/index.php?title=Rules-DSL
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Listing 4: General structure of a RULE in B-Rules DSL
1: RULE rule_name
2: DEPENDS_ON_RULE list of rules
3: DEPENDS_ON_COMPUTATION list of computations
4: ACTIVATION predicate
5: ERROR_TYPES positive number of error types
6: BODY
7: arbitrarily many rule bodys (see below)
8: END

The specified rule_name will be the name of the operation and variable storing the result.
If a rule depends on other rules, it can only be executed if the specified rules have been
successfully checked, i.e. their corresponding variable rule_name has the value SUCCESS.
In addition, rules can depend on computations. In this case, a rule is enabled when the
specified computations have been executed. If a rule uses variables that are defined by
computations, the corresponding computations are added implicitly as dependencies and
do not have to be declared explicitly. Any other preconditions can be specified as an
ACTIVATION predicate. An important note is that the activation predicate is evaluated
statically at initialisation and disables the rule if the predicate is false. Activation predicates
and dependencies can be omitted if they are not needed.

To use different error types (for example, if a rule has multiple bodies and it is necessary
to distinguish between them), the number of error types has to be declared in the rule
header. Error types are also optional.

The actual rule conditions are specified within the body of a rule, which contains the name
and the preconditions. A rule succeeds if and only if all rule conditions in its body are
satisfied. There are two constructs for rule bodies that can be used arbitrarily often in
the body of a rule. The one shown in Listing 5 is formulated in a positive way, i.e. the
execution of the rule leads to SUCCESS if the conditions in the EXPECT-part are fulfilled.

Listing 5: General structure of the RULE_FORALL body
1: RULE_FORALL
2: list of identifiers
3: WHERE
4: conditions on identifiers
5: EXPECT
6: conditions that must be fulfilled for this rule
7: ERROR_TYPE
8: number encoding error type , must be in range of error types
9: COUNTEREXAMPLE

10: STRING_FORMAT (" errorMessage ~w", identifier from list)
11: END

Alternatively, a negated rule can be formulated, which is shown in Listing 6. Here the
execution of the rule results in FAIL if the conditions in the WHEN part are fulfilled.
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Listing 6: General structure of the RULE_FAIL body
1: RULE_FAIL
2: list of identifiers
3: WHEN
4: conditions on identifiers for a failing rule
5: ERROR_TYPE
6: number encoding error type , must be in range of error types
7: COUNTEREXAMPLE
8: STRING_FORMAT (" errorMessage ~w", identifier from list)
9: END

For both, the counterexamples are of the type INTEGER <−> STRING. The integer contains
the error type, while the string contains the message of the counterexample.

Computations Computations can be used to define variables. As for rules, their
activation can depend on further rules, computations or any other predicate specified as
an activation condition. Again, the activation condition is evaluated at initialisation and
sets the computation status variable to COMPUTATION_DISABLED if the predicate is false.
Furthermore, a DUMMY_VALUE can be set, which initialises the variable with the specified
value instead of the empty set before execution of the computation. This mechanism
implies that each variable defined by a computation must be a set of type POW(S) for any
type S. A computation can be replaced by a previously defined computation if it sets the
same variable (of the same type) by using REPLACES. The general syntax for computations
is shown in Listing 7.

Listing 7: General structure of a COMPUTATION in B-Rules DSL
1: COMPUTATION computation_name
2: DEPENDS_ON_RULE list of rules
3: DEPENDS_ON_COMPUTATION list of computations
4: ACTIVATION predicate
5: REPLACES identifier of exactly one computation
6: BODY
7: DEFINE variable_name
8: TYPE type of variable
9: DUMMY_VALUE value of variable before execution

10: VALUE value of variable after execution
11: END
12: END

Activation predicates, dependencies, and also the dummy value can be omitted if they
are not needed. After the execution of a computation, the value of the corresponding
variable computation_name is changed from NOT_EXECUTED to EXECUTED and the variable
variable_name has the value VALUE. For related computations, it may be useful to use
multiple DEFINE blocks in one computation. Separated by “;”, the body of a computation
can contain any number of variable definitions.
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Functions Functions formulated as in Listing 8 can be called from any rules machine
that references the machine containing the function. Depending on input parameters
that must satisfy specified preconditions, the function returns output value(s) that must
satisfy optional postconditions. In the body, any B statement can be used to (sequentially)
compute the output value.

Listing 8: General structure of a FUNCTION in B-Rules DSL
1: FUNCTION output <−− function_name (list of input parameters )
2: PRECONDITION predicate
3: POSTCONDITION predicate
4: BODY
5: output := ...
6: END

Additional Syntax There are some useful predicates available in rules machines that
can be used to check the success or failure of rules. It is also possible to check whether a
certain error type was returned by a rule. These are:

• SUCCEEDED_RULE(rule1): TRUE, if the check of rule1 succeeded
• SUCCEEDED_RULE_ERROR_TYPE(rule1,1): TRUE, if the check of rule1 did not fail with

error type 1
• GET_RULE_COUNTEREXAMPLES(rule1): set of counterexamples of rule1
• FAILED_RULE(rule1): TRUE, if the check of rule1 failed
• FAILED_RULE_ERROR_TYPE(rule1,2): TRUE, if check of rule1 failed with error type 2
• FAILED_RULE_ALL_ERROR_TYPES(rule1): TRUE, if the check of rule1 failed with all

possible error types for rule1
• NOT_CHECKED_RULE(rule1): TRUE, if rule1 has not yet been checked
• DISABLED_RULE(rule1): TRUE, if rule1 is disabled (its preconditions are not fulfilled)

Another functionality of rules machines are FOR-loops. Listing 9 illustrates an example
where the rule always fails and returns

{1 |−> "example_rule_fail: 2", 1 |−> "example_rule_fail: 3"}.

Listing 9: Example of a FOR-loop in B-Rules DSL
1: RULE example_rule
2: BODY
3: FOR x,y IN {1 |−> TRUE , 2 |−> FALSE , 3 |−> FALSE} DO
4: RULE_FAIL WHEN y = FALSE
5: COUNTEREXAMPLE STRING_FORMAT (" example_rule_fail : ~w", x)
6: END
7: END
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Internal Representation Each rules machine is internally translated to an ordinary
B machine, which can be accessed as its internal representation. The translation of an
example rule can be found in Appendix E. Another comparison of a rules machine and its
internal machine is illustrated by Hansen et al. [HSL16].

Include Rules Machines into other Projects Currently, it is not possible to include
rules machines directly into any other machines. Instead, the beforehand described internal
representation of the hierarchical topmost rules machine must be saved as .mch-file. After
changing the machine name accordingly, the rules can be included and used via this
machine. This is discussed further in Section 3 on the use of rules machines in this project.

Plugin for ProB2-UI A plugin is available for the ProB2-UI from Heinzen [Hei18] for
convenient access to the functionality of rules machines. It allows execution of rules and
computations together with its dependencies, and lists the counterexamples in a separate
tab. For use in this project, the code had to be slightly adapted to make the plugin
compatible with the current version of ProB2-UI.

2.2 Import and Validate XML Files

The concept of rule validation can be used to validate data from an XML file and load
the validated data into ProB by successive computations. A brief description of importing
XML files in ProB is also given by St-Denis [St-23]. In general, XML data can be loaded in
ProB by the external function READ_XML. It takes the relative path to the XML file to be
imported as the first argument and the encoding of the file as the second argument. Valid
encodings are listed in LibraryXML.def, whereby "auto" should be selected by default,
which tries to determine the encoding based on the header of the XML file. READ_XML
returns a sequence of XML elements of the type XML_Element_Type as shown in Listing 10.

Listing 10: Type of an XML Element loaded by READ_XML
1: XML_Element_Type ==
2: struct (
3: recId: NATURAL1 ,
4: pId: NATURAL ,
5: element : STRING ,
6: attributes : STRING +−> STRING ,
7: meta: STRING +−> STRING )

Each element record has a unique identifier recId, which is also its position in the sequence,
and stores the relationship to its parent in pId. Furthermore, the type of the element is
stored as STRING in the field element and all existing attributes are available in attributes
as a function from the attribute type to the value of the attribute. Finally, additional meta
data such as line numbers is made accessible via the field meta.
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Note that attributes by definition excludes multiple values for the same attribute types
(which is also an important property to validate for an XML file), but also only includes
existing attributes. Since optional attributes are common in XML schemas, this also raises
the problem of how to deal with missing attributes that are not known when the XML file
is parsed. For attributes with default values this can easily be avoided without changing
the type by using the default value. To avoid this issue for variables without default value,
the data can be encapsulated in a set. If the attribute is present, the set contains its value,
otherwise the set is empty. Listing 11 illustrates the described technique with a basic
example.

Listing 11: Example for Import and Validation of an XML File in B-Rules DSL
1: RULES_MACHINE XML_import
2: DEFINITIONS
3: " LibraryXML .def"
4: CONSTANTS
5: xml_data
6: PROPERTIES
7: xml_data = READ_XML (" xml_file .xml", "auto")
8: OPERATIONS
9: COMPUTATION set_version

10: BODY
11: DEFINE version
12: TYPE FIN( STRING )
13: VALUE IF " version " : dom( xml_data (1) ’attributes ) THEN

{ xml_data (1) ’attributes (" version ")} ELSE {} END
14: END;
15: RULE is_valid_version
16: DEPENDS_ON_COMPUTATION set_version
17: BODY
18: RULE_FAIL v
19: WHEN
20: v : version & v /: {"3.1","3.2"}
21: COUNTEREXAMPLE
22: "xyz of version "^v^" is currently not supported "
23: END
24: END
25: END

An XML file is read and stored in the constant xml_data. A computation set_version is
used to extract the version of the used XML schema, which is then checked by the rule
is_valid_version.

The following chapter describes the approach of how the rules machines are used to import
and validate railML data, and how the imported data can be accessed in B.
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3 The Import Process

The techniques of the B-Rules DSL described in Section 2 are used to import and validate
railML data in ProB. In this way, the entire conversion process can be handled on the
B-side, enabling import using ProB without any additional dependencies. It also allows
direct use of ProB’s constraint-solving capabilities to compute logical relationships directly
from the data. This was also the reason for the decision to use the B-Rules DSL, whose
computations allow a sequential import of data using ProB and the B-method. The
resulting machines can be used standalone by experienced users. Furthermore, a plugin for
the ProB2-UI is currently under development for a more convenient and interactive use,
which is described in detail in Section 9.

The import and validation process is based on several rules machines, where each machine is
associated with one of the subschemas Infrastructure, Interlocking, Visualization,
and Common. Each of them loads the railML data into B-records to ensure type checking of
the attributes and then performs syntactic validation of the loaded data for the railML 3-
schema. After syntactic validation, the data from the records is transferred into data
structures that allow easier access to certain fields and also map relationships between
different elements, such as the path of routes. Then, additional rules are executed to
validate semantic constraints for both imported and derived data.

The used rules machines are linked by referencing and finally merged into one machine
that simultaneously imports and validates the RailML data, as illustrated in Figure 2. In
RailML 3, almost all data depends on the infrastructure data (IS), which is also reflected in
the hierarchy of the rules machines. Also at the lowest level is the independent machine for
the schema common (CO), which provides individual names of elements and some general
properties such as speed profiles. Since interlocking (IL) and visualisation (VIS) data
depend on infrastructure and common data, both machines reference the corresponding
machines.

The following subsections describe the import process in detail and how the validated data
is further processed for animation.

3.1 File Import

The starting point is the rules machine RailML3_readFile.rmch, where the raw import of
XML data into B is done by the external function READ_XML as introduced in Section 2.2.
Here, the read data is stored in a constant data, it is checked whether the XML file is of
type railML at all and the railML version is extracted into a constant version. Currently
supported versions are 3.1 and 3.2, any other version will be rejected by an associated rule.
Both versions differ only in a few places that are relevant for the conversion to B. Storing
the version allows the model to use case distinctions where appropriate later, so that the
model supports both versions at the same time without the need for an adaption.
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RailML3_readFile.rmch

RailML3_IS.rmch

references

RailML3_CO.rmch

references

RailML3_IL.rmch

references

RailML3_VIS.rmch

references
references

RailML3_validation.rmch
references references

RailML3_import.mch

includes

RailML3_validation_flat.mch

Figure 2: Machine Hierarchy of the Import and Validation Process

Furthermore, all IDs occurring in the XML document are extracted into the concrete
constant all_ids of type STRING <-> (STRING <-> NATURAL), where a tuple of this
relation contains the ID (attributes("id")) as the first argument and a pair of its type
(element) and record number (recId) as the second argument. The record number comes
from the sequence given by READ_XML and ensures uniqueness of the pair. As can be seen,
all IDs are treated as strings, which in some places makes it easier to combine IDs of
different types. The rule unique_ids is then used to check whether all IDs found in the
document are unique, which is crucial for the correct functionality of the model, as many
elements may reference others3. Finally, for easy access to all IDs of a certain type there
is the abstract constant allIdsOfType of type STRING +-> FIN(STRING), which returns
the set of all IDs for a given type.

There are also two other useful abstract constants for the import, namely elementsOfType
and childsOfElementType. elementsOfType returns all records of data of the given type,
and childsOfElementType does the same, except that it returns only those elements that
are children of a parent specified by its pId.

For efficient use of these abstract constants, the MEMOIZE_FUNCTIONS preference should be
enabled in ProB (cf. Section 11.3).

3See also https://wiki3.railml.org/wiki/Dev:identities (accessed on 26/10/2023).

https://wiki3.railml.org/wiki/Dev:identities
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3.2 Data Conversion

Once the XML file has been read, the data is converted and validated for use in the B-model
by the beforehand mentioned schema-based rules machines. Conversion to standardised
data types is necessary to ensure correct interpretation of the data values [St-23]. For
example, numerical values without conversion to the corresponding B-type (INTEGER or
REAL) would only be interpretable as a string. This would not allow any calculations with
the values and would also lead to further inconsistencies like "50.0" not being equal to
"50.00", even though both strings represent the same number.

Currently, only selected elements and attributes are imported and covered by the validation,
mainly those that are important for the animation, but also additional ones. The general
approach of the validation is to first store data of the same type in a set of B-records,
which have fields for the attributes and also for certain children. Children are stored in
the parent record if their type is uniquely associated with the type of the parent, such
as overlapRelease belongs to overlap, or if they can be formulated as simple sets, for
example, as a set of referenced IDs. The types of these records are defined in separate
definition files, such as RailML3_IS_Types.def. Since a type must be specified for each
field of a record, the types of the imported data are automatically validated by ProB in
the form of invariants, as is the case for all computations of rules machines. In the case of
an error, there is an invariant violation that must be investigated by the user.

An example definition of a record type for railML elements of the type tvdSection can
be found in Listing 12, together with its corresponding computation in Listing 13, which
performs the conversion from strings to the appropriate types. As for all record types that
are not integrated into the parent record, the first two elements contain the record and
the parent ID given by READ_XML to keep the relationships between the XML elements.
The xmlLineNumber is also given as meta information by READ_XML and can be easily
converted to a natural number using STRING_TO_INT. This field is mainly used to provide
line positions in case of a validation error.

Listing 12: B Record Type Definition for tvdSection
1: RailML3_IL_tvdSection_Type ==
2: struct (
3: recId : NATURAL1 ,
4: pId : NATURAL ,
5: xmlLineNumber : NATURAL1 ,
6: // attributes :
7: Id : FIN(dom( all_ids )),
8: isBerthingTrack : BOOL ,
9: technology : FIN( RailML3_IL_TVD_SECTION_TECHNOLOGY_TYPES ),

10: // children :
11: hasDemarcatingBufferstops : FIN( allIdsOfType (" bufferStop ") \/

RailML3_IS_OPENEND_IDS ),
12: hasDemarcatingTraindetectors : FIN( allIdsOfType (" trainDetectionElement "

))
13: );
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Listing 13: Computation for Import of tvdSection
1: COMPUTATION set_tvdSection
2: DEPENDS_ON_RULE is_valid_tvdSections
3: DEPENDS_ON_COMPUTATION set_BORDER
4: BODY
5: DEFINE RailML3_tvdSection
6: TYPE FIN( RailML3_IL_tvdSection_Type )
7: VALUE dom ({e, e_tvd | e_tvd : elementsOfType (" tvdSection ")
8: & e = rec(
9: recId: e_tvd ’recId ,

10: pId: e_tvd ’pId ,
11: xmlLineNumber : STRING_TO_INT (e_tvd ’meta(" xmlLineNumber ")),
12: Id: e_tvd ’ attributes [{"id"}],
13: isBerthingTrack : IF " isBerthingTrack " : dom(e_tvd ’ attributes ) & e_tvd

’ attributes (" isBerthingTrack ") = "true" THEN TRUE ELSE FALSE END ,
14: technology : IF " technology " : dom(e_tvd ’ attributes ) THEN

{ TYPED_STRING_TO_ENUM ( RailML3_IL_TVD_SECTION_TECHNOLOGY_TYPES ,
" technology_ "^e_tvd ’ attributes (" technology "))} ELSE {} END ,

15: hasDemarcatingBufferstops : dom ({ i_A , e_A | e_A :
childsOfElementType (" hasDemarcatingBufferstop ", e_tvd ’recId)
& i_A : e_A ’ attributes [{"ref"}] }),

16: hasDemarcatingTraindetectors : dom ({ i_A , e_A | e_A :
childsOfElementType (" hasDemarcatingTraindetector ", e_tvd ’recId)
& i_A : e_A ’ attributes [{"ref"}] })

17: ) })
18: END
19: END;

The handling of attributes is a bit more challenging, since they do not always have to
be present in XML files. There can be optional attributes that are correctly absent, but
there are also obligatory attributes that can be incorrectly absent. To handle the absence
of an attribute, it is therefore necessary to treat attributes as sets of their type, which
allows an unspecified attribute to be represented by the empty set. This can be observed,
for example, in Listing 12 with its field Id, even though this is an obligatory attribute.
The presence of such attributes will be checked in the syntactic validation afterwards.
Attributes that must be defined for correct animation and for which default values can be
applied are not modelled as sets. Their value is either selected as specified in the railML
file or, if not specified, the default value is used. In the example this is the case for the
attribute isBerthingTrack which is set to FALSE if it is not specified.

Some fields may only contain predefined values, as it is the case with the technology
attribute. These values can be obtained from the documentation of each element in the
railML wiki4 and are modelled in B as enumerated sets like

RailML3_IL_TVD_SECTION_TECHNOLOGY_TYPES =
{technology_axleCounter, technology_trackCircuit}.

4For tvdSection: https://wiki3.railml.org/wiki/IL:tvdSection (accessed on 26/10/2023).

https://wiki3.railml.org/wiki/IL:tvdSection
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As can be seen in line 14 of Listing 13, the conversion is done by the external function
TYPED_STRING_TO_ENUM, which takes as arguments the expected enumerated set and the
string to be converted, and throws an error if the conversion is not possible, meaning that
an invalid entry is used in the railML file.

For elements that specify times in the format xs:duration, this can be translated to a natural
number representing the duration in milliseconds using the definition readDuration, which
uses regular expressions for parsing. At the moment, only seconds and milliseconds are
supported.

In general, the described procedure is applied for child elements that are integrated into
the parent node, provided that multiple attributes and additional children are used. The
child elements of an element of a particular type are obtained using the abstract constant
childsOfElementType as described in Section 3.1. If the children only specify references
to other elements, such as the demarcating elements of tvdSections, they are combined
into one set of references, as shown in lines 15 and 16 of Listing 13. The type of the field
and the set of IDs can be used to specify which references should be allowed, here these
are for example bufferStops and open ends (borders with attribute openEnd="true")
for hasDemarcatingBufferstops (line 11 in Listing 12).

3.3 Syntactic Validation

After conversion of the elements of a type, a rule is_valid_<type> validates whether all
elements of the previously computed record RailML3_<type> are syntactically valid under
the railML 3 schema corresponding to the version of the file (3.1 or 3.2). Of course, this
task can also be performed by other validation software, such as railVIVID5, but it is
essential to check this in the B model as well for reasons of well-definedness. The example
of tvdSections is continued in Listing 14 with three examples of frequently occurring
rules.

Obligatory Attributes The first rule (lines 4-8 in Listing 14) checks whether the
Id field is filled with a valid value as it is an obligatory attribute. In addition, the
invariant generated by the computation checks whether the type of the ID matches the
type determined when the file was read (which should always be the case). There is no
need to check for duplicate IDs here, as this is already done generically when the file is
read. The purpose of this check is only to ensure that each element of the type has a
correct Id attribute. This is important for the well-definedness of subsequent rules that
use this type, and allows the use of MU_WD6 to access the Id field.

5https://www.railml.org/en/user/railvivid.html (accessed on 26/10/2023)
6The MU_WD operator is available in ProB since version 1.12.2 and gives the element of a singleton set,

which is always the case for a validated obligatory attribute. Its semantic is similar to MU, but MU_WD
provides stronger propagation if the used expression is known to be well-defined.

https://www.railml.org/en/user/railvivid.html
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Listing 14: Syntactic Validation Rule for tvdSection
1: RULE is_valid_tvdSection
2: DEPENDS_ON_COMPUTATION set_tvdSection
3: BODY // [...]
4: RULE_FAIL e
5: WHEN e : RailML3_tvdSection & (card(e’Id) /= 1 or (card(e’Id) = 1 &

MU_WD(e’Id) = ""))
6: COUNTEREXAMPLE
7: errorAttribute ("id", " tvdSection ", e’ xmlLineNumber )
8: END;
9: RULE_FAIL e_tvd , c

10: WHEN e_tvd : RailML3_tvdSection & c = card(e_tvd ’
hasDemarcatingBufferstops ) & c /: 0..2

11: COUNTEREXAMPLE
12: errorCard (" hasDemarcatingBufferstop ", {e_tvd}, 0, 2, c)
13: END; // [...]
14: RULE_FORALL e
15: WHERE e : RailML3_tvdSection & card( RailML3_tvdSections ) = 1
16: EXPECT e’pId = MU_WD( RailML3_tvdSections )’recId
17: COUNTEREXAMPLE
18: errorParent (" tvdSection ", " tvdSections ", e’ xmlLineNumber )
19: END
20: END;

An example of frequent use of MU is the polymorphic definition elementsOfId, which takes
as first argument an arbitrary set of records of converted and validated railML data (of
any type, as long as it contains a field Id), and as its second argument an ID string to
obtain the record of the corresponding ID:

elementOfId(Set, eId) == MU({ e | e : Set & eId = MU(e’Id)}).

