A Timed CSP Simulator for Railway Systems

Marc Dragon

May 2011

I’ \I’ \..I

300 1 20
1

I
. 1 .
entercrossing & leavecrossing
1
[l 1 l [

1
1
1
1
frainnear |
1
KEY nearind .
S oufind
down
TRAIN ’ 100 ‘ 100
GATE downcom
CONTROLLER

Abstract. Using the formal specification of timed CSP outlined in Steve Schneider’s
‘Concurrent and Real-time Systems: The CSP Approach’, we have developed a timed
CSP simulator. The simulator is an extension on ProB, an existing untimed CSP-B
model checker and animator. We have also demonstrated the applicability of our
timed CSP simulator to the railway domain, using CSP models related to railway
safety and capability.

Project Dissertation submitted to the Swansea University
in Partial Fulfilment for the Degree of Bachelor of Science

Prifysgol Abertawe
Swansea University

Department of Computer Science
Swansea University

Declaration

This work has not previously been accepted in substance for any degree and is not
being currently submitted for any degree.

Date: 18/05/2011

Signed:

Statement 1

This dissertation is being submitted in partial fulfilment of the requirements for the
degree of a BSc in Pure Mathematics and Computer Science.

Date: 18/05/2011

Signed:

Statement 2

This dissertation is the result of my own independent work/investigation, except
where otherwise stated. Other sources are specifically acknowledged by clear cross
referencing to author, work, and pages using the bibliography/references. I
understand that failure to do this amounts to plagiarism and will be considered
grounds for failure of this dissertation and the degree examination as a whole.

Date: 18/05/2011

Signed:

Statement 3

I hereby give consent for my dissertation to be available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside
organisations.

Date: 18/05/2011

Signed:

Acknowledgements

I would like to thank Dr. Markus Roggenbach for providing me with an exciting and
challenging project that gave me an opportunity to improve my knowledge in so
many different areas of computer science. I also want to thank him for his support,
guidance and friendship throughout the duration of the project.

I also want to extend my gratitude to everyone in the Swansea University Processes
and Data Research Group. Thank you for the interesting weekly meetings and social
events; as well as all the advice throughout the year.

I am grateful to my parents for their continued support and for helping me during
the tough times in the year.

I would also like to thank Andy Gimblett for all his help with the Haskell parser and
Parsec; and for the engaging, enjoyable meetings.

I want to thank Marc Fontaine and Professor Michael Leuschel of Heinrich-Heine
University for their regular correspondence regarding ProB.

Finally I want to thank Erwin R. Catesbeiana (Jr.) for watching over me throughout
the year and for inspiring me to go the extra mile.

Contents

II

INETOAUCTION 1ot et 1
1.1 LY 07 A2 a0) P PSPPI 1
1.2 PrOJECt AINIS..ciiiiiieiiiiii ettt e e et e e e et e e e e b e e e et eeaan s 1
1.3 SIMIIAT PrOJEctS ...uviiiiiiiiii e 2
T4 OUEIIE e e e 2
Background ReSearch ..ot 4

UNtImed CSP ..o e ettt e e 4
2.1 Basics of Processes and Eventscoouuiiiiiiiiiiiiii e 4
2.2 Compound EVENts ...ttt 5
2.3 RBCUTSION . 1ot e ittt 6
2.4 CROICE vttt 6
2.5 COMCUITEIICY vvtneetiiiineeteiii ettt ettt ettt ettt ettt e ettt e et et e et eet e eeeaaans 7
2.6 ADSETACTION cettiii it 8
2.7 Control FIOW ..ot 9
2.8 Untimed CSP GIramIMarooouunieiiiiieeiiii et e et e et e e eeei e eeeaiin e eeeeninaeeees 10

THMEA CSP oottt e e e e e aaenes 11
3.1 Considering TIIME . .ccoouiiiiiiiiiii e 11
3.2 Untimed Operators in a Timed Contextccevviiiiiiiiiiiiinniieiiiiiiiiin e 11
3.3 TTIIIEOU - ottt 13
3.4 Timed INTETTUDE «oevvuniiiiii e 14
3.5 Timed Event Prefix......ooooiiiii 15
3.6 SYNACTIC SUZAT «eeeiiiniiiiii e 15
3.7 Timed Operator SEmMAaNtiCscouurruiiiiieiiiiiiiiii e e e 16
3.8 Timed CSP GramIMaT.......coiiiiiiiiiiiiiiiiis e ettt eeeeeeeans 17

PrOLOZ . .. e e 18

0.2 PAISEC..ceiiiiiiiii e 19

B TCL/ TR et 20

T PTOB 21
7.1 CSP SImMUlation ..ooooiiiiiiiii e 21

7.2 An Introduction t0 ProB ... 21

7.3 Key Features and Classification of ProBc...ccccciiiiiiii 23

7.4 SOftWare ATCRIEECTUIEuuiiiiiiiiiiiiiiiiiii e 24

T.5 DatafloW . cooooiiiiiiii i e 25

L §9Y0) (<300 TC) 0 L2 (o) SO P PP SOPPRR PPN 27
8 Working with ProB ...t 27

9 DeSIgN DECISIONS «..uuuiiiiiiie et 28
10 Prolog Implementation...........ccouuuiiiiiiniiii e 29
10.1 0 haskell €SP.Pliiiiiiiici 29

10.2 teltk interface.pl.... 41
10.3 Other Prolog ModULESs........cooviiiiiiiiiiiiiiiii e 42

11 Parser & GUI Implementationoouuieeiiiiiiiieeiiiie e 44
11,1 HASKEIl PATSET.cceiiiiiiiiiiiiii e 44
11.2 GUI (Graphical User INterface)cccceeviiiiiiiiiiiiiiiiiiieiiiiciicceeee e 46

IV DemOnStTAtION. .. eeeeiiiiiiiii e e 48
12 Basic MOAEIScoeiiiiiiiiiiie e 48
13 RaAIIWaY CTOSSINE. . e eeeveiiieiiii ettt e e eeeas 51
14 London Undergrotndcceieiiiiiiiiineeeiiiiiiiii ettt 53
Vo COnCIUSION. ..oooeiii 54
VI References & APPENdiXccooiiiiiiiiiiiiiiiiiiiii e 55
15 WOTKS CIEOA .t b}

16 ADDEINAIX 1ottt 57

PART 1
Introduction

A Timed CSP Simulator for Railway Systems

I Introduction

The British railway system has seen somewhat of a resurgence in recent years, particularly in
areas which have a well-developed public transport system such as London. The railway
industry has always been concerned with challenges of a safety-critical nature; ensuring that
all operations on the line and the train meet rigorous standards. However, with the growing
demand on the industry, there has developed a need to address the challenges of
optimisation and efficiency.

These requirements can be described concisely as the challenge of capacity — the science of
determining the ideal track plan with which the greatest throughput of trains can be
achieved.

1.1 Motivation

To this end, there is a need for a solution that is easy to understand and operate. A timed
simulator works towards such a goal; it allows for the optimum throughput of a track plan
to be determined quickly and easily. A timed simulator demonstrates the possible executions
and allows the user to test various durations within the system to see what works best.
Additionally, timed simulation can help solve the safety-critical challenges at the heart of the
railway domain.

Furthermore, the need for time in a system is, by its own merits, an important one. Time
plays an important role in both non-critical and critical systems. In a non-critical system, for
example a system which records mouse clicks, time is necessary to differentiate between two
single clicks and a double click. Without time, such a differentiation would not be possible
and the system would not function as desired.

More importantly, in a critical system, such as an automatic braking system, time is a vital
factor. Without time, the system would not function correctly; with possibly disastrous
consequences. The need for time as a factor in many systems is a clear one.

Finally, there is a need for simulation itself. A system starts as an idea in someone’s mind,
an informal model which can be described through words and diagrams. Before a system can
be implemented, this informal model needs to be refined into a formal model. The formal
model is ready for implementation and can be model-checked. Simulation allows us to verify
that the formal model is correct with respect to the informal model; that it accurately
represents the intended function of the informal model.

1.2 Project Aims

In order to address these needs, our project has two main aims:
e To develop a fully-functioning and professional timed CSP simulator.
e To apply the completed implementation to models within the railway domain and
take the first steps towards applying it to the safety and capacity challenges.

With regard to the first aim, we chose the timed CSP specification laid out in Steve
Schneider’s ‘Concurrent and Real-time Systems™. The timed CSP process algebra allows us
to consider a railway system in the form of a network of communicating and interacting
processes, in a real-time setting. Our simulator takes in static CSP specification as input and
provides a simulation environment which allows the end-user to dynamically iterate through

Page 1

A Timed CSP Simulator for Railway Systems

the processes. ProB? is an existing untimed CSP simulator and to this end we made the
decision to extend this software to account for the timed CSP syntax and semantics.

Considering out second aim, we have worked with a simple railway crossing model from
Steve Schneider’s book in order to demonstrate both our timed CSP simulator’s applicability
to the railway domain as well as clarifying that our implementation correctly mirrors Steve
Schneider’s specification. We have also developed a small, primitive model of a London
Underground station to take the first steps towards solving the challenge of capability.
Capability is the notion of determining the optimum throughput for a specific track plan and
can be considered a subset of the capacity challenge. This confirms the viability of our timed
CSP simulator for working in the optimisation side of the railway domain.

1.3 Similar Projects

Prior to the development of this project, we considered two other existing projects with
similar aims. The first was Uppaal®, a joint-venture between Uppsala University of Sweden
and Aalborg University of Denmark. The project was initially released in 1999 and has
undergone continual development ever since. Its main purpose is the modelling, simulation
and verification of real-time systems. In Uppaal, systems are represented as networks of
timed automata, extended with structured data types. Uppaal is typically applied to areas
such as real-time controllers and communication protocols; particularly where time is a
critical aspect®. Indeed, a railway system is an ideal example’. Uppaal is coded in C+-+ with
a Java-based GUI’. We decided instead to work with ProB as we wanted to work with timed
CSP as a new alternative to timed automata for timed simulation. Furthermore, we decided
to work with ProB because of the solid synergy between Prolog and timed CSP due to the
programming language’s logical nature.

The second alternative was Ben Coombs’ third year project. In the academic year 2009/10,
Ben Coombs of Swansea University developed a timed CSP simulator in Haskell for his third
year dissertation. Its purpose was similar to Uppaal, but was concerned only with the
simulation of real-time systems. We considered the possibility of developing this simulator
further, which would have involved adding the missing bounded operations and including a
parser for proper support of syntactic analysis. Ultimately, we decided instead to base our
project on ProB as it already included a parser.

1.4 Outline

This dissertation gives a comprehensive guide to the background research, gives a full
analysis of the implementation and explains in detail the models used to demonstrate our
project’s applicability to the railway domain.

In chapter 2, we cover the key syntax and semantics of untimed CSP as described by Steve
Schneider. We discuss the basics of CSP itself; its events and processes. We then look at the
various types of operators available in CSP. We start with the most basic operators STOP,
SKIP and the prefix operators. We then move on to the other operators necessary for
modelling a system; covering compound events, recursion, choice, concurrency, abstraction
and control flow. We end the chapter with an EBNF grammar summarising the CSP syntax.

In chapter 3, we expand on our specification of untimed CSP with the timed operators. First
we describe the behaviour of untimed CSP operators in a timed context. We then detail the
new timed operators; timeout, timed interrupt and timed event prefix. Additionally we look
at the syntactic sugar; namely the WAIT and delay operators. We then consider the

Page 2

A Timed CSP Simulator for Railway Systems

semantic laws that apply to our operators. Finally we provide the updated EBNF grammar
for timed CSP syntax.

In chapter 4, we take a brief look at the declarative programming language Prolog, which
forms the basis for ProB’s implementation. We look at the standard layout of Prolog code
and consider the how information is segregated within the language; through terms, clauses,
programs and queries.

In chapter 5, we discuss the functional programming language Haskell, which is the
foundation for ProB’s parser. Again we consider the layout and organisation of information
within the language. We also briefly look at the Parsec library, which helped ease the process
of extending the parser.

In chapter 6, we briefly look at the third and final language used to create the complete
ProB package; Tcl/ Tk, which is used for the graphical user interface.

In chapter 7, ProB itself is analysed in detail. We first consider the function of a CSP
simulator and how operational semantics are carried over to an implementation. This is
followed by ProB’s software architecture, key features and data flow.

In chapter 8, our first steps towards working with ProB are laid out. In particular, we
reference our untimed CSP model based on a simple railway track plan in Kirsten Winter’s
‘Model Checking Railway Interlocking Systems’.

In chapter 9, we follow on from the previous chapter with an outline of our design decisions
throughout the project; from the implementation of syntactic sugar to the organisation of
syntax in the abstract syntax tree.

In chapter 10, we give a comprehensive analysis of our Prolog implementation; including our
consideration of rational numbers and timed firing rules.

In chapter 11, we detail the rest of our implementation; including the timed CSP syntax in
Haskell and the additions to the Tcl/Tk code to allow for extra user input and additional
aesthetics.

In chapter 12, we explain the basic models which demonstrate the various timed operators in
our implementation. As well as providing a stronger understanding of how each operator
behaves, it also allows us to clarify the correctness of our implementation.

In chapter 13, we use the railway crossing model from Steve Schneider’s book to demonstrate
both the accuracy of our implementation with respect to the book and our simulator’s
applicability to the railway domain.

In chapter 14, we describe our final model; a simple model of the London Underground. In
this chapter, we aim to take the first steps towards a solution to the challenge of capability
as a subset of the capacity challenge. To this end, we aim to demonstrate how our timed
simulator could be used in the optimisation side of the railway domain.

In chapter 15, we reflect on our original project aims and determine the extent to which our
final implementation has met these aims. We also consider the impact our project has had
and the scope for future developments.

Page 3

PART 11
Background Research

A Timed CSP Simulator for Railway Systems

II Background Research

Part 11 details the mnecessary background information required to understand the
functionality and context of our timed CSP simulator. First and foremost, it covers the
important areas of timed CSP process algebra syntax and semantics. Following on from
timed CSP, we give a brief overview of the three main programming languages used in our
project; Prolog, Haskell and Tcl/Tk. Finally, we look at the ProB software which has formed
the foundation for our implementation; detailing its architecture, key properties and dataflow.

2 Untimed CSP

This section covers the complete specification of untimed CSP. We cover the basics of
transitions and static specification. We also look at the key groups of operators; compound
events, recursion, choice, concurrency, abstraction and control flow. Finally we summarise
the syntax in an EBNF grammar. This section and the timed CSP section are based on
Concurrent and Real-time Systems: The CSP Approach. The firing rules in particular are
directly taken from the book.