Any other obligatory attributes are validated in the same way. There are certain attributes
that are not obligatory by the railML schema, but necessary for a correct setup of the
formal model. These are made obligatory by validating their existence like its done for
obligatory attributes or by using default values if they are not specified and a reasonable
value exists (see below).

References Obligatory attributes that require additional validation are ref attributes
for referencing other elements, since treating IDs as strings allows arbitrary references.
Incorrect references may cause well-definedness errors later in the B model, which makes
an additional type check by rules necessary in addition to the invariant check. An attempt
was made to avoid this by aborting the import process early on an invariant violation
using the values provided by FORMULA_VALUES("inv"), but this did not work because the
invariants are evaluated after the guards when computing a new state. Therefore, not
well-defined rules would still be able to be executed at least for one step, necessitating
the additional validation. However, this step is generally not necessary for the remaining
obligatory attributes, as their values have already been converted to their specific type.
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Children Cardinalities Besides presence of obligatory attributes, an important property
to validate is the number of children of an element of a certain type. For example, an element
of type route is expected to have exactly one child of type routeEntry. Otherwise the route
cannot be correctly inferred and should not be accepted as a valid route during syntactic
validation. Some elements have a rather loose requirement for children cardinalities given
by the railML schema, which is not strong enough to guarantee a correct animation in
B. Such elements are, for example, switches, where a switch of type ordinarySwitch is
required to have exactly two branches (left and right) for correct animation, whereas the
railML schema only requires it to have zero to two branches. The syntactic validation of
these elements is done in the sense of a stricter interpretation of the schema. An example
of a rule validating children cardinalities can be found in Listing 14 (lines 9-13). The
check itself uses the set of children of a given type of a corresponding parent element and
compares the cardinality with the requirements of the schema. If there is a mismatch, the
rule fails.

As a general check, it is also ensured that basic essential elements are present. This concerns
for example the infrastructure and topology, but also the sections netElements and
netRelations (without which no topology can be built).

Values Rare cases require a check of the input value provided in the railML file. These
are for example intrinsic coordinates which must be within the range between 0.0 and 1.0.
A reasonable interpretation of other values is impossible, so they are rejected to avoid an
incorrect behaviour of the B model.

Default Values Attributes that are not specified in the railML file, but that are required
for correct animation in B are provided with default values where possible. For some
attributes, the schema itself provides default values, otherwise plausible values have been
chosen, which are documented in Table 7 in Appendix C. In some cases, values can also be
constructed from others, such as intrinsic coordinates, if the length of the net element and
a position are given (cf. Section 4.1).

Parent Types Finally, for each element is checked whether the parent of an element is
of a valid type for that element. This is illustrated by the last part of the rule in Listing 14
(lines 14-19). In this example, it is checked that each element of type tvdSection has the
parent of type tvdSections. This rule can succeed if there is no tvdSections element at
all. In this case, the error is covered by checking for correct cardinalities of the children
(tvdSection must not exist without tvdSections, i.e. no tvdSection is expected).

Counterexamples If one of these validations is violated for an element, a counterexample
is provided by the rule specified in the B-Rules DSL. For the affected elements, the line
numbers are provided as additional information in the textual user feedback. Most of the
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counterexample messages can be reused and are thus separated into definitions. One of
these is the definition for validation errors regarding parent types shown in Listing 15:

Listing 15: Definition of a Validation Error Message
1: errorParent (Type , ParentType , lineNr ) ==
2: STRING_FORMAT ("[Line ~w]: expected parent of type ’"^ ParentType

^"’ for type ’"^Type^"’", lineNr ).

The other definitions of counterexamples are structured in the same way.

3.4 Derive Relations from the Data

After successful syntactic validation of a <type>, a corresponding subsequent computa-
tion set_<TYPE> becomes enabled, where sets and relations are computed for easy access
to the data by the animation machine and also for semantic validation. These compu-
tations use the previously validated records and establishes relationships such as the
path of a route, which can then be validated semantically. Furthermore, some fields are
made accessible more convenient for use in the animation machine. An example is the
function RailML3_IL_TVD_SECTION_BERTHING_TRACKS in Listing 16, which maps IDs of
tvdSections to the value of their associated attribute isBerthingTrack. As a side note,
this also demonstrates how to conveniently obtain the value of an attribute for an imported
element using elementOfId as introduced in the previous Section 3.3.

Listing 16: Computation of Relations for Imported tvdSections
1: COMPUTATION set_TVD_SECTIONS
2: DEPENDS_ON_RULE is_valid_tvdSection
3: DEPENDS_ON_COMPUTATION set_NET_ELEMENT , set_NET_RELATION ,

set_NET_RELATION_SUBSEQUENT_BLOCKS , set_SPOT_LOCATION
4: BODY
5: DEFINE RailML3_IL_TVD_SECTIONS // [...]
6: DEFINE RailML3_IL_TVD_SECTION_BERTHING_TRACKS
7: TYPE allIdsOfType (" tvdSection ") −−> BOOL
8: VALUE %i_tvd .( i_tvd : allIdsOfType (" tvdSection ") |

elementOfId ( RailML3_tvdSection , i_tvd)’isBerthingTrack )
9: END;

10: DEFINE RailML3_IL_TVD_SECTION_DEMARCATING_ELEMENTS // [...]
11: END

Listing 16 shows the typical structure of such a computation. It depends on the exemplary
validation rule from Listing 14 and any other already derived relations needed for this
computation. As stated in Section 2, the B-Rules DSL should generally capture such
dependencies implicitly. Despite this, the dependencies are listed explicitly to ensure proper
functioning and enhance comprehensibility.
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Furthermore, some computations capture properties by their type definition (e.g. when a
mapping of interlocking IDs to corresponding infrastructure IDs is defined as a bijective
function, this forces each IS element to have exactly one related IL element), which is
handled and checked as an invariant by the B-Rules DSL.

More details regarding the resulting data structures and modelling principles are explained
for selected types in Section 4.

3.5 Semantic Validation

The import process of an element type is concluded by its semantic validation. This
phase of the import is possibly the most interesting for the application of the B-method,
as here the relationships and properties of the specified elements can be easily checked
with the formalisms of the B-method. For this purpose, there is the subsequent rule
validate_<type>, which validates not on the validity of the schema, but on mandatory
semantic properties. This includes both the properties of data computed in the previous
step, such as whether a route completely connects the entry and exit signal, as well as
those of directly imported elements from Section 3.2, such as switch branches that should
intersect.

The rule is optionally followed by a rule called warnings_<type>, which issues warnings if
a non-mandatory property is not met, but the information may still be of interest to the
user, for example if two overlapping routes have been specified. Additionally, warnings
are generated if a default value has been set for an attribute (Section 3.3). To distinguish
between the two types of warnings, the B-Rules DSL error types are used. Semantic
warnings are generated with standard error type 1, while warnings related to default values
are generated with error type 2.

As a source for rules, a few semantic constraints are available in the railML 3 Wiki7, but
they do not refer to infrastructure and interlocking data, so the constraints validated
here are mostly based on own considerations and can be adapted easily as soon as more
constraints become available. Other rules, some of which are implemented in the rules, can
also be found in railOscope8. The implemented validations and warning rules are all listed
in Table 8 in Appendix C for clarity.

The structure of the rules is quite similar to those of syntactic validation. The counterex-
amples of the validations and warnings are provided as in Section 3.3 with individual
messages containing line number, ID, and additional information on the violation.

7https://wiki3.railml.org/wiki/Dev:Semantic_Constraints (accessed on 26/10/2023)
8https://railoscope.cloud.xwiki.com/xwiki/bin/view/Main/TopoEditor/Validations (accessed

on 6/9/2023)

https://wiki3.railml.org/wiki/Dev:Semantic_Constraints
https://railoscope.cloud.xwiki.com/xwiki/bin/view/Main/TopoEditor/Validations
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3.6 Use of the Imported Data

The process described in Sections 3.1 to 3.5 is repeated for all required element types. In
doing so, the dependencies to other element types, which must already be validated for the
import of a certain type, must be specified in the headers of the rules and computations
for this type. Individual rules can be specified in the RailML3_validation.rmch machine
if desired. However, since it is currently not possible to include rules machines in ordinary
machines, changing these rules is only possible if the internal machine is re-exported
afterwards, which is not user-friendly. For custom rules it is instead recommended to use
the generated validation machine as described in Section 6.2.

Once the rules machines have been configured, the internal representation of the topmost ma-
chine (RailML3_validation.rmch) must be stored as a separate machine (RailML3_vali-
dation_flat.mch). Additionally, it is necessary to change the machine name from
__RULES_MACHINE_Main to RailML3_validation_flat and to remove the line binding
the constant file to a filename. As highlighted in Figure 2, the internal representation
of RailML3_validation.rmch can be considered as a package containing all rules for
railML import and validation, which can be accessed via the machine RailML3_import
as interface. Clearly, the operations could also be performed directly in the rules ma-
chines. However, this then only provides a pure validation and does not allow any further
use of the data in ordinary B machines. In order to make use of the imported data in
any machine, it is sufficient to include the RailML3_import machine (provided that the
RailML3_validation_flat.mch is also available in the same directory) as outlined in
Figure 3, add the operation importRailML to the machine’s INITIALISATION, and specify
the railML file to be loaded by setting the constant file to its path. The import machine
can remain unchanged as long as no new rules or computations are added. When adding
new operations, the order of the dependencies must be respected.

RailML3_validation_flat.mch

RailML3_import.mch

includes

Any machine
(add importRailML and set file)

includes

Figure 3: Generic Machine Hierarchy
for Use of the Imported Data

The main task of the import machine is done by its
operation importRailML, which executes all rules
and computations in a valid order that respects
the dependencies and outputs possible errors and
warnings to the user. For this purpose, the machine
contains three definitions, namely runErrorRule,
runWarningRule, and runComputation. For a full
import, the import operation must be called with
the parameter TRUE. If called with FALSE, the im-
port will stop when all the data required for visual-
isation has been processed. Additionally, a boolean
variable no_error keeps track of whether a valida-
tion error has occurred during the import. Rules and computations are only executed if
no_error is TRUE, otherwise all subsequent operations after the failing rule are skipped and
the import is aborted. no_error is not affected by occurrence of warnings. The definition
for execution of a validation rule (whose failure is an error) is shown in Listing 17.
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Listing 17: Definition for Execution of a Validation Rule in the Import Machine
1: runErrorRule (Rule) ==
2: IF no_error = TRUE THEN
3: VAR Var1 , Var2 IN
4: Var1 , Var2 <−− Rule;
5: IF Var1 = "FAIL" THEN
6: no_error := FALSE ;
7: ADD_ERRORS (Var2 [{1}]) ;
8: ADD_STATE_ERRORS (Var2 [{1}]) ;
9: ADD_ERROR (" RailML : ", "File import aborted , the

specified file does not contain valid railML .")
10: ELSE skip END
11: END
12: ELSE skip END;

The passed rule is executed if no error has occurred previously, and the first return value
Var1 is used to check if the rule was successful. If not, an error is raised using the external
function ADD_ERROR and a state error is created for each provided counterexample in Var2
using ADD_STATE_ERRORS. The latter was added to ProB in version 1.12.3 in the context of
this project, as was ADD_WARNINGS for creation of warnings. These external substitutions
expect a set of strings which ProB will then output to the user as individual errors or
warnings. Warnings that occur during the execution of a warning rule with runWarningRule
are stored in the sets semanticWarnings or defaultWarnings, depending on the type of
warning. At the end, each of the sets is output together using ADD_WARNINGS.

During development, it was also considered to distinguish warnings and errors by making
use of the error types of the B-Rules DSL (as now only for warnings) instead of using two
different rules for each. However, this approach did not lead to success, as it could not
be distinguished whether a rule failed only because of a warning or because of an error.
This is because the predicates provided for this in the B-Rules DSL cannot be used in the
statically evaluated ACTIVATION predicate of a rule (Section 2). In the end, this means
that if a rule fails with a warning, the import would get stuck because the subsequent rules
remain disabled.

Finally, the computations are executed by the definition runComputation, which simply
executes the passed operation if no error occurred before, and skips it otherwise.
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4 Modelling of the Data in B

During the import, additional relations and sets are computed (Section 3.4) to model the
relationships between the different elements. This chapter addresses important decisions
and issues of modelling these in the formal B-method. In general, it should be noted that
the imported and validated data in its current state represents only a subset of the very
detailed railML 3 schema. The current selection of imported elements focuses on topology,
animatable infrastructure elements and key elements for modelling interlocking logic. An
overview of all derived data structures can be found in Table 6 in Appendix C together
with a brief description of their characteristics.

A common problem with formal modelling of non-formal schemas is that they may be
interpreted differently by users, leading to inconsistencies in usage that the formal model
has to deal with [St-23]. Another related problem is the lack of data, which is essential for
the correct functioning of the model. To overcome this, there are several points during
the import process where attempts are made to infer the missing data from other given
data, such as intrinsic coordinates for locations, track ends, activation blocks for routes,
and signal plans. A selection of these are presented in this section.

4.1 Representation of Locations

A crucial concept is the modelling of locations and their connectivity. Abrial [Abr10] defines
blocks in his train system model in terms of an abstract element that can be connected
to further blocks, but without the possibility of specifying the location of a train within
a block. Gruteser et al. [Gru+23] use an extended model, which uses discrete values for
locations of objects within a block without specifying a direction. These approaches are
not sufficient for modelling railML data. In railML 3, the locations for all infrastructure
elements are specified in terms of netElements and intrinsic coordinates within them. It
is therefore important for the correctness of the model’s behaviour to be able to capture
the exact train position within a net element.

Locations Each location is represented by a triple of the type

STRING * REAL * RailML3_IS_DIRECTION,

containing the ID of the netElement, the intrinsic coordinate within the net element and
the application direction of the location (only normal and reverse). This approach is also
proposed by Martins et al. [Mar+22], who translate railML data into a rule language
inspired by linear temporal logic and Alloy. The use of real numbers for the intrinsic
coordinates is possible due to a (currently still experimental) extension of classical B by
the REAL type in ProB [Rut23]. This allows the decimal values to be imported directly
from the XML file using the new external function STRING_TO_REAL, without having to
discretise them as would otherwise be necessary in classical B.
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As described in Section 1.2, the locations of infrastructure elements can be either specified
by spot or by linear locations, which are imported as generic child elements for all elements
of the entire file, regardless of whether the associated type is also imported into B. The spot
locations can be accessed via the function RailML3_IS_SPOT_LOCATIONS, which is of type
STRING +-> FIN(STRING * REAL * RailML3_IS_DIRECTION) and maps the ID of an (in-
frastructure) element to its spot locations. These have to be modelled as a set, since the
schema in principle allows any number of spot locations for an element. The approach for lin-
ear locations is almost the same as for spot locations, except that these are relations connect-
ing the associated net elements at the given intrinsic coordinates. The start and end coor-
dinates are connected by the net relations, which are stored in RailML3_IS_NET_RELATION,
and then kept in RailML3_IS_LINEAR_LOCATION_ASSOCIATED_NET_ELEMENTS. To take into
account the direction of application, the relation is stored either as such for the direction nor-
mal, inverted for reverse, or both for the direction both in RailML3_IS_LINEAR_LOCATIONS.
Also, in case of multiple linear locations for the same element, all locations are merged
into one relation containing all linear locations of the referenced element, as there would
be no gain in storing them as individual relations and no information is lost.

Relation Containing All Locations Since the intrinsic coordinates are treated as real
numbers, it is obvious that not all locations within a net element can be modelled. The
locations of interest for modelling are precisely those on which infrastructure elements
are located. These are contained in the spot and linear locations. All these locations
together with the endpoints of each net element (each for both normal and reverse
direction) are considered as part of the relation to be computed. For each net element, the
locations of infrastructure elements are sorted by their intrinsic coordinate and integrated
into an inner relation connecting both endpoints according the determined coordinate
order. This is done by the computation set_NET_RELATION_SUBSEQUENT_LOCATIONS,
which yields the relation RailML3_IS_NET_RELATION_SUBSEQUENT_LOCATIONS connecting
the inner relations at their endpoints with respect to the specified netRelations on the
microscopic level (Section 1.2). This “topology relation” contains the complete topology
together with the locations of the infrastructure elements, enabling precise modelling of
train movements on the net elements, but also the computation of paths between locations,
e.g. for routes.

To allow access to information about the connectivity of two locations and also for per-
formance reasons, the transitive closure of the relation is precomputed and stored in
railML3_IS_NET_RELATION_SUBSEQUENT_LOCATIONS_closure1. To simplify later compu-
tations of route, overlap, and TVD section paths, it is assumed that the topology does not
contain cycles (cf. ENV-11 [Abr10]). To achieve correct results for pairs of locations, it is
important to specify the directions correctly. If, for example,

("ne1", 0.25, direction_normal) 7→ ("ne2", 0.0, direction_reverse)
is a pair connected by the transitive closure, the following would not be connected in it:

("ne1", 0.25, direction_normal) 7→ ("ne2", 0.0, direction_normal).
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The directions are induced by the net relations: if a net relation connects two endpoints
with the same intrinsic coordinates, this indicates a change of direction (e.g. 1.0 → 1.0).
Connecting different intrinsic coordinates, such as 1.0 → 0.0, keeps the direction (here
normal). Within a net element, the direction normal indicates that the inner relation is
traversed from 0.0 to 1.0, for reverse the same applies in the opposite direction.

Originally, the computation of the subsequent locations within the topology was performed
by a recursive FUNCTION (B-Rules DSL) without using directions for locations. Instead a
FOR-loop was used, which traverses the net relations from a given location up to the next
change of direction and then recursively continues the search for the opposite direction.
Although this approach also gives a correct relation, it leads to both performance problems
and a significantly higher implementation effort, as both directions have to be considered
when starting search at a location. Therefore, the directions were included in the locations,
which greatly simplified the computations, especially of the transitive closure.

Example

0.0 0.25
→

sig1

0.65
↔

tde1

1.0 1.0

0.0 swi1

0.0

0.1
←tde2

ne1 ne2

ne3

Figure 4: Concept of Subsequent Locations for the Relational Representation

Figure 4 shows an exemplary topology together with a few locations of infrastructure
elements. These are the signal sig1 located at ne1 which operates only in normal direc-
tion, the switch swi1 located at the intersection of ne1, ne2 and ne3 and the two train
detection elements tde1 and tde2. This results in the following set of spot locations
RailML3_IS_SPOT_LOCATIONS:

{"sig1" 7→ {("ne1",0.25,direction_normal)},

"swi1" 7→ {("ne1",1.0,direction_normal)},

"tde1" 7→ {("ne1",0.65,direction_normal), ("ne1",0.65,direction_reverse)},

"tde2" 7→ {("ne3",0.1,direction_reverse)}}.

Note that the location of tde1, which is applicable in both directions, is split into a normal
and a reverse directed location in order to be able to apply them as locations to the relation.
A possible linear location could lead from (ne1, 0.25) to (ne2, 0.0) with application-
Direction="reverse". This gives RailML3_IS_LINEAR_LOCATIONS as follows:

{"trk1" 7→ {("ne2",0.0,direction_normal) 7→ ("ne2",1.0,direction_normal),

("ne2",1.0,direction_normal) 7→ ("ne1",1.0,direction_reverse),

("ne1",1.0,direction_reverse) 7→ ("ne1",0.25,direction_reverse)}}.
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Observe that linear locations contain only the start and end locations connected by net
relations without the inner locations (e.g. (ne1, 0.65)). The complete topology relation
containing all locations would be in this example:

{("ne1",0.0,direction_normal) 7→ ("ne1",0.25,direction_normal),

("ne1",0.25,direction_normal) 7→ ("ne1",0.65,direction_normal),

("ne1",0.65,direction_normal) 7→ ("ne1",1.0,direction_normal),

("ne1",1.0,direction_normal) 7→ ("ne2",1.0,direction_reverse)},

("ne1",1.0,direction_normal) 7→ ("ne3",0.0,direction_normal)},

("ne2",1.0,direction_reverse) 7→ ("ne2",0.0,direction_reverse)},

("ne3",0.0,direction_normal) 7→ ("ne3",0.1,direction_normal)},

("ne1",1.0,direction_reverse) 7→ ("ne1",0.65,direction_reverse),

("ne1",0.65,direction_reverse) 7→ ("ne1",0.25,direction_reverse),

("ne1",0.25,direction_reverse) 7→ ("ne1",0.0,direction_reverse)},

("ne2",1.0,direction_normal) 7→ ("ne1",1.0,direction_reverse)},

("ne2",0.0,direction_normal) 7→ ("ne2",1.0,direction_normal)},

("ne3",0.0,direction_reverse) 7→ ("ne1",1.0,direction_reverse)},

("ne3",0.1,direction_reverse) 7→ ("ne3",0.0,direction_reverse)}.

Derivation of Intrinsic Coordinates As can be observed, the intrinsic coordinates are
mandatory for specifying locations in B. Hence, another crucial aspect is the derivation of in-
trinsic coordinates for locations whose intrinsic coordinates are not explicitly given. If a valid
attribute intrinsicCoord is provided for a spotLocation or intrinsicCoordBegin-/End
for associatedNetElements of a linearLocation, they can be used as such and nothing
needs to be derived. If none of these is specified, it is tried to derive the intrinsic coordi-
nate from the pos or the posBegin-/End attribute in combination with the length of the
associated netElement:

intrinsicCoordderived = pos
length@netElementRef

.

Clearly, this approach requires both attributes to be specified. If none of these ap-
proaches can be applied, the intrinsicCoord for spotLocations is set to 0.0 as the
fallback value. For associated net elements of linear locations, the in railML 3.2 obligatory
keepsOrientation attribute provides basic information about the orientation of the net
element. Using this, the fallback values here are chosen as intrinsicCoordBegin = 0.0
and intrinsicCoordEnd = 1.0 for keepsOrientation = TRUE and vice versa for FALSE.
However, the keepsOrientation attribute has become obsolete with railML 3.2 and will
be removed in future releases. The related discussion9 has shown that localisation in
railML 3 should be more restricted by additional rules to avoid ambiguity. The outcome
of the discussion will be monitored and the procedure described here will be adapted if
necessary.

9https://www.railml.org/forum/index.php?t=msg&th=818 (accessed on 19/9/2023)

https://www.railml.org/forum/index.php?t=msg&th=818
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According to the railML 3 schema, the attributes of intrinsic coordinates are optional
for the location elements, and furthermore both spot and linear locations are themselves
optional. This means that for some elements there may be no location or more than
one location, even of the three different types. As this may be too little information or
otherwise lead to ambiguity on the part of a railML import interface, this issue is currently
part of the discussions for the future development of railML 310. As mentioned in the
linked post, it is planned to reduce the ambiguity by a ruling framework that can easily be
added to the semantic validation rules of Section 3.5 once it has been added as a semantic
constraint to the schema. The current semantic validation rules formulated in Section 3.5
already force certain types of infrastructure elements to have exactly spotLocation or
linearLocation to avoid this problem. However, this also does not fully comply with the
schema and can lead to problems if there is more than one linearPositioningSystem.
Therefore, these rules only serve as a temporary solution until the railML community has
agreed on an approach.

4.2 Representation of Movable Elements

Movable elements that can be specified in railML 3 are mainly switches, single and double
switch crossings, movable ordinary crossings, and derailers11. As already described in
Section 1.2, each movable element has an infrastructure and an interlocking object in
railML 3. For this to work correctly for the movable elements, there must be at least one
matching infrastructure object for each movable interlocking element, which is therefore
checked by the validation rules of the rules machines. In general, each movable element
can be in an undefined position or in one of the predefined interlocking positions. These
positions are, extending the assumptions ENV-1/ENV-2 [Abr10]:

Switch: left, right
Derailer: derailingPosition, passablePosition

Movable Crossing: downleft-rightup, upleft-rightdown

As multiple interlocking elements can refer to the same infrastructure element, one of these
positions is not necessarily enough to infer the position on infrastructure side. For the
B model, it is assumed that crossings and derailers have exactly one associated interlocking
element as multiple of these elements would introduce ambiguity. This includes the
assumption that two-sided derailers are modelled as one synchronously switching derailer.
In contrast, switches can have several interlocking elements to model switch crossings. This
means that for switches, the possible states on the infrastructure side are different from
those on the interlocking side:

10https://www.railml.org/forum/index.php?t=msg&th=920 (accessed on 19/9/2023)
11See also https://wiki3.railml.org/wiki/Dev:Moveable_Elements (accessed on 27/10/2023).

https://www.railml.org/forum/index.php?t=msg&th=920
https://wiki3.railml.org/wiki/Dev:Moveable_Elements
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Ordinary Switch: left, right
Single Switch Crossing: upleft-rightdown, downleft-rightup,

one of: upleft-rightup, downleft-rightdown
Double Switch Crossing: upleft-rightdown, downleft-rightup,

upleft-rightup, downleft-rightdown.

Note that these positions are not modelled as such in B. They are described by a combination
of positions of the interlocking switches by the function RailML3_IL_SWITCH_BRANCHES,
whose domain is of the type

RailML3_IS_SWITCH_IDS −−>
(allIdsOfType("switchIL") +−> RailML3_IL_SWITCH_POSITIONS).

It contains, for each infrastructure switch element12, all combinations of possible posi-
tions of the associated interlocking switch elements and the resulting branch on track
side. Additionally, the variable RailML3_IS_SWITCH_BRANCHES provides more generic in-
formation about the position of a switch within the topology, by containing all possible
traversing paths over a movable element given by its location and branches specified in the
infrastructure schema.

The implementation for movable crossings is designed in the same way by RailML3_IS_CROS-
SING_BRANCHES and RailML3_IL_MOVABLE_CROSSING_BRANCHES, except that the domain
of the latter expects only one pair of the uniquely associated interlocking element with its
position instead of a partial function. Also not all crossings are taken into account, but
only those having a related interlocking object for movability information. The remaining
ones are assumed to be static, non-movable crossings.

Finally, for derailers, the concept of branches does not apply, but the location is computed
in RailML3_IS_DERAILER_NOT_PASSABLE in terms of non-passable pairs analogous to the
infrastructure branches computed above.

There are also additional characteristics like related movable elements for synchronous or
dependent switching of multiple movable elements in combination with position restrictions
implemented. See Table 6 in Appendix C for a brief description of the corresponding data
structures. Further explanations on the concept of crossings, derailers and switches in
railML 3 are available in the railML wiki13.

12RailML3_IS_SWITCH_IDS excludes the IDs of switchIS elements of type switchCrossingPart from
allIdsOfType("switchIS"), as the parent element of a switch crossing is sufficient for correct modelling
and its parts cannot have independent behaviour.

13https://wiki3.railml.org/wiki/IL:{derailerIL,movableCrossing,switchIL} (accessed on
23/9/2023)

https://wiki3.railml.org/wiki/IL:{derailerIL,movableCrossing,switchIL}
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Figure 5: Concept of a Double Switch Crossing

Example Figure 5 illustrates an example that defines a double switch crossing dsw on
infrastructure side and its two associated interlocking switches dsw_il_1 and dsw_il_2.
Both can take either the position left or right. Note that for the interlocking represen-
tation of a switch, the branches are indicated in terms of tracks (tr1-tr4). In this case,
dsw_il_1 corresponds to the branch definition

<branchLeft ref="tr1"/> <branchRight ref="tr2"/>.

The same applies to dsw_il_2 with tr3 and tr4. Combined, this gives the following
encoding for the branch leading from B to D, which corresponds to the implicit position
upleft-rightup:

"dsw" 7→ {"dsw_il_1" 7→ position_right, "dsw_il_2" 7→ position_left}.

Accordingly, applying the above to the function RailML3_IL_SWITCH_BRANCHES would
yield the subset of RailML3_IS_SWITCH_BRANCHES that matches the position of the switch.
In total, there are four possible combinations for the paths between A, B, C and D, in each
of which a position must be specified for each associated interlocking switch.

4.3 Representation of Interlocking Objects

In order to validate safety properties of the animation model, it is important to have data
on the interlocking system. This includes paths for blocks and routes, but also signalling.
Since the interlocking schema was introduced with railML 3, there is not yet a publicly
available example that implements a complete interlocking logic. It was therefore necessary
to develop alternative solutions at some points in order to allow a meaningful validation of
the model.

4.3.1 Blocks

Blocks in railways are usually used to maintain safety distances between operating trains
and should thus only be occupied by at most one train. In railML 3, this concept is handled
by train vacancy detection (TVD) sections, which are defined by demarcating elements.
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These can be either buffer stops, open track ends or train detection elements, where open
ends can be either implicitly demarcating or explicitly declared as “buffer stops”. Using the
locations of these elements within the topology relation, the track parts of the TVD section
can be determined. This is done in the computation of RailML3_IL_TVD_SECTIONS by
looking at all pairwise combinations of its demarcating elements and adding the path across
the topology in both directions between both elements. Here, the implicitly demarcating
open ends are also taken into account, if there is a path to another demarcating object of
the TVD section without an intermediate train detector. Compared to Abrial’s model, the
TVD sections are also fixed like the blocks (i.e. no moving blocks). However, there is no
restriction on the number of infrastructure elements per block as assumed in ENV-4.

Looking again at the example of Figure 4, consider a TVD section having the demar-
cating train detectors tde1 and tde2. Then its parts are determined as the subset of
RailML3_IS_NET_RELATION_SUBSEQUENT_LOCATIONS that are between ("ne1",0.65) and
("ne3",0.1) (both directions). If in addition ("ne2",0.0) is an open end, the path from
tde1 to it is also included, since there is no other train detector between the two elements.
The same applies, if the open end is explicitly marked as a demarcating element.

4.3.2 Routes

Routes are one of the most important assets of an interlocking system. They describe
paths in the network that can be reserved by exactly one train at a time and then allow the
train to travel safely along this path. Following the definition ENV-6 of Abrial, a network
always has a fixed number of routes. In contrast, routes here are characterised by exact
paths between locations rather than abstract blocks. The TVD sections are only used as
additional information about the vacancy of routes.

In railML 3, a route path is defined by its child elements routeEntry and routeExit
(cf. Section 1.2). According to the documentation14, they should refer to an interlocking
object of a signal, such that routes are always delimited by signals, which also complies
with Abrial’s definition ENV-12. However, there are additional special cases such as routes
ending at buffer stops or starting at an open end. The route entries and exits are converted
to the functions RailML3_IL_ROUTE_ENTRY and RailML3_IL_ROUTE_EXIT, which map all
route IDs to the pair consisting of the ID of the referenced element and its spot location.
This approach is also suggested by Martins et al. [Mar+22], who are dealing with formal
verification of railML models against user-defined infrastructure rules.

The mere indication of the start and end of a route is usually not sufficient to define a
unique path between them. Instead, as also stated in ENV-7, a route has to be additionally
characterised by positions for intermediate switches that introduce the ambiguity. RailML 3
allows to specify these positions either for facing or for trailing switches. These are extracted
into the variable RailML3_IL_ROUTE_FORCED_SWITCH_POSITIONS, which contains all forced

14https://wiki3.railml.org/wiki/IL:route (accessed on 25/9/2023)

https://wiki3.railml.org/wiki/IL:route
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switches positions (as introduced in Section 4.2) for each route. If the positions are correctly
specified, which is ensured by the schematic validation, the unique route path can be
derived and stored in RailML3_IL_ROUTE_NXT. First, the set of all possible paths between
the entry and the exit is computed. Then, all branches of switch positions that do not
match the forced positions are removed from this relation, so that only the correct path
connects the entry and exit. Finally, the remaining parts of the other paths are cut off by
restricting the relation to the parts that are reachable from the route entry.

The semantic validation ensures that the path continuously connects the inner locations
between entry and exit by a total bijection (cf. ENV-10). Note that unlike for TVD sections,
the resulting route paths are directed, and due to the assumption for the topology relation,
the routes cannot contain cycles either. Moreover, some of Abrial’s assumptions need to
be weakened. In general, overlapping routes are allowed, and the first or last location of a
route can be an inner location of another route (cf. ENV-8/ENV-9). The properties are still
additionally checked, but only a warning is issued if one of them is violated.

These basic properties of routes, which largely align with Abrial’s assumptions, are
supplemented in railML 3 by a variety of additional data. One of these concepts is
overlaps, which define one or more sections for routes that must also be kept clear to
secure the sections that extend beyond the end of the route. The path of an overlap
is computed in the same way as for routes in RailML3_IL_OVERLAP_NXT, except that
the specified relatedTrackAssets and isLimitedBy elements are used instead. Each
overlap can be linked to one or multiple routes to which it should apply. This is han-
dled by the function RailML3_IL_ROUTE_OVERLAPS, which provides the set of overlap IDs
for a given route ID. Required switch positions for the overlap can be specified using
requiresSwitchInPosition together with a proof strategy (properties must or should
be fulfilled, proved either one-off or continuously during overlap reservation), which is
explained in more detail in the context of the animation in Section 5.2.1. Positions that
must be proven are extracted to RailML3_IL_OVERLAP_MUST_SWITCH_POSITIONS. This
also allows negated positions to be specified, i.e. a switch may be in any position except
the specified one. Together with the proof strategy, this is modelled in B as a pair of type
RailML3_IL_REQUIRE_PROVING_TYPES * BOOL, where the second value specifies whether
the negated property must be proven (TRUE) or not (FALSE).

For both overlaps and routes, the required positions of all movable elements (derailers, mov-
able crossings and switches) along the path are derived on B side and stored in the functions
RailML3_IL_{ROUTE,OVERLAP}_{DERAILERS,CROSSING_POSITIONS,SWITCH_POSITIONS}.
They are used in semantic validation for comparison of the specified and the derived posi-
tions, but also as guards for the route reservation process in the animation (Section 5.2.1).
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Figure 6: Concept of Route Paths and Overlaps

Example Figure 6 shows a simple example illustrating the route path of Listing 3 with its
corresponding overlap and a TVD section. The routeEntry refers to sig1, the routeExit
to sig2. In B, this is represented as (where il_sig1 is the interlocking element of sig1):

RailML3_IL_ROUTE_ENTRY = {"rt1" 7→ ("il_sig1" 7→ ("ne1", 0.6, direction_normal)), . . . }
RailML3_IL_ROUTE_EXIT = {"rt1" 7→ ("il_sig2" 7→ ("ne6", 0.9, direction_normal)), . . . }.

Since the path between the two signals is already unique, the specified facingSwitch-
Position would also be automatically derived from the path and is therefore not necessary.
Specifying position="left" instead or any other not matching positions of further ele-
ments (derailers/crossings) would lead to a semantic validation error, as no route path
between the signals can be derived considering this position.

The overlap ovl1 is connected to the route rt1 by specifying hasOverlap within the
routeExit. On overlap site, this can be done by activeForApproachRoute, which will
make the path of the overlap starting at the corresponding route exit. The end of this
overlap is specified by isLimitedBy="tde1". In order to set the overlap correctly, one could
assume that the switch swi2 is required to be in left position. This would be represented
in B by the following element of RailML3_IL_OVERLAP_MUST_SWITCH_POSITIONS:

"ovl1" 7→ {("proving_oneOff", FALSE) 7→ {"swi2" 7→ {"il_swi2" 7→ position_left}}}.

It expresses that the switch only has to fulfil the position once when reserving the overlap
(one-off) and that the property is not negated (FALSE).

4.3.3 Signals

RailML 3 allows very detailed modelling of signalling by means of so-called signal plans
consisting of aspectRelations for combining signal aspects of several signals. Compared
to Abrial’s model, the signalling is self-contained and basically independent of the routes.
While this allows for a highly configurable specification, it also means that it is difficult to
decide on the behaviour of a signal that is not explicitly specified. None of the example files
available at development time (except the Simple Example with only two small example
configurations of aspect relations) implements either a complete signal plan or an aspect
relation. As a consequence, almost all signals in the formal model would be without any
function. In order to avoid this issue, additional aspect relations are inferred from the
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specified routes, which in most cases are limited by signals (see previous Section 4.3.2).
These inferred relations only use the three basic aspect types closed, caution, and proceed
for simplicity, following Abrial [Abr10] (cf. ENV-13) and Gonschorek et al. [GBO18], as
additional information would not currently affect the behaviour of the model. In ordinary
aspect relations, however, all aspect types are supported. The only relevant information
extracted from a signal aspect is whether a train is allowed to pass the signal or not. It is
assumed that a signal is allowed to pass, if it does not have the closed aspect.

An aspect relation, as suggested by the railML schema, consists of three signal types: slave
for the entry signal, distant for inner signals, and master for the exit signal, whose aspect
usually influences the preceding slave and distant signals15. In B, the aspect relations
are converted into records with one field for each of the three signal types, containing a
function of the type

allIdsOfType("signalIL") +-> FIN(RailML3_IL_SIGNAL_GENERIC_ASPECTS),

which maps the signals to its set of aspects. In general, signals can have several aspects,
for example the current aspect and an announcement aspect, so a set is needed here.

The specified aspect relations are stored in the function RailML3_IL_ASPECT_RELATION-
_SIGNAL_ASPECTS, which maps the ID of an aspect relation to its relation encoded by a
record as described above. The inferred relations are of the same type and are stored
in the function RailML3_IL_ASPECT_RELATION_SIGNAL_ASPECTS_INFERRED_FROM_ROUTE,
which maps a route ID to the corresponding set of inferred aspect relations. For a route
with an entry and an exit signal and optionally additional signals enclosed by the route,
all combinations of the two aspects closed and passable of the signals are considered,
where all signals up to the first closed signal have the aspect passable and all subsequent
signals are also closed. Here, the entry signal is always passable and assigned to the slave,
the exit signal to the master and all inner signals to distant. Taking Figure 6 again as
an example, these would be the inferred aspect relations of the highlighted route (if no
aspect relation applies to the route):

{rec(master : {"sig2" 7→ {aspect_proceed}},

slave : {"sig1" 7→ {aspect_proceed}},

distant : ∅),
rec(master : {"sig2" 7→ {aspect_closed}},

slave : {"sig1" 7→ {aspect_proceed}},

distant : ∅)}

For signals that are neither part of an aspect relation nor a route, an alternative strategy
is required to give the signals a function. In general, a section must be defined for each
signal that is controlled by that signal. This is done by searching for the closest signals in
the direction of the signal, i.e. there is no other signal between the two signals.

15https://wiki3.railml.org/wiki/IL:implementsSignalplan (accessed on 27/9/2023)

https://wiki3.railml.org/wiki/IL:implementsSignalplan
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The path between a signal and one of its closest signals forms the controlled section of the
signal. For border cases, open ends and buffer stops are also considered as valid ends of
control sections. This approach has similarities to the route detection algorithm proposed
by Menéndez et al. [Men+23]. They also illustrate the concept in Figure 11, where the
control section of signal S22 is formed by the three closest following signals T05, X15,
S32. For the implementation in B, this would result in the following pair for the function
RailML3_IL_SIGNAL_END_OF_CONTROL_SECTION: "S22" 7→ {"T05", "X15", "S32"}. For
each end, the path and its corresponding TVD sections are then computed in the same
way as for routes (RailML3_IL_SIGNAL_CONTROL_SECTIONS resp. RailML3_IL_SIGNAL-
_CONTROL_TVD_SECTIONS).

In general, only those signals are considered that have an associated interlocking object
for control (RailML3_IL_SIGNAL_CONTROLLED). In rare cases this may lead to unexpected
behaviour if a signal is ignored because its interlocking part is missing (cf. Section 10).
It needs to be investigated whether this should be modelled differently during import or
whether it is actually an error in the concrete model.

Finally, it should be noted that there are still some interlocking properties that are currently
not taken into account. This mainly concerns the properties specified in the signalBox
and specificInfrastructureManager sections, including, for example, various strategies
for releasing the TVD sections. However, due to the lack of examples using these elements,
their implementation has been deferred.
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5 Animation

The animation of a B machine allows the user to check that the specification behaves as
expected by interactively performing operations. In order to be able to study the behaviour
of the railway system specified by a railML file, the RailML3_animation.mch machine
contains several operations for animation of the model. As shown in Figure 7, this machine
includes the import machine as described in Section 3.6 and uses only the derived relations
as discussed in the previous Section 4. Although these are exported as variables by the
rules machines, they are treated as constants, i.e. they are never changed after import,
so that they can be converted to real constants when generating standalone machines
(Section 6). The extending machine RailML3_animation_init.mch allows for specifying
initial train positions within the topology and additional definitions for visualisation.

RailML3_import.mch

RailML3_animation.mch

includes

RailML3_animation_init.mch

extends

Figure 7: Machine Hierarchy of Animation

On the infrastructure side, the model allows the
control of movable elements such as derailers,
switches, and crossings. Interlocking features
include routes, TVD sections, overlaps, signals,
and signal plans for simultaneous switching of
signals. In particular, the representation of the
currently passable track and the route reserva-
tion process is again inspired by the train sys-
tem model of Abrial [Abr10], but some simple
signalling properties are also adopted. In this
chapter, differences and similarities between the
models are pointed out with reference to the
assumptions and safety requirements formulated by Abrial.

RailML is capable of modelling much more detailed properties in addition to the basic
properties of Abrial’s interlocking model. The model developed here for animating railML
specifications is therefore an extension of this model. In general, the model has the same
objective (FUN-1):

“The goal of the train system is to safely control trains moving on a track network.”

As for Abrial’s model, some assumptions have to be made about the environment, the
interlocking system, and the behaviour of the train. It should be clear that only safe train
movements may take place in the system, i.e. the aim is that a safety-critical state such as
a possible collision or derailment can never occur. Moreover, Abrial’s assumptions about
failures are adopted (FLR-1 – FLR-5), i.e. trains cannot run over red signals or break down
mechanically, and section occupancies are always detected correctly.

The following sections provide a more detailed overview of the possible operations, assump-
tions, and safety requirements that are encoded as invariants. One of the challenges is
to write a model that works correctly for all railML specifications, as there are always
different interpretations of the schema that the model should ideally cover.



5.1 Infrastructure 37

This also complicates formal verification of the model in general, as deviations in a
specification may lead to invariant violations that are not due to a modelling error. In this
case, domain experts need to assess each violation manually. For any complicated formulas
within invariants and operation guards, an additional description is provided by a pragma,
which can be displayed by hovering over it in ProB2-UI. This should give domain experts a
better understanding of what a formula actually expresses and why it may not be satisfied.
A list of all operations with a brief description is provided in Table 10 in Appendix D. An
overview of the interaction between operations can also be obtained from Figure 9.

5.1 Infrastructure

Firstly, all infrastructure components not implemented in the model are assumed to
function correctly and automatically. This applies, for example, to the timely closure of
level crossings (which can easily be added at a later stage), but also to the rarer case of
tunnel gates. Also, keyLocks for locking of movable elements are generally disabled, as the
movement of objects is currently only controlled by the interlocking system.

For each type of movable element, as described in Section 4.2, there are two basic operations,
IS_startChange<movableElementType> to start the movement and IS_endChange<mov-
ableElementType> to complete the movement, where <movableElementType> refers to
movable crossings, derailers, and switches. Splitting the start and end of the movement was
made to allow for later refinement steps and to allow SimB to call the end operation after
the typical throw time of the movable element (see Section 7 for a detailed description).
The start event can only be executed if there is no train on the entire element, all TVD
sections declared as belonging to it are vacant, and possible related movable elements
are not in movement. For switches, the specified position restrictions for other derailers
or switches must be satisfied for the new state. If the switch is a switch crossing, it is
controlled as a single switch by the above operation. If two ordinary switches are coupled
as related movable elements, their start should be triggered simultaneously, which is done
by the additional operation IS_startChangeCoupledSwitches. The end operations can
then be performed individually. Note that this only works properly if the switch types
are specified correctly. As an additional constraint to reduce the state space, but also to
simplify user interaction, a movable element can only change its state if:

• a train stands directly in front of it,

• it is part of a route/overlap in reservation (which is SAF-3 of Abrial),

• it is part of a signal control section in front of whose associated signal the train is
directly positioned or the corresponding signal is part of a signal plan in activation.

An element for which only the start operation was executed is in an undefined state. This is
not modelled as an explicit state, but the destination position is kept in IS_<movableEle-
mentType>sInMovement during movement, so the previous and next position can be
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inferred, and also that the current position is undefined. The current states of movable
elements are handled by the variables IS_<movableElementType>_states, which contain
per movable element exactly one position of their precomputed positions (e.g. for switches
in RailML3_IL_SWITCH_BRANCHES). If specified, the states are initialised with the preferred
positions.