2.1 Basics of Processes and Events

In essence, CSP (Communicating Sequential Processes) is a process algebra which considers
a system as a network of processes and the atomic events between them. It is mainly
concerned with the external interaction and communication of processes rather than internal
events within a process. These processes are described by their interface, a set of all the
possible events they can engage in, which is also considered to be the static specification of
CSP. Additionally, CSP is compositional; allowing processes to be encapsulated within larger
processes.

To understand how a system will work as we iterate through it, we need to determine a
dynamic specification. This is achieved in CSP through labelled transitions. These describe
an execution of an event and the resultant process for a given state. Given an initial process
P1, an external action denoted by p and an incidental process P2; a basic labelled transition
would be as follows:

i}
P1 — P2

All standard external actions can be categorised by the set 2. We also have the termination
action v'. While CSP is generally concerned with external actions only, internal actions do
play a role and are denoted by the set t. We can say that all actions are in the set E‘/’T

and all external actions (including termination) are in the set N
2.1.1 STOP and SKIP

The simplest process in CSP is STOP. The interface for this process is the empty set as it
has no possible actions at any point during execution. In this sense, it results in a deadlocked
system which can no longer run.

We also have the process SKIP which invokes the termination action and leads to a STOP
process. This also ends the program but is considered to be an intended (and thus successful)
termination of a system.

Page 4

A Timed CSP Simulator for Railway Systems

Its only transition is as follows:

SKIP 1> STOP

2.1.2 Event Prefix and Prefix Choice

In order to compose more complex systems, it is necessary to add an operator known as the

event prefix. It takes the form: (a — P). This means that the process can initially perform
the action a, with an incidental process P. This is confirmed by the simple transition below:

a

(a—> P)— P

The previous transition is in the instance where the initial process has only one action
available to perform. If a process has multiple actions available, we instead use a convention

known as prefix choice denoted by (x : A — P(x)) for A ¢ 2. We can say that, given
a € A:

(x: A — P(x)) i) P(a)

In other words, the initial process is willing to perform any process a € A and the resultant
process will be P(a).

2.2 Compound Events

While CSP considers actions to be indivisible, we can create compound events which store
information on the nature of an action. One way to consider a compound event is in the
form (c.v), where c is a channel and v is a specific value being carried across the channel. An
example would be input and output channels for binary. We would have a channel ‘in’,

which carries 0 values and 1 values: (in.0 — P) and (in.1 — P). We would also have a
channel ‘out’, carrying 0 values and 1 values: (out.0 — P) and (out.1 — P).

We can also consider a compound event where there is choice. Given a channel ¢ of type T,
the action {c.t | t € T} accepts any value across channel ¢ that is classed as type T.

Processes defined with respect to these compound events are slightly different to event
prefixes. A specific value v € T across channel c of type T can be described by the following
transition:

C.V
(clv — P) — P

For any value v € T across channel ¢ of type T, we have the following:

C.V

(c¢?’x: T — P(x)) — P(v)

Page 5

A Timed CSP Simulator for Railway Systems

The previous transition states that the initial process can take any value x of type T down
channel c.

If we then select a compound action c.v where v € T, we are given an incidental process P(v).

2.3 Recursion

A process definition can be represented in the form N = P, where N is the name of the
process and P is the body of the definition. If we assume the body P to contain the process
name N, then we have a recursive definition. The firing rule proving this states that:

“ ’
P—P
H r
N—P
With the side condition that [N = P|. In other words, if P changes, N also changes.

2.4 Choice

We have already analysed the conventions for action choice. CSP also has definitions for
process choice. There are two different types of choice, external and internal.

2.4.1 External Choice

External choice involves a selection made by other interacting processes or the user. We can
describe this as P O Q in its most basic form, where P and Q are two initially-available
processes. At this point in execution, the actions of both P and Q are available.

When a selection is made by executing an external action a € E‘/, only the actions of one
process will remain open (specifically, the process P which contains action a). If an internal
action is made by a process, the external choice still remains open. This can be described
more concisely in the following firing rules:

a T
p 2y pr P —5 P’
a T
POQ - p POQ-— P OQ
£ T
QO P pr QOP-—=QOFP

In the case where the action a appears in both P and Q, we are presented with non-
determinism. The external choice still remains intact, but external processes can no longer
discern the two options.

2.4.2 Internal Choice

Internal choice is a decision made within a process, described as P ['1 Q. This choice cannot
be influenced by external processes or the user. Instead, the selection is made by the process
itself. An example would be a process ROUTER deciding the best channel to send a network
signal over based on noise across each channel. The channel is selected automatically by the

Page 6

A Timed CSP Simulator for Railway Systems

process ROUTER without external intervention. The user is not interested in how the router
transfers data; only that it does so successfully:

ROUTER — CHANNELO [| CHANNEL1 [| CHANNEL2

The firing rule confirms the properties of internal choice as follows:

PI_IQLP
T
P Q—Q

2.5 Concurrency

So far we have dealt with sequential processes; iterating through them, one at a time. To
simulate more than the most basic of systems, we need the ability to run multiple processes
concurrently. There are three main concurrent operators.

2.5.1 Alphabetized Parallel

The first convention we have to represent concurrency is alphabetized parallel. We can say
that for processes P and QQ running in parallel with respective interfaces A and B:

Pl Q

This means that P and Q synchronise for actions a € ANB and run independently for all
other actions in A and B. This synchronisation (or handshake synchronisation) requires both
processes to initiate the action. This means that if process P is not yet ready to initiate an
action a € ANB, then action Q will not be able to carry it out, and vice-versa.

With the concept of concurrency, one has to be wary of the possibility for deadlock. This is
essentially tantamount to the STOP process, an unwanted termination. A series of processes,
each of which require the other to synchronise on an event, may result in deadlock. The
most common example of this is known as the Dining Philosopher’s problem. There are forks
in between each philosopher, but each requires two forks to eat. If every philosopher picks up
a fork on their left, they will all be waiting for the right fork indefinitely. No philosopher will
retract the action and put the fork back down, nor can they continue until they synchronise
with a fork to their right. They are deadlocked.

We can describe the behaviour of alphabetized parallel through the firing rules below.
a
P— P
a
Q— Q [aeA‘/nB/]
a
P AHB Q—P AHB Q'

P p
PkQ= P AQ [me(AU{t}\ B)]

n ,
Q AHBP — Q AHHP

Page 7

A Timed CSP Simulator for Railway Systems

2.5.2 Interleaving

CSP also has an operator known as interleaving. The implication here is that the processes
run independently for all actions, including those which appear in both interfaces.
Interleaving is simply described by the notation:

PIIQ

The one exception is termination. If a termination event occurs, both processes end
simultaneously. These properties can be described concisely by the following firing rules:

m v v
P%Pr P%Pf QHQI
M v
PllQ—=P]Q PIIQ—=P | Q

QP QP

2.5.3 Interface Parallel

Alphabetized parallel allows processes to synchronise on shared actions a € ANB.
Interleaving allows multiple processes to concurrently run independent of each other. We can
combine these two operators to give interface parallel. Interface parallel not only allows
concurrent operation of multiple processes but also synchronises the processes for a specified
shared set of actions A. We can describe interface parallel using the following notation:

PlQ
A
The following firing rules clarify these notions:
P& P P& p
a ' v
Q= Q where a € A PIQL P [|Q wherepeAY
a ' ! A A
PlQ=PlQ Qll P QP

2.6 Abstraction

There are three main abstraction operators in CSP; event hiding, forward renaming and
backward renaming. However in order to achieve the goals of this project, we are only
concerned with event hiding.

2.6.1 Event Hiding

When combining processes to form a larger process, previously external actions should now
be considered internal to the new process. In order to reflect this abstraction, CSP provides
event hiding. Event hiding is represented by P \ A and hides all actions in the set A that
have formed part of the interface for new process P. Now, if a previously external action
from the set A is performed, it is considered an internal action of P \ A.

Page 8

A Timed CSP Simulator for Railway Systems

With the inclusion of abstraction, it is important to be aware of the possibility for divergence.
Assume there is a system of processes with external actions that refer to each other through
a recursive loop. We may decide to event hide these actions. Once encapsulated internally,
these actions could form a never-ending loop, inaccessible by external processes or the user.
This is worse than the deadlock scenario as not only would the system be stuck, but the
internal loop would also be consuming resources.

The firing rules are as follows:

p = pr la € A
PLUA -SSP A

p i) P’ L& Al
PLAS P A

2.7 Control Flow

The final type of untimed CSP operator deals with the transfer of control to other processes.
There are two operators, sequential composition and untimed interrupt.

2.7.1 Sequential Composition
Sequential composition is represented by P ; Q. It simply states that on termination of P, Q
will be initiated (and the termination is considered an internal action). Only the termination

action will have an effect on sequential composition. Any other action will simply change P
and leave the composition intact.

This is demonstrated by the following simple firing rules:

P p PSP
e L I e 3
P:Q—P:Q P;:Q—Q

2.7.2 Interrupt

Interrupt is represented by the notation P A Q. It allows a process P to be terminated (and
incidentally Q to be initiated) at any point, simply by performing the initial action of Q. It
is important to note that if P is terminated directly (by performing a termination action),
then both P and Q will terminate. Any actions made by P, other than termination, have no
effect on the interrupt operator. Furthermore, internal actions made by Q also have no effect.

Interrupt has the following firing rules.

PP p Y p Q= Q QL
PAQESPAQ pPaqQDp PAQ-SPAQ PAQ-S

Page 9

A Timed CSP Simulator for Railway Systems

2.8 Untimed CSP Grammar

To complete this primer on untimed CSP, the EBNF grammar for the relevant aspects is
outlined below.

P, Q= STOP %% deadlock
| SKIP %% successful termination
|a— P %% event prefix
| x: A — P(x) %% prefix choice
| clv — P %% compound event prefix
| ¢?x: T — P(x) %% compound prefix choice
IN=P %% recursion
|POQ %% external choice
| P M Q %% internal choice
| P alls Q %% alphabetized parallel
| Pl Q %% interleaving
[P || Q %% interface parallel
A
[P VA %% event hiding
|P;Q %% sequential composition
| PAQ %% interrupt

Page 10

A Timed CSP Simulator for Railway Systems

3 Timed CSP

Our existing CSP framework has abstracted away from the concept of time. In order to
effectively simulate real-time systems, in particular those with time-sensitive processes; we
need to adapt our CSP specification. This comes in two steps. First we need to adjust our
notions of existing untimed operators; to fit within a timed environment. The second step
will involve adding some further operators to our specification.

3.1 Considering Time

From the outset, we need to make some important assumptions about how processes will
interact in a timed environment and the meaning of time in this particular context. We
arrive at the timed computational model below.

e Newtonian Time — Within our timed system, all processes follow a global Newtonian
clock. In other words, the current ‘time’ for every process in a system is the same.
We ignore the notion of relativity and the possibility for processes to evolve through
time at different rates.

e Real-time — Our notion of time will consider the set R" (positive real numbers).
Consequentially this means time is assumed to have infinite granularity; intervals can
be as large, small and numerous as we choose.

e Instantaneous Events — Events are assumed to be instantaneous. In other words we
consider them to take no time to execute. We can implement the idea of an event
that takes time by making use of evolution transitions, which will be explained in the
following section.

e Maximal Parallelism — We consider each process to theoretically be running off its
own processor. In this respect it is assumed that no matter how many processes are
running, there will always be sufficient processing power to cope with the workload.
This allows us to ignore the need for scheduling tasks (and incidentally if this was
desired, it would need to be explicitly implemented).

e Maximal Progress — An event must be executed the instant all participants of the
event are ready to engage in it.

In our specification of untimed CSP we only had to deal with event transitions. These are
instantaneous transitions which represent an event between processes. In timed CSP, it is
necessary to introduce evolution transitions which represent the passing of time. Evolution

transitions can be described by Q L Q’, where d is a time value in R*.
3.2 Untimed Operators in a Timed Context

Evolution transitions are much like internal transitions when we consider untimed operators.
They can change a process, but the operator remains intact. For example, both processes in
an external choice can evolve over time into new processes. However, the external choice still
remains available and has been unaffected by the evolution transition. All the additional
timed firing rules for our untimed CSP operators are considered in this section.

Page 11

A Timed CSP Simulator for Railway Systems

3.2.1 STOP and SKIP

STOP and SKIP both have very simple timed firing rules. As time passes, both these
operators remain the same, with the only state change being the global time. We can
therefore assume that for these processes an infinite duration of time can pass. The firing
rules are:

STOP ~ STOP SKIP ~» SKIP

3.2.2 Prefix Operators

We have a similar situation with the prefix operators; event prefix and prefix choice. As time
passes, the operators do not change. The only way to differentiate the states is by
considering the change in global time. The timed firing rules are:

(a— P)b(a— P) (x: A= P(x)) 4, (x: A — P(x))

3.2.3 Recursion

Recursion does not implicitly contain delays and any delays need to be explicitly described in
the process. Therefore, time can actually change the process body of a recursive operator,
which makes it possible for time to end a recursive loop and change the overall operator. The
timed firing rule shows this:

p - p
N AL opr

3.2.4 Choice

Unlike prefix choice, the options provided to a user by external choice can change over time,
depending on whether any of the choices contain timed operators or not. With this in mind,
the timed firing rules for external choice actually involve a state change other than simply
global time. On the other hand, internal choice does not have a timed firing rule. This means
that time cannot pass when the state has an internal choice to make. In this respect, the
internal choice is treated as urgent and once the choice is made, time can pass again. Below
is the timed firing rule for external choice.

p-Lp QL
POQ-LPDOQ

3.2.5 Concurrency

The concurrency operators all have similar timed firing rules to the external choice. As time
passes, both sides of the operator update, which is regarded as an update of the overall
operator. Below are the timed firing rules for the three operators:

PpLp QLqQ pLpr QLQ P
Pl Q L PLAILQ Pl Q-LP I Q P

Page 12

A Timed CSP Simulator for Railway Systems

3.2.6 Event Hiding

Event hiding, like concurrency and choice, will update as time passes (either through the
global time change or also through updating locally if containing a timed CSP operator).
However, there is an interesting addition to event hiding. If the current available action is
within the hidden set A of P \ A and offered by P, then time cannot pass. In other words,
since all hidden actions have become internal to P, they have become urgent and must be
executed before time can pass. This is described concisely in the following timed firing rule:

p - p
VaeA|-~(P %)
PLA P A

3.2.7 Control Flow

Since sequential composition passes control from a process P to Q after P terminates, time
only affects the P process (as the Q process is not yet active). As such, time changes the
process P, but Q remains the same. Like the event hiding operator, sequential composition

also has conditions where time cannot pass. When the P process is ready to terminate (\/ is
available), then it must be performed urgently. At such a state, until P terminates, time
cannot pass. The untimed interrupt operator has a similar timed firing rule to the external
choice and concurrency operators. The sequential composition and untimed interrupt timed
firing rules are as follows:

=

P~ P’ 1 |
~(P %) PP QSQ
P;A-LP A PAQLPAQ
3.3 Timeout
d

The timeout operator (represented by P [> Q) is our first new timed CSP operator and is
time-sensitive, bound by the time d. If P performs an external event before d reaches 0, then
the choice is resolved and we are left with the resultant process of P. If the counter d reaches
0 before an external event is performed by P, then an internal event leads us to continue
execution with process Q. As time passes, the counter d decreases. The d can essentially be
regarded as the time limit of the operator. This is clear in the firing rules below.