Having the positions of all movable elements, the passable and not passable branches
can be inferred. To represent the current passable track, the not passable branches are
removed from the topology relation RailML3_IS_NET_RELATION_SUBSEQUENT_LOCATIONS
and stored in the variable IS_next (equivalent to nxt in the Abrial model). As each
element can only have one passable part in total, the induced relation should be a partial
injection, which is covered by a corresponding invariant. Additional invariants check that
branches of elements in movement are not part of IS_next, just as for the positions that
are currently inactive. Furthermore, it is required that the current position of all not
moving elements is contained in IS_next, such as for switches:

∀sw.(sw ∈ RailML3_IS_SWITCH_IDS\dom(IS_switchesInMovement)
⇒ RailML3_IL_SWITCH_BRANCHES(sw)(IS_switch_states(sw)) ⊆ IS_next).

Finally, the keyLock property is already prepared for all movable elements as a function
that can later be controlled by the key lock elements. However, these are currently not
imported from the railML file.

5.2 Interlocking

The interlocking system is crucial for ensuring safe train movements and thus constitutes
the primary focus of the model. For this reason, at least the interlocking data for the TVD
sections and routes must be specified in the railML file for correct animation.

As already mentioned in Section 4.3.1, Abrial’s concept of blocks is transferred to TVD
sections. A TVD section can be occupied or unoccupied by a train (ENV-5). The occupation
of TVD sections is handled by the function IL_occupiedTvdSections, which stores for
each occupied section the train that is currently occupying it. If a section is not part of
the domain, this corresponds to a vacant section. When reserving blocks, the locations of
the reserved sections are used as “blocks” rather than the TVD sections. This allows an
accurate representation of reserved sections, even if no TVD sections have been specified
for parts of a route. Such a block given by a location can be reserved by a route or an
overlap, occupied by a train or free (cf. FUN-3). Reservation of blocks is managed by
the set IL_res_blocks and the total relation IL_res_route_blocks, which contains all
reserved blocks together with the routes that reserved them. Each block is allowed to
be reserved for at most one route (according to SAF-1) with the exception of locations
forming a route entry and exit. Those are allowed to be reserved by at most two routes, as
otherwise, connected routes can never be reserved at the same time.
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In contrast to Abrial’s model, an occupied TVD section does not always have to correspond
to reserved blocks (FUN-4), since in railML there can in principle be TVD sections that do
not correspond to any route.

5.2.1 Routes

As mentioned, the modelling of routes is also inspired by the interlocking system of Abrial,
which allows the adoption of some assumptions. The reservation process is controlled
by several operations to represent the different phases of a route reservation. Since the
railML schema does not provide a strict procedure for the route reservation process
itself, it was necessary to define an approach for the behaviour of the model that takes
the given data into account in a meaningful order. For this purpose, there are the two
operations IL_startRouteReservation and IL_endRouteReservation. The former puts
a route into the reservation phase, by adding the pair of its ID and the requesting train to
IL_routes_in_res. If the route has overlaps, these are also added to IL_res_overlaps.
The operation guard ensures, that this is only possible if there are no explicitly declared
conflicting routes, other routes or overlaps intersecting the path of the route to be reserved,
and if the TVD sections and blocks belonging to the route and associated overlaps are
free and not reserved. Clearly, routes may be reserved by at most one train (FUN-2). In
railML, a routeActivationSection can additionally be specified for each route, which
means that a train can only request a route if it occupies at least one of its activation
(TVD) sections. Due to the rare implementation of this property in the sample files, the
activation sections are currently supplemented by the TVD sections of the route entry if
none have been specified for the route. In order to prevent deadlocking when no activation
sections can be derived at all, route reservation is currently also possible if

• the front of the train is located at the route entry,
• the route is an automatically locking route (locksAutomatically="true"),
• there is a signal plan in reservation for the entry signal, or
• the route entry corresponds to an exit of another route reserved by the same train.

By starting the reservation process, the blocks (locations) of the routes are reserved by
adding them to IL_res_blocks and IL_res_route_blocks (cf. FUN-5). For movable
elements that are part of the route or an associated overlap, it is now possible to change
them until they are in the position that is required for establishing the route path (cf.
FUN-6). If there are signal plans associated with the route, one of them must be activated
and all associated signals must have the desired aspect change noted (see next Section 5.2.2
for details). During reservation, an invariant checks that none of the affected blocks is
occupied by any train (cf. SAF-4). Once all movable elements are correctly set according
to the route and overlaps, the changes of all signals of the associated activating signal plan
are noted, and all additional route relations are fulfilled, the IL_endRouteReservation
operation is enabled.
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routeRelations can be used in railML for specifying constraints on positions or states
of further elements such as switches for flank protection, but also for states of sections.
The implemented features in B currently include “must” route relations on derailer and
switch positions, as well as section states. These route relations must be fulfilled according
to their proof method. They can be checked either once (proving="oneOff") before the
end of the route reservation, or continuously while the route is reserved. The one-off
and continuous conditions are checked by the guard of IL_endRouteReservation, the
continuous ones additionally by invariants. The same applies to the switch positions of
overlaps (Section 4.3.2). While it is quite easy to formalise the route relations that must
be proven, railML also allows properties that should be fulfilled. Including them in the
corresponding guard and invariants would turn these conditions into must conditions, which
is too strict. An alternative approach could be to probabilistically check the fulfilment
of the property by simulation while the route is reserved. More information about proof
strategies and the state space can be obtained from the railML wiki16.

Once the route reservation is completed, all movable elements involved are locked by the
route to ensure that the route path remains set. This is done by adding the element IDs
together with the route ID to IL_{crossing,derailer,switch}_locked_routes. Then,
the route is moved from IL_routes_in_res to IL_res_routes, which corresponds to a
formed route in Abrial’s model and allows the reserving train to travel along the route (cf.
FUN-7). Invariants are used to check that locked elements are never in motion and that
for all reserved routes the current positions match the required positions of the route. In
addition, routes may not be in reservation and reserved at the same time. The model also
monitors several safety requirements of the reserved routes through invariants:

• all reserved routes are disjoint,
• no other train except the reserving one is on the route,
• for each reserved overlap exists a corresponding reserved route,
• each reserved block corresponds to a reserved route,
• all route blocks of a reserved route (except those released by partial route releases)

are part of the reserved route blocks, and
• the successors of all reserved blocks of a route are also reserved by the same route.

For the release of routes, there are different ways in railML 3. Routes can have routeRelease-
Groups, consisting of TVD sections, in front of the train (ahead) and behind the train (rear).
A routeReleaseGroupRear can be released using the operation IL_partialRouteRelease-
Rear if the train has passed the associated TVD sections completely. The release is
performed sequentially, starting with the rearmost release group, until the last group is
released after the train has completely cleared the route. The already released groups
are kept track of per route in IL_released_partialRoutes. Once all rearward release

16https://wiki3.railml.org/wiki/Dev:StateSpace (accessed on 15/10/2023)

https://wiki3.railml.org/wiki/Dev:StateSpace
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groups of a reserved route are released, the complete route can be released by the operation
IL_completeRouteReleaseRear. If a route does not have any release groups, the complete
release is directly possible as soon as the train has passed the complete route.

The rearward release of the routes roughly complies to the assumptions of Abrial in the way
that the complete route remains reserved as long as some release groups are not released or
the train occupies parts of the routes (MVT-1/2/3). Deviating from this (and TRN-4), it is
also possible to release routes where the train is still running. This can be useful if a train
has stopped and no longer needs the rest of the previously reserved route after a change of
direction. For this purpose there are routeReleaseGroupAheads in railML 3, which can
be released by IL_partialRouteReleaseAhead if the corresponding TVD sections have
not yet been occupied by the reserving train. The complete route can be released if all
release groups ahead have been released and the train is currently on a TVD section that
is a berthing track (to change direction). In all other cases, it is assumed that the train
will continue its journey, so the route will eventually be used.

With each release operation, the movable elements that are part of the released sections
are unlocked and all affected blocks are no longer marked as reserved. The routes them-
selves stay reserved until a complete release is performed. Together with the complete
release of routes, all associated reserved overlaps are also released. While a route is
reserved, it is also possible to trigger the release of overlaps separately with the operation
IL_startOverlapRelease if the train is on one of the releaseTriggerSections that can
be specified for the overlapRelease elements. The overlap is marked for release by adding
its ID to IL_overlaps_in_release. The release process can be finished by executing
IL_endOverlapRelease. Splitting of these operations allows the overlapReleaseTimer
to be used in the SimB simulation.

5.2.2 Signalling

As already mentioned in Section 4.3.3, signalling examples in railML 3 are rarely available.
Therefore, as for the modelling, an alternative solution for the signal behaviour had to be
developed to make the model animatable with meaningful properties, as signals are the
only elements that can prevent a train from entering a reserved or occupied section. The
approach will need to be reviewed as more, and especially complete, examples of signalling
become available.

In general, two types of signals are considered. On the one hand, those that are part of a sig-
nal plan (used here synonymously for aspect relation) and on the other hand, those that are
controlled individually without a signal plan (RailML3_IL_SIGNAL_NOT_CONTROLLED_BY-
_SIGNALPLAN). The state of all signals is kept in IL_signal_states, which maps the IDs
of controllable signals to the set of their currently showed aspects. It is assumed that each
signal will fall back to {aspect_closed} as soon as the front of a train passes it (ENV-15).
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To change the signals controlled by a signal plan, such a plan must be in activation. This
can happen with or without an associated route in reservation by execution of the operation
IL_startActivateSignalplan. The operation is enabled if the desired signal plan is not
in activation, there is no conflicting signal plan using the same slave or master signal,
and if the slave signal is the master signal of a plan that is currently in activation, the
aspect must be the same as for the other signal plan. In the current models, signal plans
are always activated after a corresponding route reservation has been started (i.e. after
execution of IL_startRouteReservation), since they are always associated with routes.
The signal plan to be activated is then copied to IL_signalplans_in_activation, where
all signal plans currently in activation are stored as a set.

A signal plan already defines the target aspects of the signals after its activation. To keep
the change of signal aspects during activation without applying the changes directly, there
is the concept of IL_noted_signal_states. Otherwise, signals may switch to a passable
aspect too early, especially in the case of unfinished route reservations, if the route path
is not set correctly. A change for a signal that is part of a signal plan in activation can
be “noted” using the operation IL_noteChangeSignalState. This is possible if the track
currently set in IS_next is not occupied by a train up to at least one end of the signal’s
control sections. If the master signal is intended to show a passable aspect, it must be
ensured that at least one of its sections is free and passable. Therefore, its aspect can only
be noted if either a subsequent signal plan with a slave with the same aspect has been
successfully activated, or if the master signal is an individually controllable signal and all
conditions for entering its section are fulfilled. Otherwise, the master signal can never
be changed and the activation of the signal plan gets stuck. After change of a movable
element within one of the control sections of a signal, the noted signal states for that signal
are reset to check that the conditions are still met after the change. If the signal plan was
activated together with an associated route, the route reservation first has to be completed
before the activation of the signal plan can be completed. This ensures by the conditions
of the route that the set track is passable before the noted signal changes are applied.
Since all slave signals of the signal plans inferred from routes have a passable aspect, the
final activation of the signal plan by executing IL_endActivateSignalplan corresponds
directly to FUN-8 and SAF-2 of Abrial. All signals that have a passable aspect except the
master signal, which may be controlled by another subsequent signal plan, are added to
IL_signal_locked to prevent them from being changed individually. The lock is removed
once the train has passed the locked signal.

For the individually changeable signals, the signal sections derived in Section 4.3.3 are
used. For these signals, only the aspects {aspect_closed} and {aspect_proceed} are
considered for simplification. Initially, all signals show the closed aspect. If for at least one
section of the signal all associated TVD sections and locations are vacant, and the entire
path to the end signal of that section is correctly set by the movable elements, a signal
can be changed to the passable aspect. This is roughly equivalent to a “loose” route, but
one that can be released at any time by occupation of another train, starting conflicting
route reservations, or changes of a movable element. In one of these cases, all associated
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signals of the affected sections immediately fall back to the closed aspect. When a train
occupies parts of a signal section, the movable elements cannot be changed until the train
has passed them, to ensure that the track remains passable. To avoid state space explosion,
independent signals can only change when a train is directly in front of it or it is the master
signal of a signal plan in activation. As a special case, not locked distant signals of an
activated signal plan can also be changed individually to avoid trains getting stuck in a
signal plan with closed aspects for some of the distant signals. In this way, the train can
proceed to the master signal (provided all conditions for passability are met), which is
then controlled again as usual.

Like the other interlocking objects, the signals must fulfil some requirements for safe
operation, which are covered by invariants. These are almost the same for the actual and
for the noted signal states:

• if aspect_closed ∈ IL_signal_states(sig_id): it is the only aspect of the signal
(otherwise its aspect would be ambiguous)

• if signal is a slave or distant signal of a signal plan in activation with passable aspect:
ID of corresponding infrastructure signal is locked (i.e. in IL_signal_locked)

• if aspect_closed /∈ IL_(noted_)signal_states(sig_id): none of the locations of
the currently set track (IS_next) is occupied; only for IL_signal_states:

– movable elements after the signal form a passable track to the exit signal
– TVD sections of the currently set track are not occupied

The last two properties are only required for the actual signal states, as switches are still
able to move during a route reservation, which can lead to an incorrectly set track. At the
end of the reservation, it is ensured that the route is passable, so that this property is also
guaranteed here.

5.3 Train Movements

The model also allows train movements similar to Abrial’s model, with separate events
for moving a train forwards and backwards (RS_trainMoveFront, RS_trainMoveBack).
By the guards of both events it is always possible for a train to move, except the one
and only case that the front of the train has the same location as a signal with a closed
aspect, i.e. aspect_closed ∈ IL_signal_states(sig_id). Following ENV-13, trains are
assumed to stop correctly at closed signals and are equipped with a train protection system
that prevents them from running over closed signals. A single train movement step is
represented by changing the current position from the previous location to the next location
of IS_next.
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For each train, its front and back position are stored in RS_trainFront/-Back. All
occupied locations are stored per train in RS_trainOccupiedLocations without direction,
as this is irrelevant for the occupation status. With the help of this, invariants are used
to check that there are no colliding trains (i.e. the intersection of the occupied locations
is not empty for at least two trains) and that trains have not broken into two parts, for
example by crossing an incorrectly set switch, which could lead to a derailment:

∀t.(t ∈ RS_arrivedTrains ∪ dom(RS_requestingArrivalTrains)
⇒ RS_trainBack(t) 7→ RS_trainFront(t) ∈ closure1(IS_next)).

The assumption TRN-1 applies as well, meaning that trains are considered as indivisible
units that cannot split. While TRN-2 states that trains are not allowed to move back-
ward in general, trains in railML are allowed to change their direction on designated
berthingTracks. If a train is completely on one TVD section that is declared to be a
berthing track and has released all its reserved routes (to avoid them being blocked forever),
it can change its direction using the event RS_trainChangeDirection.

As the train moves, it is checked if it has passed a train detection element (e.g. axle
counter), which always works correctly according to the assumptions about failures. If
the front of the train passes one or multiple train detectors in a movement step (i.e. the
new position is the next position behind the detector), the associated TVD sections are
marked as occupied by adding its ID paired with the train to IL_occupiedTvdSections.
In the opposite case, a TVD section is declared vacant again as soon as the end of the
train has moved to an associated detector and this is also the last one in the section. In
some cases of incorrectly configured train detectors or TVD sections, this can lead to a
failure to detect that a section has been freed. Then there is an occupied TVD section
with no train on it, which should not happen and is therefore covered by an invariant.

Currently, the number of trains is influenced by the set RS_trains. For the future, once
sample files are available, it is planned to import the possible set of trains, perhaps together
with other additional properties, from the rollingstock schema. A distinction is made
between trains that have arrived (RS_arrivedTrains), trains that are requesting for ar-
rival (dom(RS_requestingArrivalTrains)), and trains that have not arrived (RS_trains
without the other trains). All these types of trains are disjoint.

A train can announce its arrival at one of the open ends of the track and request to occupy
the track using the operation RS_trainArrivalRequest. This requires that the open end
demarcates a vacant TVD section. Together with the location of the open end, the train is
added to RS_requestingArrivalTrains and the corresponding TVD section is marked
as occupied by the train. On the interlocking side, a decision can now be made to accept
(IL_trainAcceptArrival) or decline (IL_trainDeclineArrival) the arriving train. If
there is a route that starts at the open end, the reservation of this route must have been
started before the acceptance. If the train is accepted, it becomes a arrived train, its back
is set to the open end and its front to the next location after the open end. If its arrival
is declined, the TVD section is simply made unoccupied and the train is removed from
RS_requestingArrivalTrains.
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The counterpart to the arrival operations is the operation RS_trainLeave for leaving
trains. This comes into play when a train has fully approached an open end. Performing
this operation removes the train from the RS_arrivedTrains, immediately releases all its
reserved routes, and frees its remaining occupied locations. After that, the train is no
longer controlled by the system.

As one does not only want to examine scenarios with newly arriving trains, but perhaps
also trains that are already in the system at certain locations, it is possible to influence
the initialisation of the train positions by using the constants RS_trainFront_init and
RS_trainBack_init. Here only the exact positions for the front and back of the trains
need to be specified. Further details such as the occupied TVD sections are automatically
computed in the initialisation.
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6 Generation of Standalone B Machines

Although the animation machine based on the import process can be used directly by
specifying the file path, it may be interesting to generate machines that persist the data
of one model and can be run independently. The main motivation is to improve the
performance, as the operations of the import process no longer need to be computed for
each state, and the variables generated by the rules machines can be converted to constants.
In addition, it may be useful to be able to save the model so that it can be examined
at a later stage without having to import it again. Due to the current limitations of the
B-Rules DSL parser, a rules machine cannot include the import machine, which makes it
impossible to formulate custom rules on top of the imported data. Fortunately, this can be
circumvented by generation of a separate rules machine for validation, which is described
in Section 6.2. Finally, the procedure explained in this chapter is applied in the ProB2-UI
plugin described in Section 9 for the creation of the machines.

6.1 The Generation Process

The generation process is also handled by machines written in classical B, and uses the
external function FPRINTF of ProB to print the imported data to designated files. This has
the advantage that data structure values can be processed directly in B itself and output
with the appropriate type information without going through the ProB Java API. The
general concept is depicted in Figure 8. As for the animation, there is one machine for the
actual logic (RailML3_printMachines.mch), and one that extends this machine, setting
necessary properties for constants like the file as usual, but also individual machine names
and corresponding paths of the output machine files.

RailML3_import.mch RailML3_printMachines.mch
includes

RailML3_printMachines_init.mch

extends

animation_generated.mch

fprintf

data_generated.mch

fprintf

validation_generated.rmch

fprintf

extends references

Figure 8: Machine Hierarchy of the Generation Process

The RailML3_printMachines.mch machine contains three operations for printing of data,
animation and validation machines according to the railML input file. The data machine
contains all the data structures created during the import process. The animation machine
contains the same code as the machine described in Section 5, except that the inclusion of
the import machine and its operation importRailML are omitted, and the data machine
is extended instead. In the generated validation machine, custom rules can be specified
based on the data present in the referenced data machine.
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Before printing, the machine files should be empty, as FPRINTF currently only appends
the output to the contents of a file, and otherwise undesirable results may occur. Before
printing the data machine, it is also checked that there are no invariant violations or
other import related errors by checking that "FALSE" /∈ ran(FORMULA_VALUES("inv"))
and no_error = TRUE. The animation and validation machines cannot be printed until
the data machine has been printed, as both require it. To prevent the machines from
being printed without the corresponding operation being triggered, there are three trigger
operations that set the guard of the operation to print the selected machine type to TRUE.
As the operation is evaluated before execution, printing will take place immediately after a
trigger operation is executed. This does not apply if the machine is loaded using the ProB
Java API. In this case, the corresponding print operations must also be executed. With
this exception, the RailML3_printMachines.mch machine is designed in such a way that
it can be used without modification as a resource for the ProB2-UI plugin (Section 9), but
also in the setup shown here with an extending machine.

Data Machine In the data machine all records of imported railML types and all derived
data structures are stored (Section 3). In contrast to the rule-based machine, the data in
the generated machines can be accessed and changed directly via the data machine file.
This can be beneficial if the user wants to try out minor modifications without a complete
re-import. All imported records are stored so that the user can access as much data as
possible when creating custom rules in the validation machine. For the animation machine,
a small subset of the derived data structures is sufficient. It extends the data machine
for simplicity, as only one data machine needs to be generated this way. For performance
reasons when setting up constants, it may be interesting to use a second reduced data
machine containing only the data needed for the animation.

A crucial point in the generation of the data machine is that the variables created by
the rules machines are converted into constants. To do this, the variable identifiers
are obtained from FORMULA_INFOS("variables") and printed comma-separated in the
CONSTANTS section of the generated machine. The PROPERTIES section of the machine
is mainly generated by the specially created external function VARS_AS_TYPED_STRING,
which outputs all matching variables together with their current content including type
information as one parsable string for a given prefix (here: “RailML”). To prevent the
data from being printed in one long line, additional line breaks are introduced at the &
symbols. However, there can still be long lines, which might cause problems with some
editors. Unfortunately, for very long sets, ProB currently also reaches an internal limit,
which causes the set to be truncated at some point and replaced by “...” in the output.
Both issues need to be investigated further on ProB side, although fortunately the latter
only affects a few models.
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Table 1: Machine Statistics for Rule-Based and Generated Animation Machine

Rule-Based Generated
Files 17 10

Deferred Sets 1 1
Enumerated Sets 49 48

Definitions 243 200
Constants 8 201
Variables 580 30
Properties 13 204
Invariants 618 70
Operations 257 26

A special case of a created variable is the precomputed transitive closure of the topology
relation railML3_IS_NET_RELATION_SUBSEQUENT_BLOCKS. Obviously it is not useful to
store the transitive closure in the generated machine. Therefore, the name of the variable
starts with a lower case letter so that it is not captured by the prefix that outputs all
generated railML sets, and the equivalent constant is computed by the generated machine:

railML3_IS_NET_RELATION_SUBSEQUENT_BLOCKS_closure1 =
closure1(railML3_IS_NET_RELATION_SUBSEQUENT_BLOCKS).

In addition, the two constants allIdsOfType and all_ids, which contain all IDs, are
copied. At the end, the required enumerated sets for the railML attribute types are printed.

Animation Machine To print the animation machine, the contents of the RailML3_ani-
mation.mch machine are copied (without using importRailML in the initialisation) into
the printAnimationMachine operation. This has the disadvantage that any change made
to the machine must also be transferred to the print machine. The resulting animation
machine has almost the same content as the rule-based variant, and extends the data
machine rather than importing the data. Depending on the variable LINK_SVG, it can be
controlled whether the VisB definition file and the corresponding SVG file should be added
to the animation machine. By converting the variables to constants and omitting the
import operations of the rules machines, the generated animation machine has significantly
fewer invariants, as can be seen from the comparison of the machine statistics in Table 1.
This can result in benefits for model checking but also for the general performance of the
animation. Also, as mentioned above, not all of the loaded constants are used by the
animation machine, where further improvement could be made. With the exception of the
set for supported railML versions, the enumerated and deferred sets are the same as for
rule-based animation. The number of files and definitions is mainly due to the additionally
loaded definition files.
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6.2 Validation of Custom Rules

Users may wish to formulate additional rules that are not covered by the semantic validation
rules during import. The B-Rules DSL can be used for this purpose as well. As already
mentioned, this is currently not possible on top of the import machine, as rules machines
cannot reference ordinary B machines that contain variables or operations. Having the
generated data machine instead, it is possible to reference it from within any rules machine,
as the data machine only specifies constants and their properties. In principle, this is
already sufficient to validate custom rules. The generated validation machine only comes
with a few useful additional definitions, such as distanceBetween for the distance between
two locations with respect to the topology. Currently, this only works for unique paths
between two locations. It is planned to extend the definition for arbitrary locations by
using more advanced definitions or abstract constants (e.g. to implement a breadth-first
search). However, recent attempts with different approaches failed due to an unacceptable
increase in runtime.

In addition to these definitions, some example rules are provided that focus on properties
that are not subject to semantic validation, but may be of interest when dealing with
regulatory requirements or standards that the specification must meet. Luteberget et
al. [LJS16] and Martins et al. [Mar+22] provide inspiration for technical rules such as
that each entry signal of a route should be at least 200 metres before the first facing
switch, that each signal should have an approach speed less than a maximum value, or
that train detectors should be at least a minimum distance apart. The latter is checked
by the example rule MinDistanceOfTDEs, for which such a distance can be configured
individually. The second example rule, EBO_CheckSwitchSpeeds, checks that the specified
maximum allowed speed for switch branches does not exceed the value prescribed by the
German “Eisenbahn-Bau- und Betriebsordnung” (EBO)17. Similar rules can be written
for regulations concerning the speed, the maximum radius or inclination of a track curve
(speedSection, gradient/horizontalCurves).

As a current limitation it must be noted, that the custom rules can only be applied to
railML elements that are actually imported. It is of course possible to export the constant
data, which contains the entire railML file. However, formulating rules using data requires
knowledge of the internal processing of XML files in ProB and is therefore not as user-
friendly. The corresponding line that performs the export can be found commented out in
the RailML3_printMachines machine if required.

For convenient checking of the rules, it is recommended to use the “Rule Validation
Language Plugin” available for the ProB2-UI18. Further details on the plugin are provided
by Heinzen [Hei18].

17https://www.gesetze-im-internet.de/ebo/__40.html (accessed on 20/10/2023)
18https://github.com/hhu-stups/prob2_ui_rule_validation_plugin

https://www.gesetze-im-internet.de/ebo/__40.html
https://github.com/hhu-stups/prob2_ui_rule_validation_plugin
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7 Simulation

The properties of the generated models, especially the invariants, should ideally be auto-
matically verifiable. Classically, this is done by model checking, where the entire state
space is explored and checked for erroneous states or invariant violations. However, this
technique suffers from the problem of state space explosion. Unfortunately, it turns out
that this is also true for most of the railML models, so this approach is not applicable.

In order to be able to perform an automatic investigation of the properties, SimB [VLM21]
offers the possibility to perform timed probabilistic simulations with B-models in ProB.
Statistical tests can then be used to validate properties of the model by running several
Monte Carlo simulations with different parameters as also proposed by Cappart et al.
[Cap+17]. This approach is a compromise between full model checking, which is not
possible due to the size of the state space, and single simulations, which do not provide
probabilistic statements about the properties to be checked.

More specifically, SimB allows the investigated time interval of Monte Carlo simulations to
be specified by start and end predicates, a fixed number of steps, or a duration. Hypothesis
tests allow statistical statements about the fulfilment of invariants or individual predicates,
but also about the maximum elapsed time between two statements (timing). Estimators
can be used to make further statements about averages or cumulative sums. In addition,
real-time simulation is possible to study an approximate realistic behaviour of the model.
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Figure 9: Concept of the SimB Activations

The first step is to configure the simulation, i.e. the order in which operations are activated,
in a JSON file. This should be based on the general intended behaviour of the model
and, where appropriate, assumptions of probabilities. Here, for the animation machine,
the activations are configured as outlined in Figure 9. From the generic root activation
Any_Action, the next activation is chosen by probabilistic branching into rolling stock,
interlocking, and infrastructure actions. Again, probabilities determine the actual operation
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Listing 18: SimB Activation Configuration for End of Movement of a Derailer
1: {
2: "id": " IS_endChangeDerailer ",
3: " execute ": " IS_endChangeDerailer ",
4: "after ": " RailML3_IL_DERAILER_TYPICAL_THROW_TIMES ( DerailerId )",
5: " fixedVariables ": { " DerailerId ": " DerailerId " },
6: " activating ": [" skip", " IL_noteChangeSignalState ",

" IL_endRouteReservation "]
7: }

to be executed. For example, a train movement should be performed more often (80%)
than a change of direction (10%). For the selected operation, it is checked if it is enabled
by another probabilistic activation and if not, skip is activated. If it is enabled, the
operation is activated and also corresponding subsequent activations, such as the end of a
route reservation following its start operation. The top activations therefore always trigger
certain procedures, such as route reservation or train movements. Each executed activation
also activates the skip activation, which in turn activates Any_Action. In this way, the
selection process of the next operation is permanently executed during the simulation.

The parameters of activations without having any fixed variables are chosen uniformly
by "probabilisticVariables": "uniform". The default value for the continuation of
time (after) is 1000 ms. For certain activations, the time span defined in railML is used
(� in Figure 9). These include the movable elements, for which their typicalThrowTime
attribute is used as the time between activation of the start event and the end event, but
also the overlapReleaseTimer for the time between the start and end of an overlap release.
Listing 18 shows the configuration of after for the end of a derailer movement after its
typical throw time. To ensure that the operation is executed after the delay for the same
derailer that caused the activation by starting the movement, the variable DerailerId is
fixed to DerailerId (the latter being the ID of the executed operation that triggered this
activation).

For the train movement, it is planned to model the train speed in terms of the permitted
speed of the current speed section and the length of the current net element in combination
with the intrinsic position of the train. However, this approach could not yet realised in
SimB as it is not possible to pass the required information to the after of the initial phase
of movement (RS_trainMoveFront). For the rear part of the train this would be possible,
but could lead to situations where the front part is moving much faster than the rear part
of the train. In order to slow down the movement of trains compared to typical throw
times of movable elements, the default delay is set to 5000 ms.

With this configuration, different types of simulation can be carried out. On the one
hand, a real-time simulation can be used to check whether the behaviour of the model
is as expected. The current configuration also provides limited support for interactive
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simulation [VL23], for example, if the user starts the movement of a movable element, the
movement is completed automatically after its typical throw time. On the other hand,
Monte Carlo simulations with statistical checks can be performed on multiple traces to
make statistical statements about temporal or probabilistic properties. A common check
is a Monte Carlo simulation run for a certain number of steps or time, using a left-tailed
hypothesis test to examine the probability of an invariant violation:

SIM(ending: e.g. after 300 steps or 20000 ms
property: ALL_INVARIANTS
check: HYPOTHESIS
procedure: LEFT_TAILED
probability: 0.999
α: 0.001).

Although this approach cannot replace complete model checking, it can help with validation
and uncover any issues with the model, should the hypothesis be rejected (i.e. the
probability that all invariants are true is lower than assumed). It should also be noted that
the simulations are already subject to certain assumptions due to the configuration of the
activations, which may result in certain scenarios not being covered.

Besides the invariant check, specific properties can be examined, including that a route
becomes eventually reserved or that a train has passed a certain position after a certain
time. Further research could attempt to incorporate data from the timetable schema into
SimB, and based on this, check whether a train position matches the expectation of the
timetable. Another interesting property that can be checked is whether the movements of
a movable element always end within the maximum time allowed for the element. To do
this, the start and end predicate to delimit the movement period and the timing property
must be set to the maxThrowTime of the element:

SIM(starting: "swi1" ∈ dom(IS_switchesInMovement)
ending: "swi1" /∈ dom(IS_switchesInMovement)
timing: RailML3_IL_SWITCH_MAX_THROW_TIMES("swi1")
check: HYPOTHESIS
procedure: LEFT_TAILED
probability: 0.9
α: 0.1).

Unfortunately, one problem with the simulations is that they become quite slow for complex
topologies. This can be due to expensive operation guards that need to be computed
in each state, but also to the probabilistically uniform selection of the next transitions.
Therefore, a small value for the ProB preference MAX_OPERATIONS is recommended, as
then fewer transitions need to be computed in each state (to avoid problems with switch
crossings and their positions, the value should be at least 2).



53

8 Visualisation

Visualisations can help to identify errors in a formal model that might not be noticed
simply by looking at the data. VisB [WL20], a visualisation technique based on Scalable
Vector Graphics (SVG), is available in ProB for this purpose. It allows an individual
visualisation of the current state of a machine and, in ProB2-UI, the execution of events
triggered by user interaction with a specific element within the SVG. To create such an
SVG, the implementation of Graphviz [Gra23] included in ProB is used. Graphviz is a tool
for visualising graphs and therefore well suited to a topology-based model such as railML 3.
There have also been attempts by railML.org to visualise pure relational topology data
in graph form with Graphviz [Kol23]. In contrast, the aim here is to create a view that
is more similar to an interlocking view, in order to better represent train positions and
further properties in VisB.

Since SVGs created with Graphviz cannot be used directly for VisB, certain conversion
steps are required. An overview of the necessary steps is provided in the following sections.

8.1 First Step: Create SVG Using Graphviz

As mentioned, ProB supports creation of so called custom graphs, which can visualise the
current state of a machine in form of a customised graph. The custom settings are affected
by the special definition CUSTOM_GRAPH, which is part of ProB since version 1.12.2 and
combines the former definitions CUSTOM_GRAPH_NODES and CUSTOM_GRAPH_EDGES. Since
this version, the attributes of nodes, edges, and the graph itself can also be easily controlled
via records. A simple exemplary definition can be found in Listing 19.

Listing 19: Example of a CUSTOM_GRAPH Definition
1: CUSTOM_GRAPH == rec(
2: layout : "dot",
3: directed : FALSE ,
4: nodes1 : UNION(i).(i : 1..2 | {rec(shape: " circle ", nodes: i)}),
5: edges1 : {rec(edge: 1 |−> 2, label: "1_2")})

1 21_2

Figure 10: Custom Graph Created by the Definition in Listing 19

It describes a graph with two circular nodes and an edge connecting them, as shown in
Figure 10. Within the CUSTOM_GRAPH definition it is possible to specify the graph attributes,
as is done here for the layout engine. The entry directed is a virtual attribute to instruct
ProB whether the generated graph should be directed. In the case of TRUE, a digraph
would be created instead of a graph for undirected graphs otherwise.
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In the context of visualising railway lines, undirected graphs are usually more appropriate,
which is why they are used in all the following graph definitions.

For the visualisation of railML 3 topologies, three predefined definitions of custom graphs
are available in RailML3_CustomGraphs.def. The definition DOT_customGraph attempts
to visualise the topology using only its relational data and the placement algorithm of
a Graphviz engine, without using any positional data. The others are for two common
ways of storing position data in the railML visualization schema, namely linear position
data as used in the railML files exported by NEAT’s D4R Track Planner19 software
(D4R_customGraph) and position data based on intrinsic coordinates of net elements
as used in the Norwegian Railway Directorate’s railML files exported by railOscope20

(NOR_customGraph). The strategy to be used depends on the file, which means that
applying a strategy to a file that was not created using that strategy is unlikely to result
in a correct visualisation.

To create the visualisation, it is sufficient to load the definition file in the RailML3_ani-
mation_init machine (Section 5) and set the CUSTOM_GRAPH definition to one of the
available definitions. The three definitions are further elaborated in the following sections.

8.1.1 Graph Derived from Infrastructure Data (DOT_customGraph)

In order to derive a graph from the topology representing the connection between the
infrastructure elements of the track ends, an additional relation is required. This is
implemented by RailML3_IS_TRACK, which stores the relationship between net elements
and intermediate or delimiting infrastructure elements of a net element such as switches,
crossings or buffer stops. If the track ends are not explicitly specified, they are inferred
from the track paths and the elements at the beginning and end of the track. An exemplary
track trc1, which starts in a switch sw1, then leads via a net element ne1 to a crossing
cr1 and finally via ne2 to a buffer stop bus1, would be represented as

"trc1" 7→ {"sw1" 7→ "ne1", "ne1" 7→ "cr1", "cr1" 7→ "ne2", "ne2" 7→ "bus1"}.

This is already all the data needed to create the graph. Note that in the topology given
by railML, the net elements represent the nodes and the net relations represent the edges.
When visualising railway lines, it is usually desirable to represent the net elements as edges
instead, so that train positions can be represented on them. To do this, the custom graph
definition cannot use the given data directly, but must interpret the nodes as edges and the
relations as nodes. This is done by creating nodes whose identifiers consist of the IDs of
the two net elements that are part of a relation pair in RailML3_IS_NET_RELATION. Their
uniqueness is ensured by ProB’s external function SORT, which sorts both elements of the
pair according to their internal order. As shown in Listing 20, the resulting sequence of
strings is concatenated as the node ID. The edges connect these relation points to each other

19https://design4rail.com/service/d4rhorizon/#section-trackplanner (accessed on 29/10/2023)
20https://railoscope.com (accessed on 29/10/2023)

https://design4rail.com/service/d4rhorizon/#section-trackplanner
https://railoscope.com
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Listing 20: Creation of Virtual Nodes for NetElements in DOT_customGraph
1: rec(shape:"point", nodes: STRING_CONC (SORT ({i_ne ,i_ne2 })),

‘id ‘: STRING_CONC (SORT ({i_ne ,i_ne2 })), width: "0.0")
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Figure 11: Simple Example Visualised by Graphviz Without Positioning Data

if the relation pair is not part of a switch or a crossing, and otherwise to the ID of the switch
or crossing. If the track ends at a buffer stop, an edge is also added to it. When creating the
edges, it is important to note that they are created in the correct direction from the intrinsic
coordinate 0.0 to 1.0, so that the later visualisation with linear gradients, which require the
percentage information for the display of positions, works properly. This is ensured by the
orientation of the tracks stored in RailML3_IS_LINEAR_LOCATION_KEEPS_ORIENTATION.
In the case of the orientation FALSE, the edge is created inversely.

This technique does not currently support the visualisation of signals and other functional
infrastructure on net elements, as this requires the coordinates of the edges to be known in
order to place the nodes accordingly. Since the placement of the edges is done internally
by Graphviz, the required data is obviously not accessible. One could consider adding such
points as nodes, which would require a more sophisticated graph definition and might make
the graphs too complex. There have also been attempts to use the linear coordinates given
by linear positioning systems to infer at least one coordinate of the elements, but fixing
of only one coordinate is difficult to handle in Graphviz. To get around this, attempts
were made to precompute offsets for overlapping elements in B, but this took a lot of
computational time and resulted in unsatisfactory visualisations.

An example of a railML file which comes without visualisation data for the topology is
the Simple Example. Using the definition DOT_customGraph with layout:"dot" gives the
visualisation shown in Figure 11, which represents the actual topology very well. Another
example can be found in Figure 16b in Section 10.

As seen, this visualisation strategy works well for small topologies, but visualisations of
large topologies often become difficult to read because edge overlaps can occur and switch
branches are not correctly mapped. It may be helpful to vary the settings slightly to
achieve better results. Nevertheless, the visualisations can help to better understand the
topology if no other visualisation data is available.
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Listing 21: Use of linearElementProjection in the Advanced Example
1: <linearElementProjection id=" vis01_lep24 " refersToElement ="ne64">
2: <coordinate x=" 3747.730 " y=" 782.273 "/>
3: <coordinate x=" 3630.000 " y=" 900.000 "/>
4: <coordinate x=" 3450.000 " y=" 900.000 "/>
5: </ linearElementProjection >

Listing 22: Use of spotElementProjection in the Advanced Example
1: <spotElementProjection id=" vis01_sep097 " refersToElement ="swi31">
2: <coordinate x=" -990.000" y=" 1050.000 "/>
3: </ spotElementProjection >

Typically, railML files with detailed topologies should contain explicit visualisation data, so
it makes more sense to use them prioritised. For this purpose, railML 3 has its own schema
visualization, which mainly contains positional information for the visualisation of a
topology together with its infrastructure elements. Applications make use of this schema
in different ways. Two of these possibilities are presented by the following custom graph
definitions D4R_customGraph and NOR_customGraph.

8.1.2 Graph Defined by Fixed Positions for All Elements (D4R_customGraph)

This visualisation strategy makes use of the elements spotElementProjection and linear-
ElementProjection which are both part of the visualization schema. As the name
suggests, spotElementProjections project an arbitrary element from the infrastructure
schema onto a single coordinate, which is independent of any positioning system de-
fined in infrastructure and is intended only for visualisation. The same applies to
linearElementProjections, with the only difference that several coordinates can be spec-
ified, which are connected by straight lines according to their order in the file from top to
bottom.

In the Advanced Example created with the D4R Track Planner, the visualisation data for
the infrastructure elements is managed by spotElementProjections and for netElements
by linearElementProjections. This is used to define a path over several coordinate
points for a netElement as shown for ne64 in Listing 21. One coordinate is specified
for almost every infrastructure element, as in Listing 22 for the switch swi31. For some
elements, a position specification is missing and due to the linear projection of the net
elements without a connection between coordinates of the visualisation and the intrinsic
coordinates of the net element, the position can not be derived from intrinsic coordinates
(as is the case for the next strategy).
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Listing 23: Use of spotElementProjection in a Norwegian Example
1: <spotElementProjection id=" sep_ic1 " refersToElement =" ne_154_ic1 ">
2: <coordinate x=" 1320.0 " y="680.0"/>
3: </ spotElementProjection >
4: <spotElementProjection id=" sep_ic2 " refersToElement =" ne_154_ic2 ">
5: <coordinate x=" 1350.0 " y="680.0"/>
6: </ spotElementProjection >

Listing 24: Use of associatedPositioningSystem in a Norwegian Example
1: <netElement id=" ne_154 ">
2: <associatedPositioningSystem id=" ne_154_aps01 ">
3: <intrinsicCoordinate id=" ne_154_ic1 " intrinsicCoord ="0.0"/>
4: <intrinsicCoordinate id=" ne_154_ic2 " intrinsicCoord ="1.0"/>
5: </ associatedPositioningSystem >
6: </netElement >

To create a graph in Graphviz that uses the specified coordinates, the layout engine neato
provides the attribute pos, which fixes the location of a node to the specified position.
For this to work correctly, the coordinate must be provided separated by a comma and
followed by an exclamation mark21. In the D4R_customGraph definition this is done by the
following line (simplified):

pos: MU(e_coord’x)ˆ",-"ˆMU(e_coord’y)ˆ"!"

Here the “-” in front of the y-coordinate is responsible for flipping the visualisation
horizontally, which is necessary to get the same view as in the D4R Track Planner.

8.1.3 Graph Defined by Fixed Positions for Net Elements (NOR_customGraph)

The railML files provided by the Norwegian Railway Directorate (see Section 10.2 for
details) contain visualisation data which only specify points for certain intrinsic coordinates
of net elements. As shown in Listing 23, there exists a coordinate for each intrinsic
coordinate of a net element. This refers to the corresponding intrinsicCoordinate of
an associatedPositioningSystem associated with a netElement as it can be seen in
Listing 24. It is possible to specify positions of multiple intrinsic coordinates. For correct
visualisation it is essential that at least the positions of the bounding intrinsic coordinates
0.0 and 1.0 are specified. Otherwise, the positions of infrastructure elements on the net
element cannot be correctly inferred.

With correctly specified positions, the visualisation of the net elements can be done by
adding a virtual node for each intrinsic coordinate and connecting these nodes by edges

21https://graphviz.org/docs/attrs/pos (accessed 29/10/2023)

https://graphviz.org/docs/attrs/pos
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labelled with the identifier of the corresponding net element. In addition, this way of
storing positions has the advantage that any position of infrastructure elements can be
inferred from their intrinsic coordinates. As there are multiple intrinsic coordinates allowed,
the position must be computed for the corresponding section of the intrinsic coordinate.
This leads to the following general formula for computing the coordinate in the visualisation
of an element at intrinsic coordinate iCelement:

(x1 + iCelement − iC1
iC2 − iC1

· (x2 − x1), y1 + iCelement − iC1
iC2 − iC1

· (y2 − y1)),

where iC1 and iC2 are the intrinsic coordinates that enclose iCelement and (x1, y1) and
(x2, y2) are the coordinates of the spotElementProjection of iC1 and iC2. Note that
iCelement can take any value in [iC1, iC2], while iC1 and iC2 must be intrinsic coordinates
specified in a associated positioning system of the net element22. For example, a signal at
spot location (ne_154, 0.4) regarding the example in Listings 23 and 24 would be located
at

(1320 + 0.4 − 0
1 − 0 · (1350 − 1320), 680 + 0.4 − 0

1 − 0 · (680 − 680)) = (1332.0, 680.0).

The positions of the nodes in Graphviz are fixed by using neato in the same way as described
in the previous Section 8.1.2. An example for a visualisation using NOR_customGraph can
be found in Figure 16a in Section 10.2.