P P PP
d a_ d T d 0 T
P>Q — P P>Q — P'>Q P>Q—Q
P, p 0 < d < d]

d d’ ,dfd'
PP>Q~»P'D>Q

Page 13

A Timed CSP Simulator for Railway Systems

Furthermore, we can give a visual representation of the timeout operator’s semantics using
the following timed transition system:

Here we can see that if an action a is performed, the state does a transition to P’. If a time t
in the interval [0,d] passes, then the state updates the timeout’s d to d-t. Finally, once d is 0,
the state does an internal T transition to Q.

3.4 Timed Interrupt

The timed interrupt operator P A, Q is similar to the interrupt operator from our untimed
CSP specification. The difference is that P is interrupted by a time condition, rather than
execution by Q. Like timeout, as time passes, the remaining d updates. Once d reaches 0, P
is interrupted and a t transition to Q occurs. Again, d can be described as the time limit of
the operator. Unlike timeout, an execution by P does not result in a transition to P (except
for termination). The four firing rules are below:

P p PSP
[# V1] v T
PAQ 5 PAQ PAQ 5 P PAQ—Q

p~Lpr [d’ < d]

P Ad Q /\(L'-) P' Ad-cl' Q

This operator also forms an important part of our implementation and so we give the
following timed transition system:

t e [0.d]
de=d-t

Page 14

A Timed CSP Simulator for Railway Systems

3.5 Timed Event Prefix

The timed event prefix allows us to store data on the amount of time that has passed
between the point an event was made available and the point it was executed. It is denoted

by a@Qu — Q. When action a is performed without any delay, we have a resultant process Q
with all free occurrences of u replaced by 0. If time passes and the operator evolves, time d is
added to all free occurrences of u in the resultant process. We can see this in the firing rules
below.

(a@u — Q) —> Q[0/u]

(a@u — Q) AL, (a@u — Q[(u+d)/u])
3.6 Syntactic Sugar

There are two instances of syntactic sugar which we will make use of in our timed CSP
implementation; delay and WAIT.

3.6.1 Delay

The delay operator utilises both the event prefix and timeout operators. It is an event prefix
d
with an action a, which once executed leads to a timeout instance STOP [> P. We can

d
write the delay operator as a —> P, where d is the delay time after executing a before
actions are available from P.

d d
We say that a —> P = a — (STOP [> P). It is also possible to have a delay which is
constrained to an interval, taking the form:

[d, dy

a—> P

Taking the delay interval [1,3] as an example, after executing a, the option to timeout to P
becomes available 1 second later. However time can still pass up until 3 seconds after the
execution of a, at which point the timeout must be executed for time to continue passing.
For the sake of simplicity, we have only considered delays of a single value rather than an
interval for our implementation.

3.6.2 WAIT

The WAIT operator is simply a specific instance of a timeout operator, where process P is a
STOP and process Q is a SKIP. We can write the operator as WAIT d, where d is the
amount of time before the timeout does a transition to SKIP.

d
We say that WAIT d = STOP [> SKIP.

Page 15

A Timed CSP Simulator for Railway Systems

3.7 Timed Operator Semantics

Alongside the new timed operators and syntactic sugar, there are also some extra semantics
which play a role in our implementation. We list the most important ones here.

Laws for Timeout

TS T e

(PmQ)lgR:(P gR)l‘l(ngR)
Pg(QHR):(PgQ)H(PgR)
(PDQ)@R:(P éR)D(QéR)
Plg(Q OR) = (P éQ)D(PéR)

d
STOP > P = WAIT d; P

drd d
(WAIT d; P) [> Q = WAIT d; (P> Q)

d
(WAIT(d + d'); P) > Q = WAIT d; Q

Laws for Delay

WAIT d; WAIT d'= WAIT(d + d)

|
a— P —a— WAIT d; P
(WAIT d; Q) \ A — WAIT d; (Q\A)

Laws for Timed Interrupt

P A, (Q AyR) = (P A Q) Apg R
(PM1Q AR=(PAR)M(QAR)
PAQMR)=(PAQIM(PAR)
(POQ) A R=(PAR) O(QA,R)
STOP A, P = WAIT d; P

(WAIT d; P) A, + Q = WAIT d; (P A, Q)

(WAIT(d + d'); P) A, Q = WAIT d; Q

(>-associative)

(>-left-distributive)

(>-right-distributive)

(D>-O-left-distributive)

(>-O-right-distributive)
(>-delay)

(>-delay-1)

([>-delay-2)

(delay-suml)

(delay-sum?2)
(hide-delay)

(Ajassociative)

(Ajleft-distributive)

(Agright-distributive)
(ApO-left-distributive)
(stop-A-delay)

(Ajdelay-1)

(Ajdelay-2)

(> -associative) and (Ag-associative) play a particularly important part in our
implementation as they imply that a nested timeout or timed interrupt requires all the
operators on the left of the expression to be updated. In other words, a recursive updating
algorithm was required in our implementation.

Page 16

A Timed CSP Simulator for Railway Systems

3.8 Timed CSP Grammar

We can now expand on our untimed CSP grammar to include the timed CSP operators.

P, Q=

STOP
| SKIP

|a— P

| x: A — P(x)

| clv — P

| c¢?7x: T — P(x)

IN—P
POQ
|P1Q
| P alls Q
| P]| Q
P Q
| P Q

|PAQ
P >Q
| P A Q

| aQu — Q
|ai>P

[d,.dy]
la— P
| WAIT d

Page 17

%% deadlock
%% successful termination

%% event prefix
%% prefix choice
%% compound event prefix

%% compound prefix choice

%% recursion

%% external choice

%% internal choice

%% alphabetized parallel
%% interleaving

%% interface parallel

%% sequential composition
%% interrupt

%% timeout
%% timed interrupt

%% timed event prefix
%% delay

%% interval delay
%% wait

A Timed CSP Simulator for Railway Systems

4 Prolog

As this project focuses on the extension of ProB, the bulk of which is programmed in
SICStus Prolog, a brief overview of Prolog is necessary.

Prolog is a declarative programming language based on first order predicate logic and has
incidentally been closely linked with the concept of logic programming. It has a number of
applications, from its primary field of artificial intelligence to database systems. Prolog
programming has a modular nature and consists of lists of logical rules that the system needs
to follow, as well as the goal, represented by queries. Incidentally, this strong use of logical
rules will help link Prolog with CSP’.

Prolog syntax revolves around terms. This data structure consists of atoms (which can be
considered strings), numbers (integers and floats for example), variables and compound
terms. Compound terms consist of a Prolog atom followed by 1 or more arguments (which
can be any term). For example, the add operation add(1,2) could be considered a compound
term.

As well as terms we have clauses (facts and rules), programs and queries.

Facts are predicates which are relations explicitly defined as being true. For example, the
following could be considered a fact in Prolog:

food is good.
Note that facts end in a full stop.

Rules are the core part of Prolog programming and give meaning and definition to more
complex terms. They consist of a head (the term predicate) and a body (further predicates
which define the head). Taking our add operation example, we could use the following rule
to define it:

add(a,b,c) :-
cisa + b.

The body of a rule can consist of multiple facts and terms, which are split by commas. The
body, like facts, ends in a full stop to close the clause. Note that a program is simply a
sequence of clauses. A complete program will give rules for all terms used until we are left
with only facts.

A query has a similar structure to a rule, but is instead tested against the rules programmed.
Prolog analyses queries, and checks (according to the pre-defined rules) whether the
predicates can all be proved true and then provides a suitable output. Queries generally start
with ?- to indicate their nature and this usually appears when running a Prolog instance.”

ProB has been specifically programmed in SICStus Prolog’, primarily for performance
reasons. However, this is also important for us as it allows us to work easily within the
rational numbers due to SICStus Prolog having infinite-precision integers". We have opted
for rational numbers rather than real numbers to help simplify our models within the railway
domain. Naturally, there is no real need for irrational numbers in these models, so we have
simply decided to abstract away from them.

Page 18

A Timed CSP Simulator for Railway Systems

5 Haskell

Haskell is the language behind ProB’s parser. A brief overview of the language is useful for
understanding the extensions we have made in our implementation to account for the new
timed CSP syntax. We also give a quick summary of the Parsec library which played an
important part in making our parser extension an easier process.

5.1 General Haskell

Haskell is a functional programming language which has a number of similarities to Prolog.
Like Prolog, it is based on rules and variables cannot be restated during execution. The
importance of this is it ensures that there are no side effects in the implementation of
variables. It means referential transparency is possible'’. Also similar is its modular
architecture, which allows for definitions to be contained within modules and prevents the
possibility of variable clashes'.

Haskell is a lazy programming language, which means that functions are only executed when
absolutely necessary. This leads to a highly-efficient language which avoids performing
functions without purpose.

It is also statically typed, which means that types are identified by the compiler. Strings are
differentiated from integers, without needing to label the types explicitly; like in languages
such as Java'.

There are two categories that Haskell code can fall under: expressions and definitions.

Expressions are simply statements read by the compiler. These can be arithmetic operations,
Boolean operations or more complex tasks such as string concatenation. Due to Haskell’s
statically-typed nature, these expressions can be read by the compiler and a suitable output
provided, without anything defined. Definitions are of the form name = expression'’.

Haskell is a convenient language for the parser as it works well with Prolog due to their
similarities. It also allows for use of the Parsec library which makes the process of extending
the parser a simpler one.

5.2 Parsec

Parsec is a monadic parser combinator library for Haskell. A parser combinator simplifies the
process of designing a parser. Parsers can be generated and combined to form larger parsers.
This flexibility also makes extending a parser much simpler.

Since parser combinators are in the same language as the parser itself, there’s no need to
learn a new language to understand the combinator. Parsec in particular is a useful tool as it
has been designed with speed and simplicity in mind; as well as extensive documentation®.

The use of Parsec in ProB’s parser has meant that the code is laid out in an understandable
manner and that necessary areas of change were easy to identify. As such, to extend the
parser, changes only had to be made in a few, very specific locations. Without the Parsec
library, this would have been a much more challenging task.

Page 19

A Timed CSP Simulator for Railway Systems

6 Tcl/Tk

Tcl/Tk is used to implement ProB’s GUI. The small modifications we have made to the GUI
are more easily understood with a basic knowledge of the Tcl/Tk language. We provide a
brief outline here.

Tcl/Tk is a combination of the scripting command language Tcl (Tool Command Language)
and the Tk graphical toolkit. Combined, they make an easy-to-use tool for GUI development.

Essentially, Tcl code comprises of a series of commands. These commands handle data and
can take various options which determine how they execute.

There are a number of commands in Tcl/Tk directly involved with setting up a GUI For
example; there is a button command for creating buttons and a frame command for setting
up frames. This set-up means that working with Tcl/Tk is a very straightforward process*™.

Tcl/Tk is particularly useful for ProB as it is able to call Prolog commands. This means it
interacts well with the existing Prolog implementation and makes for easy communication
between the GUI and simulator.

Page 20

A Timed CSP Simulator for Railway Systems

7 ProB

We now have a comprehensive specification of CSP and have covered the basics of ProB’s
three main languages; Prolog, Haskell and Tcl/Tk. We can now begin to look at ProB itself.
The following chapter starts by covering the function and method of a CSP simulator. We
then look at the key features, software architecture and dataflow of ProB.

7.1 CSP Simulation

Before looking at ProB, it is important to have a precise definition of what a CSP simulator
is and how it functions.

Fundamentally, a CSP simulator represents a static CSP specification in a dynamic run-time
environment. Using a CSP simulator, we can iterate through transitions and analyse the
changes in a system as we move through the execution.

As a user moves through a CSP specification, the simulator offers the actions that can be
performed. The user is then able to choose one of these actions and perform it, which leads
the simulator to determine the next state in the execution. At this new state, the current
available actions are once again offered. This cycle is repeated at every step in the execution.

We can consider the operational semantics of CSP in the form of step laws. A step law is an
equational definition consisting of two parts. The first part describes the set of available
actions, while the second part gives the resultant process. The second part also has
conditional guards which indicate the required actions to result in each process.

As an example, below is the step law for untimed external choice:

actions(P O Q) = actions(P) U actions(Q)

perform(x, P O Q) = perform(x, P) xeactions(P) \ actions(Q)
perform(x, Q) xeactions(Q) \ actions(P)
perform(x, P M Q) xeactions(P) N actions(Q)

The first part describes the available actions for external choice P O Q to be the set
actions(P) wactions(Q); all available actions from P and all available actions from Q."

The second part describes the three possible resultant processes that could come from an
action x with the external choice. It also describes the subset action x would need to be in to
achieve the corresponding process. We see that if action x is an available action in P, but
not Q; then the resultant process is P. Similarly, if action x is an available action in Q, but
not P; then the resultant process is Q. Finally, we have the situation where x is an available
action for both P and Q. This results in an internal choice of P M Q and represents the non-
deterministic situation described in 2.4.1.

7.2 An Introduction to ProB

ProB was originally designed as a B-method model checker and simulator. The B-method is
a formal method for the specification and development of computer systems. It is primarily
used with systems of a critical nature, railway control in particular.

Page 21

A Timed CSP Simulator for Railway Systems

While both B and CSP are formal methods, they are quite different in nature. B is not a
process algebra. Incidentally it does not consider a system as a collection of processes and the
interactions between them. Rather, it is based on the notion of an abstract machine whereby
components are described through sets, relations and functions. Interactions between
components are represented by generalised substitutions through weakest predicate
transformations.

ProB has been primarily developed in SICStus Prolog, with a Haskell parser and its
graphical user interface implemented in the Tcl/Tk GUI toolkit. The tool first translates the
original abstract machine notation of the B-language into Prolog term tree representation.
This is then processed into a more structured representation by the front-end of ProB, which
is then fed to the ProB interpreter. The interpreter iterates through the representation; while
making calls to the ProB kernel, which provides the basic datatypes and operations of the B-
language.'

Although the tool was developed from a previous CSP animator, it initially focused solely on
the B-method. Only when the CIA (CSP Interpreter and Animator)"” tool was combined
with ProB did the ability to simulate CSP become an option.

7.2.1 CIA (CSP Interpreter and Animator)

The CSP Interpreter and Animator has become a subset of ProB’s modular architecture.
The main module we are concerned with is haskell csp.pl. The file is named this because it
utilises a format produced by an existing Haskell compiler fecsp/cspcomp.

This module contains all the operational CSP semantics as a list of firing rules. These firing
rules, of the form cspm_trans(e,a,e’,wf), represent an expression e evolving into e by
performing action a'. Note that there is also a fourth predicate, which is for ProB’s
‘waitflag’; a built in function used in deadlock-checking. This is not an important factor in
our implementation; however we have included it in our firing rules to fit within the system.

We can analyse the haskell csp.pl code directly in order to locate some familiar firing rules
from our understanding of CSP.

cspm_trans(skip(SrcSpan),tick(SrcSpan),stop(SrcSpan),).

The above code represents the firing rule for the skip process. As we can see, there is an

initial process skip, which evolves into the process stop by performing the action v
(termination action). This is directly comparable with our understood notation of the firing
rule for skip:

SKIP £> STOP

Similarly, we can take the example of internal choice from the code:

cspm_trans('|7|"(X,_Y,SrcSpan),tau(int_ choice left(LSpan)),X, WF) :-
shift span for left branch(SrcSpan,LSpan).

cspm_trans('|7|'(_X,Y,SrcSpan),tau(int _choice right(RSpan)),Y, WF) :-
shift span for right branch(SrcSpan,RSpan).

Here, we can see there are two rules. We have one definition for an internal choice where X
is selected and a second definition for when Y is selected. The shift span rules simply
update the Span information. In ProB, the Span provides pointers in the execution and is
used for error handling.

Page 22

A Timed CSP Simulator for Railway Systems

These two rules correspond directly with our two inference rules for internal choice:

T

P Q—P
T

P Q—Q

7.3 Key Features and Classification of ProB

Simulators and model checkers can be classed in a number of ways. First, we have the
standard simulator or model checker which takes in the entire transition system, a static
input. In other words, every possible trace that could be made according to the specification
of the input code is generated. The issue with this is the state-explosion problem. As the
complete transition system tracks every possibility, a small increase in the input code
specification can result in an exponential growth of the generated transition system. One way
of solving this issue is by creating an ‘on-the-fly’ simulator and model checker.”” Here the
transition system is generated step-by-step as the user traverses through the actions. It is
clear that in such a situation only the visited nodes and the current state’s adjacent nodes
are generated. ProB is classed as an ‘on-the-fly’ model checker and simulator. In this respect,
implementation changes which apply to all nodes hold less gravity than they would with a
regular model checker and simulator (as there wouldn’t be the state-space explosion issue).
Nevertheless, it is still better that we avoid making changes that affect all nodes in a system,
simply because there is likely to be a more efficient alternative.

We can also differentiate between explicit-state and symbolic model checkers and
simulators®. Given a bounded state (that relies upon a variable) the adjacent nodes can
either be represented explicitly or symbolically.

S g

P(2 * x) P(0) P(2) P(4)
SYMBOLIC EXPLICIT-STATE

Figure 1. Symbolic and explicit-state representation

Figure 1 uses the example of a CSP channel. In our example, the channel ¢ accepts any x in
the set of integers. The output is x multiplied by 2. In explicit-state representation, we say
that there are infinitely many possible actions that can be done in this state. If x is 0, we can
do the action that produces 0O; if x is 1, we can do the action that produces 2, and so on. On
the other hand, symbolic representation has just 1 possible action for all x in the set of
integers, which produces 2*x. ProB uses explicit-state representation whereas we require
time as input; and providing actions for all possible times would be illogical. However, ProB
allows for actions leading to a non-ground state (a state with an undeclared variable) to be
presented to the user (even though a non-ground state cannot be initialised). We have used
this feature to our advantage, substituting the non-ground variable in an action’s resultant
state with new values based on the explicit time stated by the user before the state is
initialised. That way, only one state is generated but substituted with specific values during
simulation. This is effectively mimicking the behaviour of a symbolic representation.

Page 23

A Timed CSP Simulator for Railway Systems

There are two main data structures that can be used to represent the process graph; an
adjacency matrix and an adjacency list®. For a given state or node, these data structures
store the data on the adjacent nodes. ProB uses adjacency lists to store such information, as
evidenced by Figure 2.

i— dynamic current_optionsf;.
current _options([]}.

set current options (0ptions) :-
retractall(current options{(_) },
agzert(current options(Options)).

Figure 2. Dynamic clause for available options in state space.pl

In Figure 2 we see that the current options clause, which contains the nodes adjacent to the
current one, is a list (as indicated by the empty list type inside the clause).

Finally, we need to make clear that ProB is able to operate completely within the set of
rational numbers. We expressed the importance of using rational numbers in the initial
document. Essentially we need to clarify that given all inputs are in Q and all constants
(specified in the CSP code) are in Q, then all information will be in Q. In our
implementation, the only operations carried out between inputs and constants are two
arithmetic operations (namely addition and subtraction) and two Boolean operations (more
than and less than). It is known that rational numbers are closed for all the arithmetic
operations and the Boolean operations will either output 0 or 1 (both rational numbers).
Therefore, we can say that all information in ProB will be in the set of rational numbers. In
order to work with rational inputs and provide rational outputs, we have developed a
rational number ‘framework’ which deals directly with conversion and calculations between
rational numbers. This ‘framework’ will be described in detail in part III.

7.4 Software Architecture

As a result of being programmed in Prolog, ProB has a modular architecture. Instead of
having all the components merged together through an integrated architecture, each
component of ProB is clearly separated into its own module.

Graphical User
Interface
(Tcl/Tk)

Model Checker & Refinement Checker

Simulator

B Interpreter

& Animator
CSP Parser CSP Interpreter

(Haskell) & Animator
ProB Kernel

Figure 3. General structure of ProB

Page 24

A Timed CSP Simulator for Railway Systems

The majority of ProB’s modules are involved with the B-language interpretation, animation
and model-checking. ProB also allows for CSP-B specification which combines both CSP and
B code. However, we are more interested in the set of modules that form the CSP Interpreter
and Animator. We also work with the simulator, parser and GUIL In Figure 3 we can see
where these components fit into the overall software architecture.

While Figure 3 gives us a good grasp of the overall layout of the software; in order to fully
understand ProB, we need to look at the how data flows between the various parts of ProB.

7.5 Dataflow

This section considers how data moves through ProB, from the initial CSP code to the GUI
output. We also give a more detailed view of the individual files and how they interact with
each other.

> Haskell
Parser

4

)

Prolog
Code

CSP
Interpreter <

|
Simulator ¢) ou |<=| s

‘ Input

a KEY)

) Read by [e el]
[> Used by

ProB
\— Generates Component

Figure 4. CSP dataflow in ProB

In Figure 4, we can see that we start with CSP code generated by the user. ProB’s parser,
coded in Haskell, then reads the CSP code and generates its corresponding Prolog code. The
CSP Interpreter and Animator then compares the Prolog code against its firing rules and
decides its behaviour at the current execution step. This data is then used by the simulator
to determine the available actions and the resultant states for each action. The user chooses
an option; leading to the next state and new available actions.

Figure 5 gives a concise visual representation of the connection between the relevant files in
ProB’s implementation.

Page 25

A Timed CSP Simulator for Railway Systems

EVALUATES CHANNELS IDENTIFIES CSP OPERATORS
KEY csp tuples.pl haskell csp analyser.pl
—» Compiled by - - -

— Used by l
SOFTWARE INITIALISATION
prob tcltk.pl haskell csp.pl
CSP INTERPRETER & ANIMATOR
btracer.tcl teltk interface.pl _ ‘
Gul > PROGRAM CORE xtl interface.pl
SH\”.TLATOR & I\IODEL ('HE("KER ("_Sp ('ODE INITIALIS;—\T]ON
state space.pl translate.pl specfile.pl
GENERATE STATE SPACE CONVERTS ACTIONS TO IDENTIFTES
(AS LISTS) STRINGS FILETYPE (B. CSP. ETC.)

Figure 5. Connections between the key modules of ProB.

In Figure 5, we can see that prob tcltk.pl deals with the initialisation of ProB. In particular
it compiles both btracer.tcl and tcltk interface.pl. The btracer.tcl file provides the graphical
user interface. In terms of our CSP simulation, it takes user input, which is used by the
simulator, and also outputs data from the simulator. The heart of ProB is tcltk interface.pl.
This module utilises most of the other modules that make up ProB in order to carry out the
simulation and model checking tasks. In our case, the most important modules it uses are
state _space.pl and specfile.pl (which calls the transitions from haskell csp.pl via
xtl _interface.pl). The state space.pl module deals with setting up and maintaining a
number of list clauses which are stored in the Prolog database. These list clauses store
information such as the available options, current state and history. The haskell csp.pl
module is the core of the CIA. It contains all the firing rules and determines transitions
based on the state.

Figure 5 also shows us a few auxiliary modules which play an important part in CSP
dataflow, but contain little or no extra implementation. Within the CIA, there are two key
modules used by haskell csp.pl; namely csp tuples.pl and csp analyzer.pl. The
csp_tuples.pl module helps with channel evaluation and CSP I/O. The csp_analyzer.pl
module deals with the identification of CSP constructs. We also have xtl interface.pl which
deals with the initialisation of CSP. Namely it sets up the root state and the
start _cspm_ MAIN action, which are presented on loading a standard CSP file in ProB. It
also acts as an interface between the simulator and haskell csp.pl, via specfile.pl (which
identifies the file-type of specific actions). Finally we have translate.pl, which converts the
CSP actions and processes into strings prior to being output by the GUIL

In Part II, we have covered the necessary background research. We have looked at the
untimed and timed CSP specification in detail. We have also given a brief outline of the
three languages involved in our implementation; Prolog, Haskell and Tcl/Tk. Finally we've
described the key aspects of ProB, as well as its software architecture and dataflow.

Part III moves on from the background research and considers the implementation itself.

Page 26

PART III
Implementation

A Timed CSP Simulator for Railway Systems

III Implementation

Part III describes the implementation of our timed CSP simulator in full. We first discuss
the preparation carried out to familiarise ourselves with ProB. This is followed by the
important design decisions made. Finally we give an in-depth analysis of the implemented
code in the parser, CIA, simulator and GUL

8 Working with ProB

In order to grow accustomed to implementing CSP code and working with ProB, we
designed a simple untimed railway in the form of a square with 4 tracks. The design was
based on a specification outlined in Kirsten Winter’s ‘Model Checking Railway Interlocking
Systems’. She describes a train in the form of a front and a rear. The rules state that if
both the front and rear are on the same track, then the next possible move is the movement
of the front to the adjacent track. Furthermore, if the front is already on the next track and
the rear on the previous track, the next possible move is the movement of the rear to the
adjacent track. A train can only move to the next track if it is clear. To achieve this, we
implemented a signal system that synchronises with the trains to prevent them from entering
an engaged track. Our implementation utilises mutual recursion to keep the trains running
indefinitely.

1 datatype Trainsz = CR | F5
2 Tracks = {1..4}

channel Moveff, Mover: Tracks.Tracks
channel GreenSignal, ClearSignal: Tracks

7 MAIN = Train [| {| GreenSignal,ClearSignal |} |] Signals

9 Signals = S5ignal(l) ||| Signal(2) ||| Signal(3) ||| Signal(4)

1 Train = BehaveTrain0O(CR.4.4) ||| BehaveTrain0O(F5.2.2)

2

3 BehaveTrain® (id.ffront.rear) = Moveff.ffront.((ffront%4)+1l) -> BehawvelrainZ (id.((ffront%4)+1l) .rear)
BehaveTrainl (id.ffront.rear) = GreenSignal. ((ffront%4)+1) -> Moveff.ffront. ((ffront%4)+1l) -> BehaveTrain2 (id. ((ffront%4)+1) .rear)
BehaveTrain2 (id.ffront.rear) = Mover.rear.ffront -» ClearSignal.rear -» BehaveTrainl (id.ffront.ffront)

S Signal(i) = ClearSignal.i -> GreenSignal.i -> Signal (i)

Figure 6. Untimed Railway Model CSP Code.

In Figure 6, we have 4 signals for each track, as well as two trains CR and FS, interleaving.
The trains and signals run in parallel for GreenSignal and ClearSignal. Initially, we have
both trains following BehaveTrain0O. This allows trains to move the front to the next track
without a green signal. This is because the trains are initially on opposite ends of the square
which means the next track is already clear. After BehaveTrain0O, they move onto
BehaveTrain2 which is the movement of the rear to the next track, at which point they
never return to BehaveTrain0. The trains then alternate between BehaveTrainl (movement
of the front) and BehaveTrain2 (movement of the rear) in a mutual recursive fashion.
Movement of the front requires a GreenSignal first, while movement of the rear sends out a
ClearSignal after moving off the track. These two actions synchronise with the corresponding
Signal(i), which acts as a communicator between the two trains. Also note the use of
modular arithmetic (base 4 in this case) in order to determine the next track.

Appendix 1 provides a brief example run of the CSP code in ProB.

Page 27

A Timed CSP Simulator for Railway Systems

9 Design Decisions

We made a number of design decisions throughout our project. This section briefly considers
the options that were available to us and justifies the choices we made.

We first needed to decide what parts of timed CSP we wanted to include in our
implementation. While the ideal situation would be a complete timed CSP specification, we
needed to consider time and resources. The operators we considered were timeout, timed
interrupt, timed event prefix, delay, interval delay and wait.

Timeout and timed interrupt were obvious requirements for our implementation. These
operators play a big part in timed CSP and most models need to use these operators or
syntactic sugar that contains them. The delay was also an important part of our
implementation. For our more complex models, including the railway crossing model from
Steve Schneider’s book, we required the delay operator. Wait was also a useful operator to
have and due to its simple syntax, was not a difficult operator to implement.