8.2 Second Step: Convert SVG for Use in VisB

The main problem with the SVG output by Graphviz for use in VisB is that the specified
IDs are set for the group element containing all elements of a particular node or edge.
Because of this, attributes of the inner elements, such as the filling of a node’s ellipse,
cannot be accessed by VisB. It is therefore necessary to generate additional IDs for the
members of each group. Since for the visualisations created here it can be assumed that
each element does not occur more than once per group, a naive approach of creating IDs
based on element types is appropriate. For an ellipse in a group with the ID ex1 this
results in the ID ex1_ellipse.

For the D4R_CustomGraph there is the special case, that the paths are formed by a linear
sequence of points, which results in having multiple path elements per group. As this
would break the above described approach for addition of new IDs, these paths are merged
into one single path element, which results in an equivalent visualisation.

In order to be able to display the state of the tracks in VisB more easily, the paths
are multiplied over each other for all definitions. Thus there are several paths with the
same trajectory, whereby these represent the occupancy, route reservations, overlaps, and

22Currently, all intrinsic coordinates are interpreted as belonging to one positioning system.
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Listing 25: Example of a Linear Gradient in Converted SVG
1: <linearGradient gradientUnits =" userSpaceOnUse " id=" ne1_lg_occ "

x1="1.0" x2="2.0" y1="3.0" y2="4.0">
2: <stop id=" ne1_lg_occ_1 " offset ="20%" style="stop - opacity :0"/>
3: <stop id=" ne1_lg_occ_2 " offset ="20%" style="stop -color:red;

stop - opacity :1"/>
4: <stop id=" ne1_lg_occ_3 " offset ="50%" style="stop -color:red;

stop - opacity :1"/>
5: <stop id=" ne1_lg_occ_4 " offset ="50%" style="stop - opacity :0"/>
6: </ linearGradient >

reserved TVD sections. For some of the paths, an animation property is added that allows
it to blink. To display properties partially on net elements, linearGradients are also
added for each path. These gradients allow to control the colouring of a path in percentages
by stop elements, for example transparent from 0% to 20%, red from 20% to 50% and
transparent again from 50% to 100% to represent a train position from intrinsic coordinates
0.2 to 0.5 on a net element. This can be encoded in the generated linear gradient of the
path visualising the occupation as shown in Listing 25, where the default is 0% for the
first two stops and 100% for the second two stops (i.e. the path is transparent).

Initially, the conversion was done by a B machine, which adds the additional IDs, and
a Python script that performs the path adoptions. However, this is a very cumbersome
procedure and not user-friendly. With the integration of the import process into ProB2-
UI, the SVG conversion was revised and transferred into Java code. The creation is now
possible automatically during the loading of a railML file without manual steps. In addition,
there are several configuration options that are described in more detail in Section 9. For
conversion, the SVG is treated as a plain XML file, which is parsed by a DOM parser
(org.w3c.dom.Document). Then the DOM of the SVG is manipulated for use in VisB as
explained above. Finally, the manipulated DOM is written back to the original file (i.e. the
conversion is carried out in-place). For each SVG type there are additional tests available
in RailMLSvgConverterTest using XMLUnit to check the correctness of the conversion.

8.3 Visualisation in VisB

The converted SVG can be included in the animation machine by using the definition
VISB_SVG_FILE, which must contain the path to the generated SVG file. For control of the
SVG elements, the VisB definitions introduced in ProB 1.12.0 and 1.12.2 (events) are used
in the definition file RailML3_VisB.def. They provide convenient access to properties of
elements via sets of identifiers, which would not be possible via items in a VisB JSON file.
Such a configuration file was created by another Python script when the definitions for
creating VisB events were not yet available. This step can now be omitted by the new
definitions and is no longer maintained.
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There are four types of VisB definitions that are used. The VISB_SVG_UPDATES are for
the actual visualisation of the current state properties. This is done by providing a set
of records with entries corresponding to the SVG attributes to be affected. In addition,
each record must contain a field ‘id‘ for addressing the desired element. This is also the
reason why the previous conversion of Section 8.2 is necessary. A simple example of such
an update definition is shown in Listing 26.

Listing 26: VisB Update Definition for Visualisation of Signal States
1: VISB_SVG_UPDATES16 ==
2: {i_e • i_e : RailML3_IL_SIGNAL_CONTROLLED |
3: rec(‘id ‘: i_e^" _ellipse ", stroke : // [...] ,
4: fill: IF aspect_closed : IL_signal_states (i_e) THEN "red"
5: ELSIF aspect_caution : IL_signal_states (i_e) THEN " yellow "
6: ELSE "green" END ) };

It controls the appearance of the stroke and fill of the ellipse representing a signal contained
in RailML3_IL_SIGNAL_CONTROLLED according to its state (i.e. aspect). All visualised
properties can be obtained from Table 2. Figure 12 shows a selection of these properties
visualised in VisB. Also via VisB updates, tooltips are provided with additional information
on some elements, which can be displayed by hovering over such an element. This includes
the detailed state of crossings, derailers, and switches, the current aspects of signals, but
also the IDs of trains that are on a net element or a TVD section.

Furthermore, VisB also enables the interactive triggering of events via elements of the
visualisation. This link is established by the VISB_SVG_EVENTS definitions, which are
implemented for events of movable elements and changing of signals. Listing 27 illustrates
a simple example for derailers.

Listing 27: VisB Event Definition for Movement of Derailers
1: VISB_SVG_EVENTS21 == {x • x : allIdsOfType (" derailerIS ") |
2: rec(‘id ‘: x, event: " IS_startChangeDerailer ",
3: predicate : (" DerailerId =","\""^x^"\"") ) };

It addresses the SVG group containing all elements of the derailer by its ID and uses
the additional predicate to specify that IS_startChangeDerailer should be executed (if
enabled) for the associated DerailerId when the user performs a click on one of the group’s
elements. A current limitation is that events and hovers can only be specified using constants,
so allIdsOfType must be used for the rule-based animation machine. In the generated
machines (Section 6), the railML specific variables are converted to constants which allow
a more precise formulation of these definitions (e.g. RailML3_IL_SIGNAL_CONTROLLED
instead of allIdsOfType("signalIS")).
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Table 2: State Properties Visualised in VisB

Object Affected
Attribute Default Condition Effect

derailerIS
stroke black is locked red
fill black in derailing position yellow

movable-
Crossing

stroke black is locked red

fill
black

related route is in reservation
and position matches route green

black
related route is in reservation

& position does not match route red

netElement

stroke (free) green
part of passable crossing/

switch branch (and IS_next) black

stroke (tvd) transparent related tvdSection is occupied blue

not blinking related tvdSection is part of
route in reservation blinking

stroke (res) transparent
related route is

in reservation or reserved orange

not blinking related route is in reservation blinking

stroke (ovl) transparent
related overlap is

in reservation or reserved violet

not blinking related overlap is in reservation blinking
stroke (occ) transparent occupied by a train red

signalIS
stroke black signal is locked by a signal plan orange
fill red shows proceed aspect green

switchIS
stroke black is locked red

fill
black

related route is in reservation
and position matches route green

black
related route is in reservation

& position does not match route red

(a) Switches (in Movement, in End Position),
Derailer in Derailing Position, and Closed Signal

(b) Train (Red) Starts Route Reservation

(c) Reserved Route with Overlap and Passable Signal

Figure 12: Visualisation in VisB
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Listing 28: VisB Hover and Object Definition for Crossings
1: VISB_SVG_HOVERS3 == {x • x: allIdsOfType (" crossing ") |
2: rec(‘id ‘: x^" _ellipse ", ‘stroke −width ‘: "1.5" )};
3: VISB_SVG_OBJECTS3 == {x • x: allIdsOfType (" crossing ") |
4: rec(‘id ‘: x^" _ellipse ", svg_class : " ellipse ",
5: ‘stroke −width ‘: "1.0" )};

Finally, hovers are used to indicate elements that are triggers for events. The desired
elements and their default appearance are declared in VISB_SVG_OBJECTS and the hover
behaviour in VISB_SVG_HOVERS, as illustrated by Listing 28.

Limitations of the linearGradient Approach Since VisB can only address elements
by their ID, predefined stop elements with ID and colour are required for each linear
gradient. Consequently, only one inner colour section can be predefined for each net
element, which is done here by two stops for the outer colour and two for the inner colour.
Depending on the state of the net element, the percentage can only be set to one value,
which is selected as the minimum or the maximum of, for example, the occupied part of a
net element. For an accurate visualisation, the number of occupying trains would have to
be known in advance in order to define stops for each train, which is unfortunately not
possible. This results in the restriction that only one train, one occupied TVD section,
one overlap and one route can be correctly visualised per path object (hence the paths of
each property are created separately for a net element). However, this should rarely be a
problem as the net elements are the smallest components of the network and therefore there
are few cases where multiple routes or trains can occupy the same net element. Another
problem is that using userSpaceOnUse (cf. Listing 25) only draws a straight line from the
start of the path to its end, without considering its curvature. This can lead to inaccurate
visualisations if a net element is very curved. The problem should also be rare, as most
of the net elements are drawn as straight lines, where the problem does not apply. An
alternative approach is to use small blocks that cover the entire route network [Gru+23]
and change colours according to their state. While this may be easier for VisB to handle,
it would require more effort to convert and generate the blocks, which is why the linear
gradient approach was chosen for the current visualisation.
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9 Integration in ProB2-UI

As the native application of the conversion process via the print machines (Section 6) and
manual creation of visualisations might be too cumbersome for domain experts who are
not familiar with the B-method, the idea of developing a user interface for the convenient
import of a railML file arose. Since a JavaFX-based graphical user interface to ProB already
exists with the ProB2-UI [Ben+21], it was decided to integrate the functionality either
directly into the ProB2-UI or as a plugin using the plugin mechanism by Heinzen [Hei18].
As the plugin presented here is currently still under development and the future of the
plugin mechanism in ProB2-UI is subject of current discussions, this decision has not yet
been finalised.

File → Open Advanced → RailML Import

RailMLStage.java

show
show

RailMLImportMeta.java

set file path

get

set

RailMLInspectDotStage.java

get show
(if visualise)

RailML3_{CG}_CustomGraph.mch

load
(ProB Java API)

set files/
trigger print events

config. visualisation

RailML3_validation_flat.mch

RailML3_import.mch

RailML3_printMachines.mch

extends

data_generated.mch
animation_generated.mch
validation_generated.rmch

(RailML3_VisB.def, RailML3_SimB.json)
create files

(RailMLHelper.java)

fprintf

RailMLSvgConverter.java

call ProB dot
command custom_graph

visualisation.svg
convert and output SVG

Figure 13: Architecture of the ProB2-UI Plugin

The current architecture of the plugin is outlined in Figure 13. Its core idea is to load the
existing machines for import and print using the ProB Java API [Kör+21] to generate the
corresponding machines and at the same time generate an SVG for VisB using Graphviz.
The required machines (top right box) are written so that they can be used without modifica-
tion either for the plugin or directly via an extending machine (Section 6). In addition, there
are three machines RailML3_{CG}_CustomGraph.mch dedicated for the plugin, one per
custom graph definition CG, which extend the print machine RailML3_printMachines.mch.
This allows to use the custom graph definition based on the user’s choice, which currently
cannot be set directly when loading a machine via the API. The constants that would be
set via an extending machine (e.g. file names and paths) are passed here as additional
predicates when calling $setup_constants via the API.

The user interface of the plugin comes with two additional stages, namely the RailMLStage
for selection of options and file locations before the import process and the RailMLInspect-
DotStage, which allows the user to configure the visualisation that will be generated by
Graphviz. A separate Java class RailMLImportMeta maintains the metadata that needs
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to be exchanged between stages, such as the current state of the loaded machine, the file
path for the generated files, and the selected visualisation strategy. The import process
can be triggered either by directly opening a railML file from the File menu, or from
a separate menu item in the Advanced menu. In both cases the RailMLStage will be
displayed (Figure 14a). If the import was started by opening a file, the file path is already
set in the metadata and will be loaded from there, otherwise the file has to be selected
first. The user must then select a location for the generated files. If none is selected, the
files are placed in the same directory as the railML file.

After file selection, it can be selected if animation, validation machine, and a visualisation
should be generated. If one of the machines is selected, the data machine is also generated.
For the animation machine, the SimB configuration file and, if a visualisation is selected,
the VisB definition file are also copied to the output directory. For the visualisation, the
user has to choose one of the supported strategies (see Section 8.1). This affects which
custom graph definition is used and therefore which associated plugin-machine is loaded.
Depending on the selection made by the user, the generated files are displayed in a list
below.

By starting the import, a RailML3_{CG}_CustomGraph.mch machine based on the selected
visualisation strategy CG is loaded via the ProB Java API. The required machines are
stored as resources in the project. Since the ProB Java API requires a path as a string
to load a machine, problems occur when ProB2-UI is started from a JAR file, where the
file system of the resources is no longer accessible. To avoid this, in this case all resource
machines are copied as temporary files before loading and deleted immediately afterwards.

For the import, a new state space is created (independent of the ProB2-UI animator), as
the machine should only be loaded in the background, using a separate thread, for the
import and not animated. The machine RailML3_printMachines leaves several constants
unspecified that can be used to control the file and machine names. These are specified by
additional predicates that are passed with the execution of $setup_constants:

State currentState = stateSpace.getRoot()
.perform("$setup_constants", "file = \"" + railMLpath + "\"" + ...)
.perform("$initialise_machine");

To improve performance when only the visualisation is to be generated, there is also the
constant FULL_IMPORT, which allows the import to be aborted early when all the data
required for the visualisation has been loaded. After initialisation it is checked whether
there are invariant violations or other import errors (then no_error = FALSE applies). If
not, the printing operations can be performed. Just before this, the necessary files are
created on Java side by the function replaceOldFile in the RailMLHelper class, as the ProB
FPRINTF function can only deal reliably with existing files. If a machine file with the same
name already exists, it is copied with an ascending number, and the original file is emptied
(FPRINTF would just append the output to the existing content).
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Then, the two associated print operations are performed (for all selected machines):

replaceOldFile(generationPath.resolve(dataFileName.getValue()));
currentState.perform("triggerPrintData").perform("printDataMachine");

Finally, all machines are added to the current project together with the VisB definition file
(depending on the selection) and the SimB configuration file is also linked to SimB.

After the import of the railML file and (if selected) generation of machine files, the ProB
dot command custom_graph is executed as DotVisualizationCommand and the resulting
visualisation is displayed in the RailML3_InspectDotStage as shown in Figure 14b. This
stage is based on the source code of the DotView for all possible graph visualisations in
ProB2-UI, but extends it with possibilities to configure the railML specific visualisation.
The options available vary according to the visualisation strategy selected. For the DOT
strategy, it is only possible to select whether to display names and in which language
(currently English, Norwegian, and German), as the other elements are mandatory for
correct visualisation. In addition, it is possible to choose from three dot engines (dot,
neato, fdp) and whether curved splines are to be used. For the other two strategies (D4R,
RAIL_OSCOPE), all displayed elements can be selected and deselected (e.g. balises, level
crossings, signals) and the scaling can be adjusted to improve the visualisation when many
elements are close together. Internally, a listener is set for each option which, when clicked,
performs the associated operation in RailML3_{CG}_CustomGraph.mch:

balises.selectedProperty().addListener((o,f,t) ->
railMLImportMeta.perform("changeDisplayBalises"));

For example, if the user does not want balises to be displayed, the operation

changeDisplayBalises =
ANY b WHERE b /= DISPLAY_BALISES THEN DISPLAY_BALISES := b END;

is performed for the shared state in RailMLImportMeta. The custom graph definitions
recognise the boolean variable DISPLAY_BALISES and will replace the set of balise IDs
with the empty set (making them disappear). After each change, the visualisation can be
reloaded to apply the changes and also saved. The latter only saves the SVG created by
Graphviz, which has not yet been converted for VisB.

The conversion of the SVG for VisB (Section 8.2) starts as soon as the user is satisfied
with the current visualisation and accepts it with the apply button. For this purpose,
the RailMLSvgConverter class provides the necessary static methods. As mentioned in
Section 8.2, the conversion is done in place, so the SVG generated by Graphviz is first
saved to a temporary file, to which the conversion is then applied. Afterwards the resulting
file is copied to the directory of generated files.
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(a) Configuration of the Import

(b) Configuration of the Visualisation

Figure 14: RailML Import in ProB2-UI
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This completes the import process. If machines have been selected for generation, they are
added to the current project and the animation machine is automatically loaded (validation
machine if animation was not selected). For the validation machine it is recommended to
install the “Rule Validation Language Plugin” in the ProB2-UI for convenient validation of
custom rules (Section 6.2).

For future development, other features such as better display and export of validation
messages (possibly together with a general revision of error messages in the UI), visualisation
of validation errors in VisB, and the creation of different scenarios during generation (initial
train positions) are possible.
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10 Case Studies

A crucial problem in developing applications for the relatively new railML 3 format is the
lack of publicly available example files. The only official example is the so-called “Simple
Example” from railML.org, which only demonstrates the functionality for a very basic
topology. The so-called “Advanced Example” is still under development and was kindly
provided by railML.org for use in this project. Fortunately, the Norwegian railway data
is available as the only real world example in railML 3.2 in a development state [Jer23].
Further own examples have been created using the D4R Track Planner software (see
Appendix B). However, these are only semi-real as they are based on track plans from an
interlocking simulator.

This section presents selected models to which the previously presented techniques have
been applied. The results are then discussed for each model. In general, errors have already
been successfully detected in some of the models.

10.1 Examples by RailML.org

Since the examples provided by railML.org23 can be assumed to be used in accordance
with the intent of the schema, some implementation details have been adapted to these
examples. Occasionally, this also supports cases that are not directly covered by the schema
documentation.

Simple Example The Simple Example is the smallest example available. It consists of a
single track line between two stations with two tracks each, as shown in Figure 15. Except
for the level crossing, all the infrastructure elements shown in yellow can be imported
into ProB. In total, the model consists of 12 net elements, 13 net relations, 3 switches,
1 derailer, 0 crossings, 13 signals, 13 TVD sections, 3 routes, 2 overlaps, 8 route release
groups, and 0 open ends. As the only example, it implements 2 conflicting routes, 2 route
relations, and signalling using 2 aspect relations.Simple Example – page 2

Version 12 (2023-07-25)

(to be continued)
Contact:  info@railml.org    ☏ +49 351 475 829 11
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Figure 15: Simple Example for railML 3.1 provided by railML.org [Rai23a]

23https://www.railml.org/en/user/exampledata.html (accessed on 20/10/2023)

https://www.railml.org/en/user/exampledata.html
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To investigate the example, it is imported using the plugin for the ProB2-UI (Section 9).
The recent published version 12 of the example did not pass the semantic validation due
to a minor rule violation:

Error: RailML: [Line 952, id ’pt_swi02’]: Switch should return
to preferred position, but no preferred position is defined

As the switch was adapted to not return to its preferred position, the model passed both
syntactic and semantic validation without error. However, semantic warnings informed
about the detection of three overlapping TVD sections, namely X01T, LX2.5T, and X02T.
It turned out that this is due to a misconfiguration of the spotLocation of tde13, which
lacks the pos attribute and is therefore placed at the default intrinsic coordinate 0.0 of
ne_x01. The train detection element tde12 has the (inferred) location (ne_x01, 0.472).
But according to Figure 15, tde12 should be to the left of tde13 (the normal direction
is to the right in the figure), which is not fulfilled by the current specification. Adding a
proper position to the spotLocation should fix this issue. The remaining warnings are for
the inferred intrinsic coordinates from the pos attributes.

Since no visualisation data is provided, only the DOT strategy is applied, resulting in the
visualisation shown in Figure 11. It captures the structure of the example quite well, but
suffers from the limitations of the DOT strategy in terms of visualising signal states and
train detection elements.

The above issue regarding TDE locations is also implicitly detected by the example rule
MinDistanceOfTDEs in the generated validation machine by the following counter example:

"Distance between trainDetectionElements tde04 and tde13 is 0.0 (<= 21.0)"

This shows that both tde04 and tde13 are located at the same point in the topology,
which is indeed not correct. The other example rule about switch speeds can be successfully
validated.

The animation model was then simulated with SimB once in real-time and 20 times with a
Monte Carlo simulation using the hypothesis test for the fulfilment of all invariants for
traces with 300 steps. For this, two trains are initially placed on ne_a01 and ne_b05, as
the topology has no open ends for arrival of trains. In the Monte Carlo simulation, none of
the 20 executions were successful, i.e. an invariant violation occurred in every trace. This is
due to the placement of the second train on ne_b05, which from there overruns the derailer
der01 in derailing position and partly also the wrongly placed switch swi03. The reason
is that the signal sig08 protecting these elements was not recognised as a controllable
signal during import because it has no associated interlocking element. Whether this
is intentional or an error must subsequently be assessed by domain experts. Also, after
changing direction before signal sig06, it may enter the set route of the other train going
from sig04 to bus03, resulting in a train collision. Here it would have to be ensured that
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the train can only change its direction behind the signal so that the return journey is
secured by it. However, these are also questions of modelling behaviour in B, which can
be adapted if necessary. As a further restriction, only routes from sig01 and sig02 via
sig04 to bus03 are currently implemented, so that the first train can never reach the track
in the direction of bus04.

Furthermore, partial model checking with deadlock checking was applied and stopped after
60 % of the current queue had been processed (432 816/720 012 states). Until then, eight
deadlocks with invariant violations were found, which occurred for the same reason as
in the simulations. A run with enabled invariant check revealed that the route relations
cannot be fulfilled with the current modelling. These require for the two routes leading to
sig04 that the activation section of the routes must be continuously in an occupied state.
However, as the train will eventually leave the section while using the route, the violation
is unavoidable. It could either be that the property is only intended to be checked at the
time of reservation of the route, or that the reservation of route blocks is also meant by
occupancy. In this case the modelling in B would have to be adapted.

In general, even this small example clearly suffers from the state space explosion problem,
but with the help of running a few simulations, some errors could still be discovered.

Advanced Example This example is a slightly larger topology with a total length of
25 kilometres and a greater variety of movable element types. Here the file created with the
D4R Track Planner and thankfully provided by railML.org is examined, there is another
one available in railOscope. The model comes with 74 net elements, 107 net relations,
21 switches, 1 derailer, 1 (movable) crossing, 31 signals, 36 TVD sections, 38 routes,
0 overlaps, 0 route release groups, and 1 open end. A special feature that does not
correspond to the schema is that the branches of the interlocking objects of switches are
indicated by net elements instead of tracks. Therefore, this is currently also supported by
the model. In fact, the track data is internally projected onto the net elements anyway.
This model also lacks length specifications for net elements, which means that the intrinsic
coordinates cannot be correctly derived for given inner positions. Warnings are issued
about this during import. The validation of the model ends without errors, only some
semantic warnings regarding the TVD sections are generated, for instance:

Warning: RailML: [Line 653, id ’ne88’]:
netElement is not part of any tvdSection.