In the end, we opted to omit timed event prefix and interval delay. The timed event prefix
would have required a significant amount of time to implement. The parsing would have also
been difficult (the @ symbol is already in use in the parser). Similarly, the interval delay
may have been tricky to parse due to its input. A new input type consisting of four parts
would also have been needed (the two constraints of the interval and open or closed intervals
which may or may not be paired). The amount of code in the implementation would have
increased quite significantly. As a result, these two operators were determined to be the best
candidates for omission.

Our next important decision was the method of extending the timed CSP syntax. There were
two possible options:

e Have one type for untimed and timed process terms (simply add the timed process
terms to the existing untimed type).
o Create two types, where timed CSP imports the untimed CSP type.

The first option is less work at the implementation stage; however it also means that we
have a flat-type system, which may cause issues in the future. The second option is harder to
implement, but also means that changes from CSP are inherited.

We eventually opted for the first option, due to the time and resource constraints. It was
also a suitable option for the goals we wanted to achieve.

Finally, we had to decide how we would add the syntactic sugar to our implementation. We
could either expand their definitions within the Haskell parser, or define their derived
semantic rules in Prolog. The first option has the benefit of keeping semantics small, leading
to better correctness. However the syntax may end up large and the representation of terms
in the simulator would be different from the user input. The second option has the benefit of
keeping the syntax small and properly representing the terms input by the user, but slightly
increasing the semantics.

Our final decision was that defining the derived semantic rules in Prolog was the best option
as we wanted to correctly represent the intended user-input and it was also the best option
from a software engineering perspective.

Page 28

A Timed CSP Simulator for Railway Systems

10 Prolog Implementation

The majority of ProB is programmed in Prolog, including the CIA and simulator. The bulk
of our implementation is carried out in both of these. Hence, we start our implementation
analysis with the Prolog code. The first part of this chapter will look at the most important
module of our implementation: haskell csp.pl. We will then move on to the modifications
made in the simulator: tcltk interface.pl. Finally, we will cover the minor modifications to
the other auxiliary Prolog modules; translate.pl, xtl interface.pl, haskell csp analyser.pl
and state space.pl.

10.1 haskell csp.pl

In haskell csp.pl, we have made three major extensions. First, we have added a rational
number ‘framework’ which deals with the conversion, calculation and simplification of
rational numbers within ProB. Second, we have implemented auxiliary rules which are called
by the firing rules and are used to determine the overall time limit d of the state and
calculate the resultant state. The reason we’'ve create auxiliary rules in this manner is to
account for nesting in a state, as discussed in 7.2. Finally, we have provided the new timed
firing rules; including untimed operator semantics in a timed context, and the new timed
operator semantics.

10.1.1 Rational Number Framework

Our first extension of haskell csp.pl is the code necessary to convert and simplify rational
numbers. We have also added code which makes calculations and Boolean checks with
rational numbers. The referenced code is in Appendix 2.

The first set of rules (ged) calculate the greatest common divisor of a fraction. Additionally,
lem determines the lowest common multiple. The simplify rules use the greatest common
divisor to simplify fractions (by performing integer division on the numerator and
denominator with the GCD). These rules have been designed to be used solely by the other
rules in the rational framework (which perform calculations and Boolean checks).

We have implemented rules which add fractions, subtract fractions and do Boolean tests;
more than and less than. There are also rational rules which just simplify a fraction and
convert an integer to a fraction (for use in the other calculations).

Finally, we have fractoint, which converts a fraction to an integer. This is done after all the
calculations, to produce a neater output. An output of 5 is more aesthetically-pleasing to the
end-user than 5/1, for example.

10.1.2 Auxiliary Rules

We have developed two basic auxiliary rules which are utilised by the firing rules and
simulator in order to achieve our timed CSP implementation.

Calculating the Overall Time Limit — ‘find d’

Our first auxiliary rule is find d. Its purpose is to determine the overall time limit for a
state (including states with nesting). This is particularly important for timeout and timed
interrupt as it ensures that the ([>-associative) and (Ag-associative) laws from 7.2 are
enforced.

Page 29

A Timed CSP Simulator for Railway Systems

As a reminder, they are:

d d d did
P>QDR =(P>Q >R
P A, (Q Ay R) - (P Ay Q) Ao R

These rules imply that a time update on a nested timeout or timed interrupt results in an
update of all time limits on the left side of the expression, while the right side remains the
same. As such, the overall time limit of a nested timeout or timed interrupt will be the
smallest d on the left side of the expression. This is reflected in Figure 7.

find_d('[d>"'(X,D,_Y,_Span),DF) :-
(find_d(X,E) -> rat(D=<E,DF) ; DF=D).

find_d('/d\\" (X,D,_Y,_Span),DF) :-
(find_d(X,E) -> rat(D=<E,DF) ; DF=D).

find_d(wait(D,_Span),DF) :-
(fractoint(D,DF) -> true ; rat(D,DF)).

Figure 7. find _d rules for timed operators.

First, note that for the timeout operator we have a state with left side X, time limit D and

d
right side Y (and a Span pointer). This corresponds to the timed CSP syntax X > Y. We
have a similar situation for the timed interrupt. For WAIT, we simply have a D
(corresponding to the d in WAIT d) and a Span pointer.

The rules recursively cycle through the left side of the expression and compare the time
limits. If the left side X does not have a find d rule (it is either a SKIP, STOP or event
prefix operator) then the rule will fail and the recursive process ends. At this point, the last
time limit d that was determined to be the smallest is returned as the result.

The WAIT operator does not have nesting, and so its overall time limit is simply defined as
the d of WAIT d. The value is either converted to an integer (if possible) or reduced to its
simplest fraction using fractoint and rat respectively.

The find d rule is not just useful for the nesting of timeout and timed interrupt; it also
deals with the other binary operators.

Appendix 3 provides the find _d rules for choice and concurrency.

Referring to Appendix 3, note that aParallel is alphabetized parallel and sharing represents
interface parallel. Also, both these operators have corresponding eaParallel and esharing
operators. These are simply extended versions of the operators which have their channel
expressions expanded. All aParallel and sharing operators call their respective eaParallel and
esharing operators in their untimed transitions. Therefore we need to duplicate any rules for
these extended versions in order for ProB to function as intended. They are essentially for
optimisation within ProB.

For aParallel, we have the left side of the alphabetized parallel operator (X) and the right
side (Y). These two sides also have corresponding channel lists CListX and CListY, which
are essentially the A and B in X ,||; Y. Finally, we have the SrcSpan pointer.

Page 30

A Timed CSP Simulator for Railway Systems

For sharing, we have the left and right side of the interface parallel operator (X and Y
respectively) and the shared channel list CList, which corresponds to A in X || Y. Again, we
A

have the SrcSpan pointer.

Finally, for ||| (interleaving) and [] (external choice) we have the left and right sides of the
operator (X and Y respectively) and the Span pointer.

Also note there is no internal choice in these rules. This is because there are no timed rules
for internal choice (due to the choice being urgent) and so without the timed firing rules, we
also don’t require corresponding auxiliary rules.

Each of these rules attempts to recursively perform find d on the left and right sides of the
binary operators. If a d is found on both sides of the operator, they are compared and the
smaller of the two becomes the overall time limit. If only one of the sides returns a d, then
that d automatically becomes the overall time limit. If neither side returns a d, the rule fails
as no d was found. The d is passed through fractoint or rat before being returned.

Figure 8 shows the next rules, which are for hiding and control flow operators.

///:;nd_d(‘\\'(Expr,_CList,_Span),DF) :- ‘\\\\

find_d(Expr,DV), (fractoint(DV,DF) -> true ; rat(DV,DF)).

find_d(ehide(Expr,_CList,_Span),DF) :-
find_d(Expr,DV), (fractoint(DV,DF) -> true ; rat(DV,DF)).

find_d(';"'(X,_Y,_SeqSpan),DF) :-
find_d(X,DV), (fractoint(DV,DF) -> true ; rat(DV,DF)).

find_d('/\\'(X,Y,_Span),DF) :-
(find_d(X,D),find_d(Y,E) -> rat(D=<E,DV) ;
(find_d(X,D) -> DV=D ;

(find_d(Y,E) -> Dv=E ; fail))),
\\\ifractoint(DV,DF) -> true ; rat(DV,DF)). 4////

Figure 8. find _d rules for hiding and control flow operators.

The \\ (hiding) has Expr and CList, which correspond to the process expression Q and list
of hidden channels A in the CSP operator Q \ A. We also have the Span pointer. Since there
is only one side to this expression, we only need to find d in Expr. Like the aParallel and
sharing operators, hiding has a corresponding operator ehide, which is its extended version.

The ; (sequential composition) operator has a left side X and a right side Y. While sequential
composition is a binary operator, it represents a passing of control and so time only affects
the left side of the expression (as the right side doesn’t start until the left side has
terminated). As such, like hiding, only one expression (the left side P) is analysed and
updated.

The untimed interrupt follows the same format as the concurrent and choice operators.

Finally we have agent call:

find_d(agent_call(_Span,F,Par),DF) :-
unfold_function_call_once(F,Par,Value),find_d(Value,DF).

Figure 9. find _d rule for agent call operator.

Page 31

A Timed CSP Simulator for Railway Systems

This construct is specific to ProB and allows process expressions to be encapsulated and
called. For example, consider following CSP code:

MAIN = SKIP ||| OTHER
OTHER = WAIT 5 ; WAIT 8

The agent call rule will encapsulate WAIT 5; WAIT 8 in the expression OTHER. This
construct is also used in the first state of execution (MAIN). As such, we have included this
in the auxiliary rules and timed firing rules to allow ProB to function correctly.

Calculating the Resultant State — ‘calculate res’
Our second auxiliary rule calculates the resultant state of a firing rule. Like find d, it works

recursively, but instead of searching, it actually updates all the necessary time limits d in a
nested state. In Figure 10 we have timeout’s calculate res rules.

calculate_res('[d>'(X,D,Y,Span),DV,Res) :- ﬂ\\\\
(calculate_res(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res2(Y,DV,Y1l) -> true ; cspm_ttrans(Y,_AY,Y1,WF)),
rat(D-DV,DF),

(fractoint(DF,DFW) -> true ; DFW=DF),

Res="[d>"' (X1,DFW,Y1,Span).

calculate_res2('[d>"'(X,D,Y,Span),DV,Res) :-
(calculate_res2(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res2(Y,DV,Y1) -> true ; cspm_ttrans(Y,_AY,Y1,WF)),
rat(D,DF),

(fractoint(DF,DFW) -> true ; DF=DFW),

\\\iﬁs:‘[d>'(X1,DFw,Y1,Span). 4////

Figure 10. calculate res rules for timeout.

For timeout, calculate res subtracts a value from every time limit d on the left of the state,
using the rational rule for subtraction — here it is called as rat(D-DV,DF). All d on the right
side of the state remain the same and are just simplified as necessary (using rat(D.DF) in
calculate res2). If the calculate res rules cannot be performed for either side of the operator,
then the timed transition cspm_ ttrans is calculated instead.

The calculate res rules for timed interrupt are of the same format.

The WAIT operator has the following calculate res rules:

///;alculate_res(wait(D,Span),DV,Res) :- ‘\\\

rat(D-DV,DF),
(fractoint(DF,DFW) -> true ; DFW=DF),
Res=wait(DFW,Span).

calculate_res2(wait(D,Span),_DV,Res) :-
rat(D,DF),

(fractoint(DF,DFW) -> true ; DFW=DF),
Res=wait(DFW,Span).

)

Figure 11. calculate res rules for WAIT.

Like with its find d rule, there is no nesting here and so only one time limit d needs to be
updated. The first rule is if the wait operator is on the left side of a state, the second rule is
for when it is on the right.

Page 32

A Timed CSP Simulator for Railway Systems

In Appendix 4, we have the calculate res rules for choice and concurrency.

These binary operators simply perform calculate res (or if it fails, they calculate the timed
transition) of both the left expression X and the right expression Y. Again, aParallel and
sharing have duplicate rules for their extended versions, eaParallel and esharing.

In Appendix 5, we have the other calculate res rules (for hiding, control flow and ProB’s
built in agent_call operator).

The \\ (hiding) operator simply calls calculate res for Expr (the Q in Q\A). Failing that, it
performs its timed transition. The important addition here is the line:

(cspm_trans('\\'(Expr,CList,Span),tau(hide(_ActionX)), Res ,WF) -> fail

This implies that if there is an available action that is hidden (in the set A of Q\A), then
the 1 transition must be invoked before time can pass, so the result cannot be calculated.

Again, like with find_d, \\ has a duplicate calculate res rule for its extended version, ehide.

The ; (sequential composition) operator has a similar format to \\, except the rule has the
following condition:

(cspm_trans(';"'(P,Q,SeqSpan),tau(tick(_)),_Res, WF) -> fail ;

This means that if P is ready to terminate and there is a v event available, then the state
must do a t transition to () before time can resume and so calculate res fails.

Finally we have the untimed interrupt (which follows the same format as the concurrency
and choice rules) and agent call (the built in ProB operator).

10.1.3 Firing Rules

As discussed in 7.2.1, the CIA already contains all the untimed firing rules. These firing rules
are of the form cspm_ trans(e,a,e’,wf), where e is the current state, a is the action, €’ is the
resultant state and wf is ProB’s waitflag predicate. For our timed firing rules, we have
simply added a new type of transition; cspm_ttrans(e,a,e’,wf). The rules for cspm trans and
cspm_ttrans are clearly segregated, so there is no risk of confusion despite the similarity in
nomenclature.

Before we discuss the firing rules, there are three types of timed event in our implementation
which need to be explained.

e Evolution Transition [0,00] — This transition has one variable, Span/SrcSpan, which is
simply a pointer in the execution. This timed event is presented when the state only
contains untimed CSP operators and allows any amount of time to pass. When
selected by the end-user, the option to enter any value within the interval [0,00] is
presented to the user. There is no change to the state itself, but the global time is
updated with the additional time. It takes the form time(Span) in the firing rules.

e Evolution Transition DV — This transition has two variables, the overall time limit
dv of the state and Span/SrcSpan. This timed event is one of two presented when the
state contains timed CSP operators. When this event is selected, time dv passes. This

Page 33

A Timed CSP Simulator for Railway Systems

will cause the time limit DV and all d = dv in the state to change to 0, resulting in a
T transition becoming available (and time cannot pass until this transition is invoked).
All other d” > DV will update to d”- DV. It takes the form time(DV,Span) in the
firing rules.

e Evolution Transition [0,DV) — This transition has three variables, the overall time
limit DV of the state, one time limit E which has been substituted for a non-ground
variable in the state and is stored in the transition, and Span/SrcSpan. When this
event is selected, the user is presented with the option to enter any value within the
interval [0,DV). The non-ground variable will be replaced with the original time limit
E (with time subtracted, where time is the value entered by the user). All other time
limits d’ in the state will be updated to d’-time. It takes the form time(DV,E,Span)
in the firing rules.

Timed Firing Rules for Untimed CSP

Our first timed firing rules are for the untimed CSP operators in a timed context. The three
simplest firing rules we discussed in 3.2 were STOP, SKIP and event prefix. These operators
are unaffected by a timed transition and the only differentiation of state is through the
change in global time (the implementation for global time is within the simulator and is
discussed further on in the chapter). The firing rules are below:

sTOoP L sTOP SKIP ~L SKIP

(a — P)f{la(a—} P)

These firing rules correspond directly to our implementation:

cspm_ttrans(stop(SrcSpan),time(SrcSpan),stop(SrcSpan),_).
cspm_ttrans(skip(SrcSpan),time(SrcSpan),skip(SrcSpan),_).

cspm_ttrans(prefix(SPAN1,Values,ChannelExpr,CSP,SPAN2),time(SPAN1),
prefix(SPAN1,Values,ChannelExpr,CSP,SPAN2), _).

Figure 12. Timed firing rules for STOP, SKIP and event prefix.

Here we see that stop, skip and event prefix states all have a timed event which leads to the
same state. We also have a slot for the waitflag predicate. As these are states consisting of
only untimed CSP operators, we have our 1-variable timed event, time(SrcSpan).

The above firing rules are followed by the timed firing rules for the choice operators. Recall
from Part II that internal choice has an urgent event, which means it does not have any
timed transition. Therefore we have only implemented a timed firing rule for external choice:

Page 34

A Timed CSP Simulator for Railway Systems

///;;pm_ttrans('[]'(X,Y,Span),A,Res,_) - <\\\

(find_d('[]"'(X,Y,Span),DV) ->
((DV == @ ; (calculate_res('[]'(X,Y,Span),DV,Res) -> fail ; true)) -> fail ;
(

(A=time(DV,Span),calculate_res('[]'(X,Y,Span),DV,Res)) ;

(A=time(DV, E,Span), (cspm_ttrans(X,time(_D,E,_Span),X1,WF) -> Y1=Y ;
cspm_ttrans(Y,time(_D,E,_Span),Y1l,WF),X1=X),Res="[]"(X1,Y1,Span))
))
cspm_ttrans(X,_AX,X1,WF),cspm_ttrans(Y,_AY,Y1,WF),A=time(Span),Res="[]"'(X1,Y1,Span)).

)

Figure 13. Timed firing rule for choice.

Breaking down the above rule, we first have the head. Here we see that the timed transition
starts with an external transition state. The action A is defined within the body of the rule
as is the resultant state Res.

We start the body with a condition which checks whether or not our auxiliary find _d rule
succeeds.

If find d fails, we can assume that neither side of the choice operator contains any timed
operators, which means that any amount of time can pass. As such, we simply compute the
timed transitions for the X choice and the Y choice; setting the A as our 1-variable timed
transition and the Result as a new choice operator state with an updated X and Y.

If find d succeeds, we know that the choice operator contains timed operators. First we
check whether the overall time limit DV is 0. If it is, that means time cannot pass until a t
transition is carried out and the timed transition fails.

We also test our second auxiliary rule, ‘calculate res’. If the rule fails at this point, it means
that one of the expressions in the state is engaged in a t transition and time cannot pass (for
example, an action a € A is available which is hidden in the operator Q \ A). While
time(DV,Span) would automatically fail if this rule failed, time(DV,E,Span) would still
succeed as it doesn’t use calculate res. This is why we need to add this rule to the body as
an additional condition.

If both these conditions pass, then time(DV,Span) and time(DV,E,Span) become available.

The time(DV,Span) event has a result Res which is a new state with time d subtracted from
all relevant timed limits in the state (left of timed operators, hiding and sequential
composition; either side of untimed binary operators). All relevant d = DV will become 0,
while all other relevant d” > d in the state will become d’- d. The calculate res rule takes
care of this.

The other timed transition time(DV,E,Span) has a result Res which is a new state with one
of the time limits E changed to a non-ground variable. The time limit E is the first limit
found in the state, first looking on the left side of the expression, then the right. The actual
calculations to determine the new state are not made until after the user has entered a time.
The reason for changing one of the time limits to a non-ground variable is to differentiate
the state. If the resultant state was the same as the initial state, ProB has some optimisation
features which would circumvent the state change process and we wouldn’t be able to update
the time limits after user-input. The semantics would also be incorrect.

Page 35

A Timed CSP Simulator for Railway Systems

The overall result of our firing rule is that as time passes, both sides of the choice update,
meaning the overall choice operator has updated over time:

pLp QLQ
POQ.LPDOCQ

The concurrency firing rules follow the exact same format as the choice firing rule.

Next, we have the hiding operator. Below is the implemented firing rule:

///:;pm_ttrans('\\‘(Expr,CList,Span),A,Res,_) :- 4‘\\\

(cspm_trans('\\'(Expr,CList,Span),tau(hide(_ActionX)),_ HideRes ,WF) -> fail ;
(find_d('\\"' (Expr,CList,Span),DV) ->

((DV == @ ; (calculate_res('\\'(Expr,CList,Span),DV,Res) -> fail ; true)) -> fail ;
(

(A=time(DV,Span),calculate_res('\\' (Expr,CList,Span),DV,Res)) ;

(A=time(DV, E,Span),cspm_ttrans(Expr,time(_D,E,_Span),NExpr,WF),
Res="\\"'(NExpr,CList,Span))

)
\\\i%pm_ttrans(Expr,_AExpr,NExpr,WF),A=time(Span),Res=‘\\'(NExpr,CList,Span))). A////

Figure 14. Timed firing rule for hiding.

As in calculate res, the body contains a new condition which says that if an untimed
transition Tt exists which hides an action, the timed transition fails. In other words, if there’s
an action available which is in the hidden set A of Q \ A, then time cannot pass.

If there is no such hidden action at this step in the execution, then we test again for find d,
DV = 0 and calculate res.

The other key difference is that hiding is not a binary expression like the concurrency and
choice operators and so we only need to analyse and modify Expr. This is also reflected in
the calculate res and find _d rules for hiding. The rule for ehide is the same as for \\.

The implementation corresponds directly with the timed hiding firing rules:
p L p
Va€eA | ~(P 5)
P A-LP A

Below is the firing rule implementation of sequential composition:

///;;pm_ttrans(';'(P,Q,Sequan),A,Res,_) :- ‘\\\

(cspm_trans(';"'(P,Q,SeqSpan),tau(tick(_)),_Res,WF) -> fail ;

(find_d(P,DV) ->

((DV == @ ; (calculate_res(';'(P,Q,SeqSpan),DV,Res) -> fail ; true)) -> fail ;
(

(A=time(DV,SeqSpan), calculate_res(';'(P,Q,SeqSpan),DV,Res)) ;

(A=time(DV,E,SeqSpan), cspm_ttrans(P,time(_D,E,_Span),P1,WF),Res=";"'(P1,Q,SeqSpan))

))
cspm_ttrans(P,_AP,P1,WF),A=time(SeqSpan),Res=";"'(P1,Q,SeqSpan))).

Figure 15. Timed firing rule for sequential composition.

Page 36

A Timed CSP Simulator for Railway Systems

The sequential composition firing rule is similar to that of hiding. While sequential
composition is a binary operator, it represents a passing of control and so time only affects
the left side of the expression (as the right side doesn’t start until the left side has
terminated). As such, like hiding, only the left expression (P) is analysed and updated.
Again, this is represented in find d and calculate res as well. There is also a condition in
the body which states that if the P is ready to terminate, it is urgent, meaning time cannot
pass until it has terminated. Incidentally, the timed transition will fail if this condition is
met.

Again, this corresponds with the timed firing rule in Steve Schneider’s specification:

L p

ﬂ(Piﬁ
P:A-LP A

This is followed by the untimed interrupt firing rule:

ﬂspm_ttrans("/\\"(X,Y,Span),A,Res,_) :- \

(find_d('/\\'(X,Y,Span),DV) ->
((DV == @ ; (calculate_res('/\\'(X,Y,Span),DV,Res) -> fail ; true)) -> fail ;

(
(A=time(DV,Span),calculate_res('/\\'(X,Y,Span),DV,Res)) ;

(A=time(DV, E,Span), (cspm_ttrans(X,time(_D,E, Span),X1,WF) -> Y1=Y ;
cspm_ttrans(Y,time(_D,E,_Span),Y1l,WF),X1=X),Res="/\\"'(X1,Y1,Span))
)
cspm_ttrans(X,_AX,X1,WF),cspm_ttrans(Y,_AY,Y1l,WF),A=time(Span),Res="/\\"(X1,Y1,Span)).

_

J

Figure 16. Timed firing rule for untimed interrupt

Once again, this follows the same format as concurrency and choice and fits with the timed
firing rule from our background research:

P f{L} P’ CQ d (gl
PAQ-LPACQ

Finally, we have timed firing rules for agent call and val of (like agent call, val of is
related to ProB’s optimisation):

cspm_ttrans(val_of(X,Span),A,NewExpr,WF) :- symbol(RenamedX,X, ,),
cspm_ttrans(agent_call(Span,RenamedX,[]),A,NewExpr,WF).

cspm_ttrans(agent_call(Span,F,Par),NA,NNewExpr,WF) :- !,
unfold_function_call_once(F,Par,Value),
~~pp_cll(cspm_ttrans(Value,A,NewExpr,WF)),
full_normalise_csp_process(NewExpr,NNewExpr),
merge_span_into_event(A,Span,NA).

Figure 17. Timed firing rules for val of and agent call.

Page 37

A Timed CSP Simulator for Railway Systems

Timed Firing Rules for Timed CSP

For our implementation, we have covered four timed CSP operators. This includes timeout,
timed interrupt and the syntactic sugar; delay and WAIT.

Below is the timed firing rule for timeout:

///;spm_ttrans('[d>'(X,D,Y,Span),A,Res,_) - <\\\

rat(D,RD),

(A=time(DV,Span), find_d('[d>'(X,RD,Y,Span),DI), (fractoint(DI,DV) -> true ; rat(DI,DV)),
(DV == @ -> fail ; calculate_res('[d>'(X,RD,Y,Span),DV,Res))) ;

(A=time(DV,RD,Span), find_d('[d>'(X,RD,Y,Span),DI), (fractoint(DI,DV) -> true ; rat(DI,DV)),
(DV == @ -> fail ; Res='[d>'(X,_E,Y,Span)))

\ /

Figure 18. Timed firing rule for timeout.

First, the time limit d is converted into a fraction or simplified if necessary, using our
rational number framework. We are then presented with our two timed transitions
time(DV,Span) and time(DV,RD,Span), where RD is our d after it is converted into a
fraction or simplified. Like the untimed operators, we can use find d and calculate res to
work with nested operators. As mentioned in 10.1.2, these rules update only the left side of a
nested timeout expression, following the ([>-associative) law discussed in 7.2:

d d d did
P> QDR =PD>Q > R.

The time(DV,Span) event updates all time relevant limits d = DV to 0 and all other
relevant d”> DV in the state to d’- DV.

The time(DV,E,Span) event substitutes the d at the center of the expression (the non-nested
d) with a non-ground variable and stores the d in E. Once time is determined during
simulation, the non-ground d is then replaced by E-time (where time € [0,DV) is input by
the user).

Below we have the the timed firing rule for timed interrupt, which is the same as timeout:

CSpm_ttf‘anS('/d\\'(X;D;Y;Span);A’ResJ_) i

rat(D,RD),

(
(A=time(DV,Span), find_d('/d\\'(X,RD,Y,Span),DI), (fractoint(DI,DV) -> true ; rat(DI,DV)),
(DV == @ -> fail ; calculate_res('/d\\'(X,RD,Y,Span),DV,Res))) ;
(A=time(DV,RD,Span), find_d('/d\\>'(X,RD,Y,Span),DI), (fractoint(DI,DV) -> true ; rat(DI,DV)),
(DV == @ -> fail ; Res='/d\\'(X,_E,Y,Span)))

).

Figure 19. Timed firing rule for timed interrupt.
Alongside our two main timed operators, we have the syntactic sugar; delay and WAIT.

In Figure 20, we see that the timed firing rule for delay is the same as event prefix.

Page 38

A Timed CSP Simulator for Railway Systems

cspm_ttrans('-d->"'(SPAN1,Values,ChannelExpr,D,CSP,SPAN2),time(SPAN1),
'-d->"'(SPAN1,Values,ChannelExpr,D,CSP,SPAN2),).

Figure 20. Timed firing rule for delay.

1 d
As discussed in 3.6.1, a S P—a— (STOP [> P) and so the state is essentially an

event prefix (leading to a state using a timeout operator). As such, the delay operator and
event prefix share the same timed transition format.

The timed firing rule for WAIT makes use of our existing timeout firing rules:

///;;pm_ttrans(wait(D,SrcSpan),A,Res,_) - <\\\\

(D == @ -> fail ;
(

(A=time(DV,SrcSpan),

cspm_ttrans('[d>' (stop(SrcSpan),D,skip(SrcSpan),Span),time(DV,Span),
'[d>" (stop(SrcSpan),0,skip(SrcSpan),Span),_),

Res=wait(@,SrcSpan)) ;

(A=time(DV,RD, SrcSpan),

cspm_ttrans('[d>" (stop(SrcSpan),D,skip(SrcSpan),Span),time(DV,RD,Span),
'[d>" (stop(SrcSpan),_E,skip(SrcSpan),Span),_),

Res=wait(_E,SrcSpan))

- y

Figure 21. Timed firing rule for WAIT.

d
Here, we see that WAIT d = STOP [> SKIP is directly implemented. We have the

transition time(DV,SrcSpan), which results in WAIT 0 and is determined by performing the
timed firing rule for timeout with time(DV,Span), where X is STOP and Y is SKIP.
Similarly, we have the transition time(DV,RD,SrcSpan), which results in a WAIT with non-
ground variable E (which is replaced by RD-time after time is provided by the user). It is
represented by the timed firing rule for timeout with time(DV,RD,Span), where X is STOP
and Y is SKIP.