Some routes also have TVD sections that are behind the exit signal. As these are more
likely to be part of an overlap, a warning is created.

Both DOT and D4R strategies can be used for visualisation. However, it is recommended
to use the available data with the D4R strategy, as the network is a bit too twisted for the
DOT strategy.
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One real-time simulation and Monte Carlo simulations were again carried out to investigate
the behaviour. Seven out of twenty runs were successful (i.e. without invariant violation).
For the remaining unsuccessful traces, the track at the open end was found to be the cause.
As this track has no signal protection, arriving trains can run over the switches swi45 and
swi49 if they are not set correctly, and also enter reserved routes on the main line, which
can lead to train collisions. The trace of the real-time simulation represents a successful run
where all trains have reached the final position. It has also been exported as a standalone
HTML file, allowing playback without any knowledge of ProB, for easy inspection by a
domain expert [VHL22].

10.2 Norwegian Railway Network

The entire Norwegian railway network operated by Bane Nor has been made publicly
available by the Jernbanedirektoratet in both railML 2 and railML 3 [Jer23], while work on
railML 3 is still ongoing, according to Brand [Bra23]. As this project focused on railML 3,
only the not completed data in railML 3.2 could be used for testing. The files contain
detailed infrastructure and basic interlocking data with the topologies varying considerably
in size. There are small lines, such as Flåmsbana, with only a few kilometres and a few
branches, long lines with several hundred kilometres, such as Bergensbanen, and spatially
small topologies with many branches, such as Oslo Sentralstasjon.

The models are created with railOscope, which then generates a railML 3.2 file from the
data. With the help of semantic validation, some errors could be detected in the exported
models (e.g. for the former version of DOB1.xml). On the one hand, the entry and exit
signals were identical for some routes, which does not form a correct route, and on the
other hand, some route paths could not be computed completely because contradictory
switch positions were specified:

Error: RailML: [Line 15761, id ’rte1566’]: Forced switch position
for switch ’swi1044’ does not match the route path.

The investigation revealed that the branches of all switch crossings on the interlocking
side had been swapped during export, so that the forced switch positions did not match
the branches of the intended route. This bug has been reported and fixed, so there are
now “newer” Norwegian models that mostly pass the semantic validation. In addition, all
crossings (including non-movable ones) are supplemented with switchIL elements in the
models. As it is not clear what behaviour this should specify, crossings defined in this way
are currently treated as static. Again, some additional properties have been implemented
that do not actually correspond to the schema, such as allowing switches to be used in
addition to detection elements for isLimitedBy of an overlap.

Due to the complexity of the models, there is also an explosion of the state space, and even
Monte Carlo simulations are currently hardly applicable due to the performance of the
models. Hence, their behaviour has mainly been investigated using real-time simulations.
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Flåmsbana (FLB) This is one of the simplest models of the “old” dataset and consists
of 25 net elements, 32 net relations, 7 switches, 0 derailers, 0 crossings, 29 signals, 10 TVD
sections, 14 routes, 3 overlaps, 5 route release groups, and 1 open end. The specified line has
a total length of about 20 kilometres24. The model can be successfully imported without
errors and visualised using the given visualisation data (Figure 16a). The visualisation
without using the existing data shown in Figure 16b also captures the topology very well.
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Figure 16: Visualisation of Flåmsbana

Using real-time simulations involving two trains, at least two erroneous traces with invariant
violations were found. The first issue is, as in the Advanced Example, that the track is
not protected by a signal for incoming trains until the first route at Berekvam can be
reserved. This allows the two trains to enter the interlocking area one after the other and
collide before the first signal. The second problem could be identified as an incomplete
configuration of the last TVD section in Flåm. Because bus333 is not specified as one of
its demarcating elements, this track is not part of the section, resulting in an occupied
section that is no longer used by a train. This means that the reserved route cannot be
released and cannot be reserved by the second train waiting in front of Berekvam.

Bergensbanen (BB) This model is particularly interesting for assessing performance, as
it is the largest model in terms of distance, with a total distance of 371 kilometres25. This is
also reflected in the number of elements: 353 net elements, 543 net relations, 132 switches,
0 derailers, 1 crossing, 422 signals, 375 TVD sections, 372 routes, 120 overlaps, 298 route
release groups, and 1 open end. The model was successfully validated and visualised, and
no errors occurred during two real-time simulations, which are time-consuming due to the
size of the model.

24https://en.wikipedia.org/wiki/Fl%C3%A5m_Line (accessed on 22/10/2023)
25https://en.wikipedia.org/wiki/Bergen_Line (accessed on 22/10/2023)

https://en.wikipedia.org/wiki/Fl%C3%A5m_Line
https://en.wikipedia.org/wiki/Bergen_Line
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Oslo Sentralstasjon (OSL) The “Sentralstasjon” (main station) of Oslo is a com-
paratively large station with 19 platforms26 and therefore is an interesting example of a
complex topology with many switches. With Bergensbanen, it is also one of the largest
models available, which makes it interesting for the performance benchmarks in Section 11.
The specification includes 383 net elements, 696 net relations, 203 switches, 0 derailers,
10 crossings, 290 signals, 378 TVD sections, 304 routes, 2 overlaps, 134 route release groups,
and 13 open ends. The semantic validation uncovered a misconfiguration of two crossings:

Error: RailML: [Line 20765, id ’cro1606’]: Turning branch end is
not connected to straight branch end,

which could easily be fixed by swapping the erroneous turning and straight branch. Visual-
isation with NOR_customGraph is possible without restriction, but for DOT_customGraph
there are too many branches, so that the visualisation is rather incomprehensible. As with
Bergensbanen, the simulation takes quite a long time, so only a few test runs of six trains
were made in real-time, all of which ran without error.

Independently of these case studies, minor inconsistencies were also found in the other
Norwegian models using semantic validation (e.g. missing branches for switches, references
to unspecified elements).

26https://en.wikipedia.org/wiki/Oslo_Central_Station (accessed on 22/10/2023)

https://en.wikipedia.org/wiki/Oslo_Central_Station
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11 Performance Analysis

Throughout the development, efforts have been made to improve the performance of the
import process. This chapter evaluates different empirical benchmarks for the case studies
presented in Section 10. All benchmarks are executed on a Windows 10 Pro 64-Bit (22H2,
19045.3570) with 3.5 GHz Quad-Core Intel Core i5-6600K and 16 GB RAM based on the
submitted code (Appendix A). The benchmarks were run using the ExecuteAndMedian.sh
script, which expects a ProB command with the ––profile flag, runs the command once
without measuring to create the .prob file, and then runs the command ten times in
succession. All outputs are stored in separate files and evaluated at the end. The median
is calculated for the total runtime and walltime and saved together with all individual
measurements in result.txt. Of particular interest is the walltime, as this is the time
that the user experiences at the end. The models evaluated are assumed to be syntactically
and semantically valid, so that all import operations are fully executed.

First, the import times for the rule-based machine and the import machine are compared
for the different models. Furthermore, the loading times of the generated machines with
different preferences are examined. Finally, the benefits from memoization are measured
and discussed.

11.1 Comparison of Import Times

In order to be able to import railML data into ordinary B machines, the import machine
has been created (Section 3.6), which performs the import operations of the rules machines
sequentially. The same can be achieved directly with the topmost rules machine and
random animation for as many steps as the number of operations (or execution of all
rules in the ProB2-UI plugin for rule validation). From a performance point of view, it is
interesting to investigate whether this has an impact on the duration of the import process.
For this, the test script was run for each case study with the ProB calls

probcli RailML3_validation.rmch
-execute_all -p MEMOIZE_FUNCTIONS true --profile

for direct execution of the operations in the rules machines (the constant file has been
adapted for each model), and

probcli RailML3_import.mch -p MEMOIZE_FUNCTIONS true
-property "file = \"[...]/RailML examples/[...]/file.xml\""
-execute 3 --profile

for execution using the import machine. The results are shown in Table 3.
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Table 3: Comparison of Import Times for Selected Models (in ms)

Model RailML3_validation.rmch RailML3_import.mch
Tot. Runtime Tot. Walltime Tot. Runtime Tot. Walltime

Simple Example 5957 9234 6464 11 158
Advanced Example 9345 12 851 9638 15 833

BB 278 986 315 169 290 101 351 104
FLB 7499 10 856 8471 15 076
OSL 138 859 174 770 145 948 198 374

In general, it is not surprising that the import times are significantly longer for large
topologies. But even for the two largest topologies currently available (BB and OSL),
the runtimes are satisfactory, with a maximum of less than six minutes for import and
validation. It is noticeable that, despite a similar number of elements (Section 10.2), the
runtimes of BB and OSL differ significantly. This is most likely due to the larger number
of signals in the BB model, as the execution of set_IL_SIGNAL takes about a third of
the total runtime (≈ 100 sec). To compute the signal sections, it is necessary to check
for each reachable signal whether there is another signal on the path between them. As
many signals can be reached by one signal on long lines like BB, as opposed to a branched
network like OSL, this is likely to increase the runtime. For this reason, importing the
entire Norwegian network from a single railML file is not realistic at this stage.

It can also be observed that the use of the import machine leads to a degradation of the
performance, which is at most about 36 seconds for BB. An important aspect is probably
the additional output performed by the import machine. For every warning rule that fails,
a warning is generated that has to be output at the end of the import, which can cause
the delays. However, this should be investigated further, and if at some point the ProB
parser supports the direct inclusion of rules machines in ordinary B machines, an attempt
should be made to use the rules machines directly. Perhaps parts of the ProB2-UI import
plugin (Section 9) can be also adapted for this in conjunction with the ProB Java API to
run the rules machines natively and then generate B machines directly from them.

Besides these differences, the detailed analysis reveals that only a few operations are
responsible for the high costs. These are those that require path computations using the
topology relation and its (precomputed) transitive closure, including routes, overlaps, TVD
sections, and signal sections. As a result of their poor performance, these operations have
often been reworked during development to improve their performance significantly, up to
halving their individual runtimes.

Finally, it is worth noting that the XML parsing in ProB is not a significant bottleneck for
larger topologies compared to their total import runtime. Parsing and conversion takes
about 30 ms for the Simple Example and FLB, 120 ms for the Advanced Example, 1060 ms
for BB, and 1020 ms for OSL (times estimated from one sample run only).
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11.2 Loading Times of Generated Machines

Part of the motivation for creating standalone machines is to achieve faster loading of the
machine by omitting the import process, to avoid having to go through the entire import
process after making small changes to the machine. Therefore, the loading times of the
generated animation machines were measured until the initialisation was completed with
the command

probcli "Generated data/[model]/[model]_animation.mch"
(-p jvm_parser_fastrw true) --init --profile.

Since there can be efficiency problems with type checking for generated machines that
contain very large sets with elements from enumerated sets, loading is tested with the
new ProB preference optimize_enum_set_elems in addition to the default preferences.
It enables more efficient type checking and pre-compilation for such large sets that use
enumerated sets, which is why this preference is enabled by default for the generated
animation and validation machines (SET_PREF_optimize_enum_set_elems == TRUE).

The benchmarks were run with this preference once using the standard format and once
using the fastrw representation, a format provided by SICStus Prolog, for the .prob file.
The latter allows for faster read and write access, which could lead to better loading times.
Before each run, the .prob file was deleted to ensure that a new one is created with the
intended format. The results are listed in Table 4 below (fastrw results in brackets).

Table 4: Comparison of Loading Times for Selected Generated Machines (in ms)

Model Default optimize_enum_set_elems
Tot. Runtime Tot. Walltime Tot. Runtime Tot. Walltime

Simple Example 2188 4796 2053 (1953) 4471 (4354)
Advanced Example 3580 6652 3002 (2568) 5979 (5420)

BB 18 859 35 097 10 971 (6804) 23 787 (17 064)
FLB 2960 5886 2460 (2178) 5174 (4874)
OSL 18 128 33 234 10 620 (6717) 24 080 (16 794)

As expected, all loading walltimes are much better than for the rule-based variant (cf.
Table 3). A detailed analysis shows that most of the time is taken up by parsing and
loading the machine, while initialisation takes comparatively little time. As a result, using
the preference for optimisation and fastrw leads to a significant improvement, up to halving
the walltime for the large models, with almost 18 seconds difference for BB. It can also
be generally observed that the magnitude of the times is the same for BB and OSL, in
contrast to the machines including the import, where the characteristics of the topology
lead to differences. For the simple models, the overall times are also satisfactory.
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As mentioned earlier, further improvements in loading can be expected if only the required
sets from the data are used for the animation and not all of them have to be loaded
(currently this corresponds to 130 unused constants).

Another current performance issue is that loading models in ProB2-UI with VisB can again
significantly increase loading times, although the definitions used for VisB have already
been improved considerably in terms of performance compared to previous implementations.
This part therefore requires further investigation, possibly also in VisB itself.

Concluding based on these results, it is clearly recommended to use the generated machines
for investigation of a model due to much shorter loading times and persistence of the
models.

11.3 Memoization

When dealing with the imported XML data, some queries occur repeatedly, such as finding
all elements of a particular type, finding the children of an element of a particular type,
or finding the set of all IDs of a particular type (cf. Section 3.1). Initially, these queries
were implemented as definitions, but this turned out to be not performant. Therefore,
they were converted into abstract constants, which already enables a better typification.
In combination with “memoization”, a technique of ProB for storing the results of function
applications27, this leads to a significant improvement in performance. The tests of Tables 3
and 4 were therefore already carried out using this technique. The benefit of memoization
is also reflected in the statistics of reused stored values during the import in Table 5.

Table 5: Memoization Statistics of Selected Models (values stored/reused)

Model elementsOfType childsOf-
ElementType allIdsOfType Total

Reused
Simple Example 126 / 329 386 / 324 29 / 230 883

Advanced Example 126 / 1947 1975 / 1875 58 / 1802 5624
BB 135 / 18782 18822 / 22068 30 / 8907 49757

FLB 132 / 931 968 / 1201 30 / 443 2575
OSL 133 / 16588 16626 / 18332 30 / 17920 52840

Except for childsOfElementType, the amount of reused values significantly exceeds the
amount of stored values. For comparison, the tests from Section 11.1 were repeated without
memoization (-p MEMOIZE_FUNCTIONS false) for the import machine. This gave the
following results (total runtime/walltime in ms):

Simple Example: 6944/11 531, Advanced Example: 23 463/29 689,
BB: 1 109 866/1 187 239, FLB: 10 909/17 585, OSL: 1 201 694/1 250 241.

27http://prob.hhu.de/w/index.php?title=Memoization_for_Functions (accessed on 24/10/2023)

http://prob.hhu.de/w/index.php?title=Memoization_for_Functions
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Obviously, without memoization there is an unacceptable increase in both runtime and
walltime, up to a factor of seven for OSL, which is why enabling this preference is mandatory
for good performance in the current models.

Unfortunately, the approach of memoization is not applicable for the definition elementOfId,
since the polymorphic properties of definitions are required here. Some improvement should
come from “record indexing”, which in the latest version of ProB uses the alphabetically
first field of a record for fast access to records. As this is always the Id field for railML
records due to the upper case, this also applies to the elementOfId definition, as this only
searches for the ID of a record.
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12 Conclusion and Outlook

In this work, an approach was developed using the B-Rules DSL integrated in ProB to
transform railML 3 data to classical B. In addition to syntactic and semantic validation of
the imported data, it is possible to animate and simulate the models either by building
directly on the rules machines or by using generated machines, which also allow for
validation of custom rules. Three visualisation strategies for the topology have been
implemented, one of which works independently of the given visualisation data in railML.
The development of a plugin for the ProB2-UI was started, which combines all the work,
supplemented by configuration options for the visualisation. Finally, a number of case
studies were examined, also from a performance point of view, and errors were successfully
found and corrected in some files, in particular from the Norwegian railway network.

It has been shown that the import with the included semantic validation is feasible even
for large models in an acceptable time. Loading times were significantly reduced by using
generated machines with additional settings. The animation and simulation of large models
is still a challenge at the moment, as the computation of guards and VisB definitions can
become expensive. Model checking is generally only partially applicable due to the state
space explosion problem, but can also help to uncover inconsistencies in the specifications.

A challenge for formal verification is the transformation of railML specifications into formal
properties, since railML as an XML-based format is not a strictly formal language. This
is partly due to the many optional XML attributes and children whose absence must be
compensated for by additional derivations, but also due to some places where the schema
definition is not clear enough and can be used ambiguously (e.g. the localisation problem
discussed). In particular, when evaluating errors, it can be challenging to determine whether
the error is due to the modelling in railML or the implementation in B, making complete
formal verification difficult for different railML modelling styles. Therefore, the methods
presented here should primarily be seen as additional validation to increase confidence in
the correctness of a specification.

Future work should therefore address the problems posed by XML through optional
attributes for a strongly typed language such as B, for example through records that
can handle also optional fields. Further development of the B-Rules DSL should also be
considered. For example, there is currently no information output about successful rules
for specific elements, which could be interesting for a validation report. Such a report
could contain the identities of all successfully validated objects in addition to the already
available counterexamples and integrated as additional output to the rule validation plugin
of the ProB2-UI. Also of interest for this work is the inclusion of rules machines in ordinary
B machines.
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On the railML side, future work could take into account the rolling stock and timetabling
schemas. One approach could be to assign each train a fixed path through the controlled
area, which is then followed according to the timetable. Of course, the import can generally
be extended to include more elements and more rules can be added. In particular, the
interlocking schema should be implemented in more detail once examples are available.

Finally, it might also be interesting to translate a model specified in B, maybe even already
proven to be correct, to railML.
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Appendices

A Source Code

The majority of the source code (machine files, generated data, performance results) is
located in the “B-RailML” repository available at https://gitlab.cs.uni-duesseldorf.
de/stups/prob/b-railml with the state of commit

“update readme” , 30/10/2023,
4fef15c0981b0966859a0b3479d6b1aed6d7e64c.

The railML import integration for the ProB2-UI is included in the railml-import branch
of its repository available at https://github.com/hhu-stups/prob2_ui with the state
of commit

“final update of resources” , 30/10/2023,
686726bbcabe9bb8959c7055ed4a4f3d698fca8b.

For the implementation to work correctly, at least ProB version 1.12.3 as of commit
c81e69e3fde16c38dd95bac1e423d763d72e010b (27/10/2023) is required.

The adapted Rule Validation Language Plugin for the ProB2-UI can be found at
https://github.com/hhu-stups/prob2_ui_rule_validation_plugin:

“replace search symbol” , 11/8/2023,
4e79f1e4b6172b016725d942a8dc2eb1b328b0ad.

To be able to load the plugin into the ProB2-UI, its JAR file must be built using the
command ./gradlew jar.

https://gitlab.cs.uni-duesseldorf.de/stups/prob/b-railml
https://gitlab.cs.uni-duesseldorf.de/stups/prob/b-railml
https://gitlab.cs.uni-duesseldorf.de/stups/prob/b-railml/-/tree/4fef15c0981b0966859a0b3479d6b1aed6d7e64c
https://github.com/hhu-stups/prob2_ui
https://github.com/hhu-stups/prob2_ui/tree/686726bbcabe9bb8959c7055ed4a4f3d698fca8b
https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_prolog/-/tree/c81e69e3fde16c38dd95bac1e423d763d72e010b
https://github.com/hhu-stups/prob2_ui_rule_validation_plugin
https://github.com/hhu-stups/prob2_ui_rule_validation_plugin/tree/4e79f1e4b6172b016725d942a8dc2eb1b328b0ad
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B Case Study Files

The corresponding files of the five case studies can also be obtained from the B-RailML
repository in the “RailML examples” folder. The files used are:

• Simple Examples by railML.org (IS, IL, V2.3-V3.1)/SimpleExample_v12.xml

• Advanced Example by railML.org (IS, IL, V3.1)/AdvancedExample.railml

• Jernbanedirektoratet Norge (V3.2) - NEW -/BB.xml

• Jernbanedirektoratet Norge (V3.2)/FLB.xml

• Jernbanedirektoratet Norge (V3.2) - NEW -/OSL.xml

The other Norwegian examples and some smaller ones exported from railOscope can also be
found there. Under “Own examples created by D4R” there are a few more own examples
created with the D4R Track Planner, based on track plans of an interlocking simulator28.
These include Cologne, Dormagen, Düsseldorf, Munich, Neustadt (Weinstraße) and the
example topology presented by Gruteser et al. [Gru+23]. As a side note, due to the very
small topology, model checking (without invariant checking) could be completed after
73 065 states and 252 836 transitions for the latter.