Untimed Firing Rules for Timed CSP

Finally, we have the untimed firing rules for our new timed CSP operators. Below are the
untimed firing rules for timeout and timed interrupt:

///;; Timeout */ ﬂ\\\\

cspm_trans('[d>"(X,D,Y,Span),AS,Res,WF) :- cspm_trans(X,A,X1,WF),
((A=tau(_), Res='[d>'(X1,D,Y,Span)) ; (top_level dif(A,tau(_)), Res=X1)),
shift_span_for_left_branch(Span,LSpan),

merge_span_into_event(A,LSpan,AS).
cspm_trans('[d>"'(_X,0,Y,Span),tau(timeout(Span)),Y,_WF).

/* Timed Interrupt */

cspm_trans('/d\\'(X,D,Y,Span),AS,Res,WF) :- cspm_trans(X,A,X1,WF),
(A=tick(_) -> Res=X1 ; Res='/d\\'(X1,D,Y,Span)),
shift_span_for_left_branch(Span,LSpan),
merge_span_into_event(A,LSpan,AS).

\\\ffpm_trans('/d\\'(_X,9,Y,Span),tau(tInterrupt(Span)),Y,_WF). 4////

Figure 22. Untimed firing rules for timeout and timed interrupt.

Page 39

A Timed CSP Simulator for Railway Systems

For timeout, we say that if the executed action is a t transition, then the X updates, but the
timeout state remains intact. Any other type of action made by X results in the entire state
doing a transition to X. The shift span for left branch and merge span into event

rules are for updating the Span pointer. Finally, if D = 0, then the state does a t transition
to Y.

Timed interrupt follows a similar format, however only a v action leads to a transition of
the entire state to X. Otherwise, the X updates but the timed interrupt operator remains
intact. Again, if D is 0, the state does a t transition to Y.

The next firing rule is for delay:

cspm_trans('-d->"'(SPAN1,Values,ChannelExpr,D,CSP,SPAN2), io(EV,Channel,SPAN),
'[d>"' (stop(SPAN2),D,NormCSP,SPAN), WF) :-
evaluate_channel_outputs(Values,ChannelExpr,EV,Channel, SPAN,WF),
unify_ spans(SPAN1,SPAN2,SPAN),
full normalise_csp_process(CSP,NormCSP).

Figure 23. Untimed firing rule for delay.

The firing rule for delay has a similar format to the firing rule for event prefix. CSP is

1
equivalent to the P in a (—> P and NormCSP is the P after performing a. While the result
for event prefix would simply be NormCSP, we’ve embedded this into a timeout expression
with STOP as the left side and P as the right. This mirrors the following rule:

1 d
a—P=a—> (STOP > P)

Finally, we have the untimed firing rule for the WAIT operator:

[cspm_trans(wait(@,SrcSpan),tau(timeout(SrcSpan)),skip(SrcSpan),_).]

Figure 24. Untimed firing rule for WAIT.

The only possible untimed action for the WAIT operator is to do a t timeout transition to a
SKIP state when D = 0.

10.1.4 Other Additions

Our other main addition is update result, which can be found in Appendix 6. This rule is
called by the simulator once a time has been acquired from the user. It is used to replace the
non-ground variable with its original time limit d and then it uses calculate res to subtract
the time (input by the user) from all the relevant time limits in the state.

While the rule looks complex, its implication is quite simple. If the state is an untimed
operator (other than stop, skip or event prefix) it performs update result on both the left
and right sides of the expression (or only the left if it’s the hiding or sequential composition
operators). If the state is one of the timed CSP operators it checks to see if its time limit d is
ground, if it isn’t, it substitutes it for the RD stored in the timed transition
time(DV,RD,Span). It then performs calculate res to subtract the time obtained from the
user. If the state is stop, skip or event prefix, the state remains unchanged. The entire
update state is then produced as the result NewState and returned to the simulator.

Page 40

A Timed CSP Simulator for Railway Systems

10.2 tcltk interface.pl

The simulator has been updated in a number of ways. First, we've extended the
state_update to use update result from haskell csp.pl for the timed transitions of type
time(DV,RD,Span). We have also included some extra rules which take time data from the
GUI, based on user-input, and calculate the global time using a new list clause defined in
state space.pl. We have added to the simulator a rule that enforces the constraints of
transitions. So if a user enters a time > DV for Evolution Transition [0,DV), the rule will
fail and the user can enter another time that fits within the constraints of the transition.
Finally, we have extended the backtrack and forward functions to account for the timed
transitions.

10.2.1 State Substitution

In Appendix 7, after the next state is determined; we have inserted code that calls
update result from haskell csp.pl. This grounds and updates the state using the time input
from the user (if necessary). This occurs before the next state is called as the current

expression. First, we extract the executed action’s data and determine that it’s a timed event
of type time(DV,RD,Span).

If it is, we call update result from haskell csp.pl (this rule is imported at the top of the
code extract). We then replace the state in the visited expression clause (this is necessary for
backtrack to work). If it isn’t a timed event of type time(DV ,RD,Span), then the state is
called as the current state without any modifications.

10.2.2 Global Time & Constraints

Appendix 8 shows the code which calculates the global time and enforces the constraints on
user input.

In the original ProB implementation, when an action was selected and performed,
tcltk perform would be called. In our extended implementation, we now call tcltk timer
instead. This fulfills two functions:

e First it ensures the time entered by the user meets the interval constraints (greater
than O for the Evolution Transition [0,0) operation and between 0 and d for the
Evolution Transition [0,d) operation). It uses the rule tcltk constraints to achieve
this.

e Second, it adds the time entered by the user to a new list clause called timedata
(which has been set up in state space.pl). This list clause stores all the times entered
by a user throughout the execution.

Only after tcltk timer has called both these rules will tcltk perform be called.

The rule tcltk get time is called by the GUI's state window at every step in the execution.
As the name suggests, it adds up all the time values in the list clause, timedata (using the
rule list_sum) and returns it to the GUL

The rule tcltk intialise sets up the timedata clauses at the start of a simulation (otherwise
tcltk timer would be met with an existence error when it tried to call the timedata clause
for the first action). It is only called for the first action of the simulation. It also clears
anything stored in timedata from a previous simulation.

Page 41

A Timed CSP Simulator for Railway Systems

At the top of the code, we see that the rational number framework is imported from
haskell csp.pl in order to perform the fraction addition for global time.

10.2.3 Backtrack and Forward

Finally, we have added some extra code in backtrack and forward to account for the
extension of time. The code extracts for these are in Appendix 9.

The additional code in backtrack removes the latest time value and stores it in a second
timedata clause (which can be considered the backtrack timedata clause). It also retracts the
latest transition.

The additional code in forward does the reverse, removing the latest time value from the

second timedata clause (the backtrack timedata clause) and putting it back into the main
timedata clause).

10.3 Other Prolog Modules

Alongside our extension of the simulator and haskell csp.pl we’ve made some minor
additions to the following modules.

10.3.1 haskell csp analyser.pl
This module is for identifying the standard operators in the generated Prolog code and we

have simply added the new rules for identifying our new timed operators. They are as
follows:

definite_cspm_process_construct('[d>'(A,D,B,Span), [Span],[D],[A,B]).
definite_cspm_process_construct('/d\\'(A,D,B,Span),[Span],[D],[A,B]).
definite_cspm_process_construct('-d->"'(Span,_A,_B,D,C,Span2), [Span,Span2],[_A,_B,D],[C]).
definite_cspm_process_construct(wait(D,Span),[Span],[D],[]).

Figure 25. Timed construct identification.

This code simply breaks down the operators into their constituent parts and determines the
properties of each part (separating spans, CSP expressions and standard variables (such as
rational numbers).

10.3.2 xtl interface.pl

This module initialises the CSP system and also acts as an interface between haskell csp.pl
and specfile.pl (which is used by the simulator to determine available events).

cspm_transition(State,Time,NewState) :- State \= root,
%print(comp),nl,
cspm_ttrans_enum(State, Time,NewState).
%print(new(NewState)),nl.

Figure 26. cspm_ ttrans enum call.

There is some simple code in xtl interface.pl which calls cspm trans enum from
haskell csp.pl before it is called by specfile.pl during the listing of available options by the

Page 42

A Timed CSP Simulator for Railway Systems

simulator. Since we added cspm _ttrans enum to haskell csp.pl, we have duplicated the
code in xtl interface.pl to call it.

10.3.3 translate.pl

This module converts events and processes into strings for GUI output.

translate_event2(time(_Span),['Evolution Transition [@..inf)'|T],T) :-
process_algebra_mode, !. /* CSP */

translate_event2(time(D, Span),['Evolution Transition ',D|T],T) :-
process_algebra_mode, !. /* CSP */

translate_event2(time(D, , Span),['Evolution Transition [@..',D,')"'|T],T) :-
process_algebra_mode, !. /* CSP */

Figure 27. Translate rules for timed transitions.

We have added rules to translate the 1, 2 and 3-variable time transitions into their
respective strings for the available operations window in the GUI. We can see that
time(_Span) results in Evolution Transition [0..inf), time(D, Span) results in Evolution
Transition D and time(D, E, Span) results in Evolution Transition [0..D).

///;inary_csp_op('[d>'(X,D,Y,_Span),X,D,Y,'[d>'). ‘\\
binary_csp_op('/d\\'(X,D,Y,_Span),X,D,Y,"'/d\\").
pp_csp_process(delay(_SPAN1,Values,ChannelExpr,D,CSP,_SPAN2),S,T) :- !,

pp_csp_value_l1([ChannelExpr|Values],'."',S,['-',D, '->"]|S2],20),
pp_csp_process(CSP,S2,T).

\\\?p_csp_process(wait(D,_Span),S,T) :- 1, S=['WAIT ',D|T]. 4//

Figure 28. Translate rules for timed constructs.

We have also added the four timed CSP operators to translate.pl. They can be converted to
strings for the GUI state output.

10.3.4 state space.pl

This module maintains the Prolog database of list clauses that contain important data on
the current simulation. This includes history, available options, visited expressions and
current state. These clauses are dynamic so that information can be updated and modified
(through append and retract methods) throughout the simulation. We have added a new list
clause which stores time data. It is used by the simulator to determine the global time (and
its latest stored valued is used by update result to update the time limits across the state).
The new list clause is set up in state space.pl as follows:

:- dynamic timedata/2.
timedata(v_0,[]).

Figure 29. timedata list clause.

Page 43

A Timed CSP Simulator for Railway Systems

11 Parser & GUI Implementation

As well as the extension of the simulator and CIA in Prolog, we have added the timed CSP
syntax to the Haskell parser. We have also made additions to the GUI in Tcl/Tk to allow for
time input from the user and some general aesthetic changes.

11.1 Haskell Parser

ProB’s parser, coded in Haskell, reads in the CSP code provided by the user. It then
generates the corresponding Prolog code which is interpreted by the CIA component of ProB.
As part of our implementation, we have added the timed CSP syntax to the parser so that it
is recognised when included in user input.

11.1.1 AST (Abstract Syntax Tree)
We first added the new operators to the abstract syntax tree. This is shown in Appendix 10.

The four timed operators have been added to the AST (marked with comments). The WAIT
takes in an expression (the time limit d). Timeout takes an expression (the time limit d) and
two processes (X and Y). Timed interrupt is the same. Delay takes in the same data as event
prefix, but also takes in an expression (delay d). While the expressions that all these
operators take in are of the type LExp (which encompasses the entire AST), their d is
actually only allowed to be an integer or a rational number. The code which specifies this is
in AstToProlog.hs, which is laid out in 11.1.3.

11.1.2 Main Parser

Parser.hs contains the main parser, where we have added our timed operators to the
precedence table (Appendix 11) and created the methods for actually parsing them.

We have placed the WAIT operator at the bottom of the table. Timed Interrupt and
Timeout have been placed with their respective untimed operators in order of precedence.

{- Replicated Expression= in Prefix form -}

parseProcReplicatedExp :: PT LProc
parseProcReplicatedExp
= choice

procRep T semicolon ProcRepSequence
procRep T sgecap ProcRepInternalChoice
procRep T box ProcRepExternalChoice
procRep T interleave FProcReplnterleave
procReplAParallel

procReplinkParallel

r
.
’
r
.
. procRepSharing

, try parseDelayExp —- Delay
r parsePrefixExp

Figure 30. Delay placement.

Event prefix only appears in the method for replicated expressions, so we have added our
delay here. A try clause has been added so that if a delay expression is not found, prefix
expression is checked for instead.

Page 44

A Timed CSP Simulator for Railway Systems

Each operator has a method in Parser.hs that describes how it is detected. The one
exception is the wait operator, which does not need a method as it simply detects the WAIT
token and reads in the integer or rational number which follows it. In Appendix 12 are the
methods which parse the other three timed CSP operators.

Timeout looks for two tokens, T timeOpenBrack and T timeCloseBrack. These tokens are
identified as [{ and }> in another the parser’s lexer. If it finds these two tokens, it reads in
the expression between them as the time. This data is then sent to the AST. Timed
interrupt has a similar process, except that it looks for two tokens /{ and }\.

Delay identifies the channels, then looks for two tokens which make up the delay arrow,
namely -{ and }->. It then reads the expression between them as the delay time. This is
sent to the AST.

Note that all these methods refer to positions (spos, getNextPos, etc.). This is basically the
position of the parsed expression in the CSP code and is used for highlighting columns and
rows by the GUI when certain actions are selected.

11.1.3 AstToProlog

This file converts any parsed CSP code into the Prolog code ready to be interpreted by the
CIA portion of ProB. Below we have the rules for converting our four operators:

TimedTimecut time pl p2 -> nTerm "[d>" [te pl, timeexpr time, te p2,plloc expr]
TimedInterrupt time pl p2 -> nTerm "/d\\" [te pl, timeexpr time, te p2,plLoc expr]

DelayExp ch fields time proc —>»
nTerm "-d->" [plLoc ch, mkCommField=s fields, te ch, timeexpr time, te proc,prefixLoc]
where
prefixloc = mkSrcloc £ Srcloc.srclLocBetween
(if mull fields then srcloc £ ch else srcLogc £ last fields)

(srcLoc proc)

Wait time ->»> nTerm "wait" [timeexpr time,plloc expr]

Figure 31. AstToProlog codes for timed operators.

The resultant Prolog code corresponds directly with the operator definitions in
haskell csp analyser.pl which identifies the Prolog versions of the CSP operators.

Note that the value time is specified as a timeexpr type, which is defined in Figure 32.

timeexpr :: LExp -> Term
timeexpr expr = case unlLabel expr of
IntExp i -> term £ atom i
Fun? op a b -» case (unBuiltIn op, unLabel a, unLabel b) of
(F_Div, IntExp i, IntExp j} -> Term | (unftom (atom i)) <> char '/' <> (unfAtom (atom j)))
_ —» error "Expected a time"
_ —» error "Expected a time"

Figure 32. timeexpr definition.