28https://www.stellwerksim.de (accessed on 20/10/2023)

https://www.stellwerksim.de
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C Additional Details on the Imported Data

Table 6: List of Derived Relations

Name Description
Infrastructure (RailML3_IS_):

NET_ELEMENT_LENGTHS Length of all net elements, −1.0 if not specified
NET_ELEMENT_

INTRINSIC_COORDINATES Function returning a function of the associated
positioning system IDs and their intrinsic coordinate IDs
together with their coordinates for a net element

NET_ELEMENT_
ASSOCIATED_POSITIONING_SYSTEM As above, but gives a sorted sequence of intrinsic

coordinates for each associated positioning system
(mainly for NOR_customGraph)

NET_RELATION Relation of locations containing all net relations
NO_NET_RELATION Function of net relations with attribute

navigability="None" per ID
NET_RELATION_BY_ID Function of navigable net relations per ID

NET_RESOURCES_MICRO_LEVEL Set of all net resources on micro level
NET_RESOURCES_MESO_LEVEL Set of all net resources on meso level
NET_RESOURCES_MACRO_LEVEL Set of all net resources on macro level

OPENEND_IDS IDs of borders with attribute openEnd="true"
CROSSING_BRANCHES Total function returning the set of all navigable branch

relations (as pair of locations) for a crossing ID
DERAILER_NOT_PASSABLE Total function returning the set of all location pairs

intersecting the derailer’s location for a derailer ID
SIGNAL_POSITIONS Unique spot location for each signal ID

SIGNAL_IS_SWITCHABLE Boolean, indicating whether signal is switchable per signal
ID

SIGNAL_IS_TRAIN_
MOVEMENT_SIGNAL Boolean, indicating whether signal is train movement

signal per signal ID
SPEED_SECTIONS Relation of speed section IDs with their corresponding

location pairs
VALID_FOR_SPEED_PROFILES Function returning the set of valid speed profiles for a

given speed section
SWITCH_IDS IDs of switches that are not switchCrossingParts
SWITCH_TYPE Switch types of for all switches from the above set

SWITCH_BRANCHES Total function returning the set of all navigable branch
relations (as pair of locations) for a switch ID from the
above set

TRACK_ASSOCIATED_
NET_ELEMENTS RailML3_IS_LINEAR_LOCATION_ASSOCIATED_-

NET_ELEMENTS restricted to track IDs
TRACKS Track function consisting of net elements and their

begin/end elements (mainly for DOT_customGraph)
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TRACK_BEGIN_NET_ELEMENT Location of the track begin per track ID
TRACK_BEGIN Infrastructure element of the track begin per track ID

TRACK_END_NET_ELEMENT Location of the track end per track ID
TRACK_END Infrastructure element of the track end per track ID

LINEAR_LOCATION_
REFERS_TO Mapping of linear location IDs to their parent IDs

LINEAR_LOCATION_
ASSOCIATED_NET_ELEMENTS For each element with a linear location: its plain relation

specified by associated net elements
LINEAR_LOCATIONS For each element with a linear location: its relation

specified by associated net elements considering the given
application direction

LINEAR_LOCATION_SEQUENCE Mapping of linear location IDs to their specified sequence
numbers

LINEAR_LOCATION_
KEEPS_ORIENTATION For each element with a linear location: boolean for each

associated net element whether it keeps orientation
SPOT_LOCATION_REFERS_TO Mapping of spot location IDs to their parent IDs

SPOT_LOCATIONS For each element with spot locations: set of their spot
locations

ALL_INTRINSIC_COORDINATES Set of all locations induced by intrinsic coordinates of
elements

NET_RELATION_
SUBSEQUENT_LOCATIONS Topology Relation: connects all intrinsic coordinates from

above set with the given net relations to one relation
railML3_IS_NET_RELATION_

SUBSEQUENT_LOCATIONS_closure1 Precomputed transitive closure of the topology relation

Interlocking (RailML3_IL_):
CONFLICTING_ROUTES Set of conflicting route IDs per route ID
DERAILER_REFERS_TO Mapping of derailerIL to their derailerIS IDs

DERAILER_HAS_TVD_SECTION Mapping of derailerIS to set of its TVD sections
DERAILER_IS_KEY_LOCKED Boolean, indicating whether derailerIS is key locked

DERAILER_PREFERRED_POSITION Preferred position of derailerIL
DERAILER_RETURNS_

TO_PREFERRED_POSITION Boolean, indicating whether derailerIL returns to
preferred position

DERAILER_RELATED_
MOVABLE_ELEMENT Related movable element (crossing/derailer/switch) per

derailerIS
DERAILER_MAX_THROW_TIME maxThrowTime of each derailerIS in ms

DERAILER_TYPICAL_THROW_TIME typicalThrowTime of each derailerIS in ms
MOVABLE_CROSSING_REFERS_TO Mapping of movableCrossing to their crossing IDs

MOVABLE_CROSSING_IDS Subset of crossing IDs that are movable
MOVABLE_CROSSING_BRANCHES Function providing the branch relations per position of a

movable crossing
MOVABLE_CROSSING_
HAS_TVD_SECTION Mapping of movable crossing to set of its TVD sections
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MOVABLE_CROSSING_
IS_KEY_LOCKED Boolean, indicating whether movable crossing is key

locked
MOVABLE_CROSSING_
PREFERRED_POSITION Preferred position of movableCrossing

MOVABLE_CROSSING_RETURNS_
TO_PREFERRED_POSITION Boolean, indicating whether movableCrossing returns to

preferred position
MOVABLE_CROSSING_RELATED_

MOVABLE_ELEMENT Related movable element (crossing/derailer/switch) per
movable crossing

MOVABLE_CROSSING_
MAX_THROW_TIME maxThrowTime of each movable crossing in ms

MOVABLE_CROSSING_
TYPICAL_THROW_TIME typicalThrowTime of each movable crossing in ms

OVERLAP_LENGTH Length of an overlap if specified
OVERLAP_VALIDITY_TIME Validity time of an overlap

OVERLAP_NXT Computed path of an overlap
OVERLAP_MUST_

SWITCH_POSITIONS Switch position of an overlap that must be proven

OVERLAP_CROSSING_POSITIONS Required (derived) positions of crossings required for the
overlap path

OVERLAP_DERAILERS Passable derailers required (derived) for the overlap path
OVERLAP_SWITCH_POSITIONS Required (derived) positions of switches required for the

overlap path
OVERLAP_RELEASE_TIMERS Release timer of an overlap if specified

OVERLAP_RELEASE_
TRIGGER_SECTION Release trigger sections (TVD sections) of an overlap if

specified
ROUTE_RELEASE_GROUPS_

AHEAD_TVD_SECTIONS set of TVD sections of a route release group ahead

ROUTE_RELEASE_GROUP_
AHEAD_NXT Path of the route release groups ahead per route

ROUTE_RELEASE_GROUPS_
AHEAD_TYPICAL_DELAYS Typical delay of a route release group ahead

ROUTE_RELEASE_GROUPS_
REAR_TVD_SECTIONS set of TVD sections of a route release group rear

ROUTE_RELEASE_GROUP_
REAR_NXT Path of the route release groups rear per route

ROUTE_RELEASE_GROUPS_
REAR_TYPICAL_DELAYS Typical delay of a route release group rear

ROUTE_RELATION_MUST_
DERAILER_POSITIONS Derailer positions of a route relation that must be proven

ROUTE_RELATION_MUST_
SECTION_STATES TVD section states of a route relation that must be

proven
ROUTE_RELATION_MUST_

SWITCH_POSITIONS Switch positions of a route relation that must be proven
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ROUTE_FORCED_
SWITCH_POSITIONS Switch positions specified for a route (e.g. facing/trailing

switches)
ROUTE_ENTRY Entry of a route as pair of the involved element and its

location
ROUTE_EXIT Exit of a route as pair of the involved element and its

location
ROUTE_NXT Computed path of a route

ROUTE_CROSSING_POSITIONS Required (derived) positions of crossings required for the
route path

ROUTE_DERAILERS Passable derailers required (derived) for the route path
ROUTE_SWITCH_POSITIONS Required (derived) positions of switches required for the

route path
ROUTE_RELEASE_GROUPS Set of route release groups of a route if specified

ROUTE_OVERLAPS Set of overlaps of a route if specified
ROUTE_ADDITIONAL_RELATIONS Set of additional route relations of a route if specified
ROUTE_LOCKS_AUTOMATICALLY Boolean, indicating whether a route locks automatically

ROUTE_TVD_SECTIONS Specified and derived TVD sections of a route
ROUTE_ACTIVATION_SECTION_

TVD_SECTIONS Set of specified TVD sections of an activation section

ROUTE_ACTIVATION_SECTIONS Set of specified and derived activation sections of a route
SIGNAL_REFERS_TO Mapping of signalIL to their signalIS IDs
SIGNAL_CONTROLLED Subset of signalIS IDs that have an interlocking object

and are considered as controllable
SIGNAL_END_OF_
CONTROL_SECTION Set of elements that are an end of the control section of a

controllable signal
SIGNAL_CONTROL_SECTIONS Paths of the control sections of a controllable signal per

end element
SIGNAL_CONTROL_TVD_SECTIONS TVD sections of the control sections of a controllable

signal per end element
SWITCH_REFERS_TO Mapping of switchIL to their switchIS IDs
SWITCH_BRANCHES Function providing the branch relations per position of a

switch
SWITCH_POSITION_

RESTRICTIONS Position restrictions of a switchIL as record for derailer
and switches per position

SWITCH_IS_KEY_LOCKED Boolean, indicating whether switchIS is key locked
SWITCH_PREFERRED_POSITION Preferred position of switchIL

SWITCH_RETURNS_
TO_PREFERRED_POSITION Boolean, indicating whether switchIL returns to

preferred position
SWITCH_HAS_TVD_SECTION Mapping of switchIS to set of its TVD sections

SWITCH_HAS_FOOLING_
TRAIN_DETECTORS Set of fooling train detectors of a switchIS if specified
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SWITCH_RELATED_
MOVABLE_ELEMENT Related movable element (crossing/derailer/switch) per

switchIS
SWITCH_MAX_THROW_TIME maxThrowTime of each switchIS in ms

SWITCH_TYPICAL_THROW_TIME typicalThrowTime of each switchIS in ms
TVD_SECTIONS Computed paths of a TVD section as one relation

TVD_SECTION_BERTHING_TRACK Boolean, indicating whether a TVD section is a berthing
track

TVD_SECTION_
DEMARCATING_ELEMENTS Set of demarcating elements of a TVD section

ASPECT_RELATION_
APPLIES_TO_ROUTES Set of routes to which an aspect relation applies

ASPECT_RELATION_
SIGNAL_ASPECTS Specified aspect relations as a record of master, slave and

distant per ID
ASPECT_RELATION_SIGNAL_

ASPECTS_INFERRED_FROM_ROUTE Set of inferred aspect relations per route

SIGNAL_NOT_CONTROLLED_
BY_SIGNALPLAN Set of signals that are not controlled by any signal plan

SPECIFIC_INFRASTRUCTURE_MAN-
AGER_GENERIC_ASPECT_OF_ID Mapping of an signal aspect ID to its generic aspect

Common (RailML3_CO_):
NAMES Provides the specified name of an element for a given ID

together with a language (e.g. “en” for English)
Visualization (RailML3_VIS_):

NET_ELEMENT_COORDINATES Provides a function of subsequent virtual nodes for linear
elements projections forming one net element (mainly for
D4R_customGraph)
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Table 7: List of Chosen Default Values

Type Default Values
aspectRelation endSectionTime: 1000

derailerIL maxThrowTime: 2000; typicalThrowTime: 1000
level descriptionLevel: Micro

linearLocation intrinsicCoordinateBegin: derived value, 0.0 if not possible;
intrinsicCoordinateEnd: derived value, 1.0 if not possible

movableCrossing maxThrowTime: 2000; typicalThrowTime: 1000
netRelation navigability: both; positionOnA: 1; positionOnB: 0

overlap mustOrShould@requiresSwitchInPosition: must;
overlapValidityTime: 1000;
proving@requiresSwitchInPosition: oneOff ;
timerValue@overlapReleaseTimer: 1000

route delayForLock@routeActivationSection: 1;
automaticReleaseDelay@routeActivationSection: 1

routeRelation mustOrShould@requiredDerailerPosition: must;
proving@requiredDerailerPosition: oneOff ;
mustOrShould@requiredDetectorState: must;
proving@requiredDetectorState: oneOff ;
mustOrShould@requiredSectionState: must;
proving@requiredSectionState: oneOff ;
mustOrShould@requiredSwitchPosition: must;
proving@requiredSwitchPosition: oneOff

routeRelease-
GroupAhead/-Rear typicalDelay: 1000

switchIL maxThrowTime: 2000; typicalThrowTime: 1000
spotLocation applicationDirection: both;

intrinsicCoordinate: derived value, 0.0 if not possible
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Table 8: List of Validated Semantic Properties – if violated: E: Error, W: Warning

Type Validated Properties
border

E If openEnd=true, it is actually located at an open track end
- If openEnd=true, there is no bufferStop at the same location

bufferStop
E Is located at an open track end

derailerIL
E If returnsToPreferredPosition=true, such a position is defined

W hasTvdSections should be part of the derailer’s track parts

level
E Each netResource is assigned to only one level type

- elementA and elementB of a netRelation are on the same level as
the relation itself

W Micro level is not empty (animation not, limited validation possible)

linearLocation
E For track, platform: location is connected in topology (also via

navigability None)
- Sequence has no gaps and matches the order induced by the topology

W Referenced netElements have a length – needed for computation of
intrinsic coordinates if they are not specified – otherwise they may
be imprecise

movableCrossing
E If returnsToPreferredPosition=true, such a position is defined

- Branches match branches of the referenced crossing
W hasTvdSections should be part of the crossing’s track parts

netElement
W Each intrinsicCoordinate is specified only once

overlap
E There is a unique path between the relatedTrackAssets and

limitedBy, taking into account the fixed switch positions
- requiresSwitchInPosition is unique for each switchIL
- Derived length is greater or equal than the specified minimal length

W hasTvdSections should intersect the overlap’s path
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route
E Route entry and exit are connected by the topology

- Route entry and exit are not referencing the same element
- Forced switch positions establish a unique route path
- Forced switch positions match to the topology between entry and

exit
- Forced switch position is unique for each switchIL
- Derailer positions of additional routeRelations match to the route

path
- Switch positions of additional routeRelations match to the route

path
- Selected properties of Abrial’s model:

• Entry and exit are route blocks
• Route path without entry and exit is a total bijection

W Abrial: Routes are not overlapping
- hasTvdSections should intersect the route’s path

routeRelation
E requiredDerailerInPosition is unique for each derailerIL

- requiredSectionInState is unique for each tvdSection
- requiredSwitchPosition is unique for each switchIL

routeRelease-
GroupAhead/-Rear E Specified tvdSections induce a valid path

W hasTvdSections should intersect the group’s path

signalBox
W For each aspectRelation with a certain master aspect, there exists

at least one aspectRelation having a slave showing the same
aspect (i.e. the relations are “connectable”)

- If a aspectRelation contains a signal showing aspect_closed:
expectingSpeed=0

signalIL
E Valid path of controlled section to next bufferStop, open end, or

signalIL could be inferred

spotLocation
E All elements of type balise, baliseGroup, border,

bufferStop, crossing, derailerIS, levelCrossingIS,
trainDetectionElement, trainProtectionElement, signalIS,
and switchIS are expected to have exactly one spotLocation

- No derailerIS, crossing, or switchIS have the same location
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switchIS
E Left and right branch are connected

- Turning branch end is connected to a straight branch end

switchIL
E If returnsToPreferredPosition=true, such a position is defined

- Interlocking branches match infrastructure branches
- If related switchIS has type=singleSwitchCrossing:

hasPositionRestriction must be specified for correct defi-
nition of the not switchable branch

- If switch has relatedMovableElement of type derailerIL:
hasPositionRestriction must be specified for that derailer

W hasTvdSections should intersect at least one switch branch
- If refersTo references crossing: element is ignored

track
E Track begin/end inferred from the topology matches the explicitly

specified one
- If track begins/ends with a netElement: begin/end is not ambiguous

(i.e. neither crossing nor switch)
- Track begin and end element are uniquely connected by the topology

W Specified track length matches sum of the lengths of its netElements

tvdSection
E Each section has at least one demarcating train detector or at least

two demarcating elements in case of mixed types or bufferstops only
- Given the demarcating elements, a path can be established between

them
W In case of missing demarcating element: open end was derived from

topology
- All demarcating elements are located at an end of the section
- All netElements are part of a tvdSection
- tvdSections do not overlap
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D Variables and Operations for Animation

Table 9: List of Variables for Animation

Name Description
IS_next relation containing the currently passable track

IS_crossing_states current states of movable crossings
IS_crossingsInMovement movable crossings that are currently in movement
IS_crossing_keyLocked key locking state of movable crossings

IS_derailer_states current states of derailers
IS_derailersInMovement derailers that are currently in movement
IS_derailer_keyLocked key locking state of derailers

IS_switch_states current states of switches
IS_switchesInMovement switches that are currently in movement
IS_switch_keyLocked key locking state of switches

RS_requestingArrivalTrains arriving trains together with the location of the
corresponding open end

RS_arrivedTrains trains that have been arrived and are currently controlled by
the interlocking

RS_trainOccupiedLocations set of occupied locations without directions per train
RS_trainFront current front location of each train
RS_trainBack current back location of each train

IL_occupiedTvdSections IDs of occupied TVD sections together with the occupying
train

IL_routes_in_res IDs of routes that are currently in reservation together with
the reserving train

IL_res_routes IDs of reserved routes together with the reserving train
IL_res_route_blocks blocks (locations) that are currently reserved by routes

together with the reserving route
IL_res_blocks set of blocks (locations) that are currently reserved by routes

IL_released_partialRoutes IDs of released routeReleaseGroups per route
IL_res_overlaps IDs of reserved overlaps together with the reserving train

IL_overlaps_in_release IDs of reserved overlaps that are currently in release process
IL_signal_states current states of signals (i.e. their aspects)

IL_noted_signal_states noted states for change of signals that are applied when the
corresponding signal plan is activated

IL_crossing_locked_routes IDs of movable crossings locked by a route together with the
route ID

IL_derailer_locked_routes IDs of derailers locked by a route together with the route ID
IL_switch_locked_routes IDs of switches locked by a route together with the route ID

IL_signal_locked IDs of signals locked by a signal plan
IL_signalplan_in_activation set of signal plans in activation
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Table 10: List of Operations for Animation

Name Parameters/Description
IS_startChangeDerailer (DerailerId, DestState) start movement of derailer

with ID DerailerId to DestState
IS_endChangeDerailer (DerailerId) end movement of derailer DerailerId

IS_startChangeCrossing (CrossingId, CurrState, DestState) start movement of
movable crossing with ID CrossingId from CurrState to
DestState

IS_endChangeCrossing (CrossingId) end movement of crossing CrossingId
IS_startChangeSwitch (SwitchId, CurrState, DestState) start movement of not

coupled ordinary switch or switch crossing with ID
SwitchId from CurrState to DestState

IS_endChangeSwitch (SwitchId) end movement of any switch with SwitchId
IS_startChangeCoupledSwitches (SwitchId1, CurrState1, DestState1, SwitchId2,

CurrState2, DestState2) start simultaneous movement
of coupled ordinary switches with IDs SwitchId1/2 from
CurrState1/2 to DestState1/2; end is performed
individually

IL_startRouteReservation (Route, Train) starts reservation of Route for the
requesting Train if all preconditions are fulfilled (route
and related overlaps are free, train is allowed to request
the route)

IL_endRouteReservation (Route, Train) end reservation of Route for the
requesting Train if all preconditions are fulfilled (route
relations, switch positions of routes and overlaps, possible
signal plan is in activation)

IL_partialRouteReleaseAhead (Route, routeReleaseGroup) release
routeReleaseGroup ahead that is part of reserved Route
if train has not yet arrived at the release group

IL_completeRouteReleaseAhead (Route) completely release Route ahead if train has not
yet passed the route, is on a berthing track, and all
release groups ahead are already released

IL_partialRouteReleaseRear (Route, routeReleaseGroup) release
routeReleaseGroup rear that is part of reserved Route if
train has completely passed the release group

IL_completeRouteReleaseRear (Route) completely release Route ahead if train has
passed the entire route and all release groups rear are
already released

IL_startOverlapRelease (OverlapId) start release of OverlapId if a train
occupies one of its release trigger sections

IL_endOverlapRelease (OverlapId) end release of OverlapId if it is in release
IL_startActivateSignalplan (Signalplan) start activation of Signalplan that does

not conflict with another plan in activation and if it
applies to a route, the route must be in reservation
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IL_endActivateSignalplan (Signalplan) end activation of Signalplan after noting
all signal changes

IL_noteChangeSignalState (SignalId) when a signal plan is in activation, signals
can be noted for change after application of the signal
plan if the signal section is passable and not occupied

IL_changeSignalState (SignalId) the state of individual signals not controlled
by signal plans can be directly changed if the signal
section is passable and not occupied

RS_trainArrivalRequest (OpenendId, Train, Position) a Train can request
arrival at an OpenendId with Position if the
corresponding TVD section is vacant

IL_trainAcceptArrival (Train) a Train that has requested for arrival can be
accepted and enter the interlocking area

IL_trainDeclineArrival (Train) a Train that has requested for arrival can be
declined without affecting the interlocking area

RS_trainLeave (Train) a Train that has fully approached an open end
can leave the interlocking area, which will also release all
its reserved routes

RS_trainMoveFront (currFront, newFront, Train) the front of a Train can
move one step in the topology relation from currFront to
newFront

RS_trainMoveBack (currBack, newBack, Train) the back of a Train can
move one step in the topology relation from currBack to
newBack

RS_trainChangeDirection (Train) a Train that is on a berthing track and has
released all its routes can change direction
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E Internal Representation of B-Rules DSL

Listing 29: Example of an arbitrary Rule in B-Rules DSL
1: RULE rule2
2: DEPENDS_ON_RULE rule1
3: DEPENDS_ON_COMPUTATION comp1
4: BODY
5: RULE_FORALL i
6: WHERE i : 1..10
7: EXPECT i > 5
8: COUNTEREXAMPLE STRING_FORMAT ("~w <= 5", i)
9: END

10: END

Listing 30: Internal Representation of the Rule in Listing 29 in Classical B
1: ‘$RESULT ‘,‘ $COUNTEREXAMPLES ‘ <−− rule2 =
2: SELECT
3: rule2 = " NOT_CHECKED "
4: & comp1 = " EXECUTED "
5: & rule1 = " SUCCESS "
6: THEN
7: VAR ‘$ResultTuple ‘,‘ $ResultStrings ‘ IN
8: ‘$ResultTuple ‘ := FORCE ({i|i : 1 .. 10 & not(i > 5)});
9: ‘$ResultStrings ‘ := FORCE ({‘ $String ‘|‘$String ‘ : STRING

& #i.(i : ‘$ResultTuple ‘ & ‘$String ‘ =
FORMAT_TO_STRING ("~w <= 5" ,[ TO_STRING (i)]))});

10: rule2_Counterexamples := rule2_Counterexamples
\/ {1} * ‘$ResultStrings ‘;

11: IF ‘$ResultTuple ‘ /= {} THEN
12: rule2 ,‘$RESULT ‘,‘ $COUNTEREXAMPLES ‘ := "FAIL",

"FAIL",rule2_Counterexamples
13: END
14: END;
15: IF rule2 /= "FAIL" THEN
16: rule2 ,‘$RESULT ‘,‘ $COUNTEREXAMPLES ‘ := " SUCCESS ",

" SUCCESS " ,{}
17: ELSE
18: PRINT ( rule2_Counterexamples )
19: END
20: END
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