This ensures that the expressions used to represent d in a timed operator are either integers
or rational numbers (or more precisely in this context, a division function with two integer
values as input). Otherwise, an error is returned; “Expected a time”.

Page 45

11.1.4 Lexer.x

Lexer.x contains all the token definitions which are used by the parse

A Timed CSP Simulator for Railway Systems

following tokens for our four operators:

<0> "[{™ { mkL T_timerenBrack T

0> "im=m o mkL T_timeCloseErack 1

<0> "/{" { mkL T interruptCpenBrack }
<0> "I\" { mkL T interruptCloseBrack }

<0> "—{" { mkL T delay0Openfrrow }
<0 "i-»" { mkL T_delayCloseRrruw r

<0> "HAIT" { mkL T wait }
Figure 33. Timed operator tokens.

First we have the timeout tokens, which combined make [{}>.
We then have the timed interrupt tokens, which make /{}\.
This is followed by the delay tokens, which make —-{}->.
Finally we have the WAIT token.

11.2 GUI (Graphical User Interface)

The GUI has been updated in two places. The first is the state window, which has been
updated to call the tcltk get time rule and display a global time at every step in the

execution:

Also, we have added extra code which allows for the user to input time. This is shown in

Appendix 13.

In Appendix 13 we have the process which determines what happens when a user double
clicks an operation. Originally this simply called the Prolog tcltk perform rule (which
updates the next available options, updates the trace, etc.) with the current option ID as a

irveariant_ok
CSP: [d:([d> (skiplsrc_span(3.9,3.13.22 411.0.prefis zrc_spanl

Global Time: 7

if [prolog {tcltk get time (Time)}] {
set time $prolog variables (Time)

.frmInfo.frm5tate.list insert end ""
fErmInfo.frmState.li=st insert end [concat "Global Time: " =time]

Figure 34. Global time GUI code and output.

parameter (where 1 is first in the list, 2 is second, and so on).

A number of additions have been made here to account for the timed transitions. A case for
start _cspm_ MAIN (the initial action available when a CSP file is first loaded) has been

r. We have added the

Page 46

A Timed CSP Simulator for Railway Systems

added, which calls the tcltk initialise rule instead of tcltk perform. We have also added
cases for the timed transitions. When Evolution Transition [0,d) or Evolution Transition
[0,0) is double clicked, a dialog box pops up (shown in Appendix 14) asking for the
transition time and maps the user input to a variable called evol. The tcltk timer rule is
then called with the current option ID and evol variable as parameters. When Evolution
Transition d is clicked, the value d is mapped to evol and tcltk timer is called. Note that for
all other actions, tcltk timer is called but with the time/evol variable as 0 (as all other
actions have no time value).

Page 47

PART IV
Demonstration

A Timed CSP Simulator for Railway Systems

IV Demonstration

Part IV provides the models used to demonstrate our timed CSP simulator’s functionality.
We first consider simple models using our new timed constructs; demonstrating that they
behave as expected. We then use Steve Schneider’s railway crossing model which clarifies the
correctness of our implementation with respect to the specification laid out in his book as
well as showing the applicability to the railway domain. Finally, we provide a simple model
of a London Underground station; taking the first steps towards applying the simulator to
the capability challenge.

12 Basic Models

We first use some basic models to demonstrate that our timed CSP simulator behaves as
expected. These models not only test the operation of the regular timed CSP operators, but
also clarify some of the laws laid out in 7.2.

Our first model tests the WAIT operator and that it works correctly with hiding, event
prefix and sequential composition. It tests the three laws for delay:

WAIT d; WAIT d'= WAIT(d + d') (delay-suml1)
1

a— P —a— WAIT d; P (delay-sum?2)

(WAIT d; Q) \| A = WAIT d; (Q\A) (hide-delay)

The model is below:
channel a, b
MAIN = a —-> ((WAIT 5 ; WAIT 3 ; OTHER) A\ {b})

OTHER = b -> SKIP
Figure 35. WAIT test model.

First, we have WAIT 5 ; WAIT 3. According to delay-suml this will be equivalent to
WAIT(5+3) = WAIT 8.

We can follow from this and say that we have a -> WAIT(5+3); P, where P is OTHER.
Finally, we have (WAIT(5+3); Q) \ A, where Q is OTHER and A is {b}.
In other words, we can expect this CSP code to behave exactly the same as:

channel a, b

MAIN = a -{8}-> (OTHER\{b})

OTHER = b -> SKIP
This would perform the action a, followed by a timed evolution of 8 units and a timeout.
This would be followed by a b action (which will be hidden and therefore stop time from

passing) and ending with a tick operation.

On execution of our model, we see that precisely this trace is achieved. Not that the first
action is on the bottom and the last action is on the top.

Page 48

A Timed CSP Simulator for Railway Systems

tick,

taulhide(h]]
Laultimeout)
Evolution Transition 3
taLtimeout)
Evolution Transition 5

a
ztart_capm_bAIN
Figure 36. WAIT test trace.

We can test a further model for timeout, which tests the following rule:

d d d did
P>(QDPR) =(PD>Q D> R (>-associative)

This is the law that played an important part in our implementation and resulted in
recursive operations to work with nested states.

The model is below:
channel a, b

MAIN = (SKIP [{7}> a -> STOP) [{9}> b -> SKIP
Figure 37. Timeout test model.

Here, we expect the model to be equivalent to:
SKIP [{7}> (a -> STOP [{2}> b -> SKIP)
Purely from the timed transition point of view, this would mean a timed transition of 7,

followed by a timeout and a timed transition of 2. We could then do a b action and finally a
tick. This is clarified below:

tick
b
Lautirmeot)
Evolution Transition 2
taLtimeot)
Evolution Transition ¢
start_capr_bAlM

Figure 38. Timeout test trace.
The same can be done for timed interrupt, testing the rule:
p Ad (Q Ad' R‘) - (P A(1 Q) Advd’ R < Ad—associative >
Using the same model as before, but with the timed interrupt operator instead of timeout,
we should be able to achieve the same trace.
The model is below:
channel a, b

MATIN = (SKIP /{7}\ a -> STOP) /{9I\ b -> SKIP
Figure 39. Timed interrupt test model.

Page 49

A Timed CSP Simulator for Railway Systems

Here, we expect the model to be equivalent to:
SKIP /{7}\ (a -> STOP /{2}\ b -> SKIP)

Again we achieve the expected trace and similar to timeout, but with tlnterrupt tau
transitions instead of timeout tau transitions:

tick,
b
tau(timeot)

Evalution Transition 2
tau(timeot)
Evalution Transition 7
shart_caprn_kAlM

Figure 40. Timed interrupt test trace.

We can also use these models to demonstrate the timed CSP simulator’s behaviour for
interval transitions. Taking our timeout model again, we start with three available options;
tick, Evolution Transition 7 and Evolution Transition [0..7). We also start with a global time
of 0. If we pick the interval option and enter a time of 3, the global time should update to 3
and the Evolution Transitions should update to 4. This is clarified below:

"""""" State Properties = E nabledO perations 4= | L3 | Hiztory
itrvariant_ok = |tk _*|[Evalution Transition [0.7) J
CSP: [dx([d>[skiplsrc_span(3,9.3.13.22.4]).4 prefis(src_span| Evolution Transition 4 start_capr_MalN
Evolution Transition [0..4]
Global Time: 3

Figure 41. Testing interval transitions.

Also, the state has updated and the interval option has been added to the history. We can
also achieve similar results for fractions as time values. Take the same example, but the user
enters 1/3 instead. The result is expected to be a global time of 1/3 and updated evolution
transitions of 20/3. This is clarified below:

"""""" State Properties = Enabled0perations ﬁ| Bl | History
irveariant_ok = [Jtick. _*|[Evolution Transition [0.7) J
CSP: [de([d>[skiplsre_span(3.9.3.13.22.41).20/3 prefisfsrc_sp |Evalution Transition 20/3 start_cspr_MAIN

Evolution Tranzition [0, 20/3]
Global Time: 143

O o B2 K1 0 E2 K1 0

Figure 42. Testing interval transitions with fractions.

Page 50

A Timed CSP Simulator for Railway Systems

13 Railway Crossing

In order to identify our timed CSP simulator’s applicability to the railway domain, we have
decided to use a railway crossing model. Furthermore, we have adapted this model* from
Steve Schneider’s book, which allows us to also clarify that our implementation of timed
CSP is correct with respect to the book’s specification.

Below is a visual representation of the railway crossing model:

I/ \I/ \.I

" 300 - 20 '

1
. 1 .
entercrossing L.& leavecrossing
1
| l l L1

frainnear
KEY nearind . '
- outind
down
TRAIN - 100 l ‘ 100
GATE downcom| |upcom
CONTROLLER €

Figure 43. Railway crossing model.
This railway crossing model has 4 safety properties:

o First, if the train enters the crossing, the gate must have gone down more recently
than it went up.

e Second, if the train enters the crossing at time t, then no down or up events should
have occurred in the previous 10 time units.

e Third, if the gate goes up, the train must have left the crossing more recently than it
entered it.

e Finally, the system must be deadlock-free.

The second safety property is of particular interest. Without time, we cannot fulfil this
property. Therefore, this property highlights the importance of time in this model.

The model is represented as CSP code in Appendix 15. Note that the downcommand,
upcommand, up, down and confirm actions have all been hidden. This is because they need
to be urgent for the model to function correctly and meet the safety properties.

In order to show that our implementation is correct with respect to this model, we can
simply compare the steps in the model and the simulation in Appendix 16.

First the train enters the system, represented by trainnear. It reaches the near indicator
(signified by the nearind event) and at this point is 300 time units away from entering the
crossing. This is received by the controller (in a negligible time ¢), which initiates the
downcommand. 100 time units pass between the downcommand event and the down event
(which signifies that the gate is down). This is immediately followed by a confirm event
between the gate and controller. As we expect, time has also passed for the train which is

Page 51

A Timed CSP Simulator for Railway Systems

running concurrently to the gate and controller. So there are now 200 time units remaining
until the train enters the crossing. After 200 time units, the train enters the crossing. 20 time
units pass and the train leaves the crossing. Once the train reaches the out indicator, the
controller receives this information (in a negligible time €) and initiates the upcommand.
Also, at this point a new train can enter the system. After 100 time units, the gate is up
(signified by the up event) and the gate and controller confirm with each other.

We can see in this trial run of the model, that all four of our safety properties were met.

When the train entered the crossing, the gate had gone down more recently than when it
went up. Also, the gate had gone down more than 10 time units before the train entered the
crossing (it went down at time t-200 to be precise, well within the limits of the safety
property). Third, when the gate went up, the train had left the crossing more recently than
it entered it. Finally, the system is deadlock-free as already confirmed by Steve Schneider
(“the three component timed processes are all non-retracting and have finite interfaces”) *.

Page 52

A Timed CSP Simulator for Railway Systems

14 London Underground

Our final demonstration consists of a simple model of a London Underground station. The
purpose of this model is to take the first steps towards applying our timed CSP simulator to
the capability challenge as a subset of the capacity challenge.

The CSP code for our model is in Appendix 17.

In this model, trains run in parallel to the signals. When a train needs a green light, it waits
until the green event for the correct track is available from the signal. Once it’s available,
the train and signal synchronise on the event and the train is able to continue travelling.
The signal then waits for the train to leave a track, at which point they synchronise on a
clear event for the relevant track number. The train process is effectively a continuous
stream of trains running in interleave. These trains appear in the system every f seconds,
where fis the frequency set by the end-user. In the figure, they run every 100 seconds. The
entire system also has every action hidden; implying that all actions are urgent once they
become available.

The behaviour of the train is partially based on Kirsten Winter’s untimed railway model®,
discussed in chapter 8. The train has a front and a rear, the front moves on to a track,
followed by the rear. The front of a train cannot enter a track until it is clear (the other
train’s rear has left the track). Finally, the front of a train cannot move to the next track if
the rear of the train has not yet moved to the current track. The difference here is time is
now a factor. For the first few steps of BehaveTrain, where delays are 7 seconds each, we
represent a train moving at full speed. The delay of 20 seconds represents the deceleration of
the train as it comes into the station. We then have a 30 second WAIT, which is the train
waiting at the station while passengers board. We have another delay of 20 seconds
representing the acceleration of the train as it leaves the station. Finally we have 7 second
steps which is the train travelling at full speed again.

This CSP code can essentially be considered as a specific track plan. The end-user can then
run the simulation for various frequencies {. If a train has to wait on the first track for a
green light, then the trains are running too frequently. If there is a green light to move onto
the second track and the next train is not yet waiting for a green light, then the trains are
not running frequently enough.

While this model is relatively simple and far from being a real-world example, it is a definite
first step towards applying the timed CSP simulator to the challenge of capability. The end-
user can determine the optimum throughput for a track plan by performing a few test runs
in the simulator, simply adjusting the frequency feach time.

Furthermore, if the simulator can be applied to the capability challenge, there is scope for it
to be used to work towards solving the challenge of capacity as well.

Page 53

PART V
Conclusion

A Timed CSP Simulator for Railway Systems

V Conclusion

At the start of this project, we had two aims. The first was to develop a fully-functional and
professional timed CSP simulator. The second was to apply this simulator to the railway
domain and work towards solving the safety and optimisation challenges within the industry.
Reflecting on the work done throughout the project, I believe that we have made significant
headway towards achieving these goals.

By extending the existing untimed CSP simulator, ProB, we have ensured that our final
product is of a professional standard. We have succeeded in developing many aspects of the
software to accommodate for timed CSP; from the additional semantics in Prolog to the
aesthetic changes in the GUIL. We have also provided a full implementation for the most
important timed CSP operators.

We have also been able to demonstrate the functionality of our timed CSP simulator, not
just with basic models but also with more advanced systems which address safety and
efficiency challenges within the railway domain.

Nevertheless, there is still opportunity for further development within this project. The next
logical step is to work towards a well-rounded, complete timed CSP specification that
includes the other key operators such as timed event prefix and interval delay. These extra
operators would allow us to simulate the more complex systems and achieve a polished end-
product.

A complete specification would also allow us to focus on refining our test models. While we
managed to take our first steps towards working with the challenge of capability, our test
model was highly-simplified. Using real-world data and track plans would allow us to truly
ascertain the viability of our timed CSP simulator in the railway domain.

Ultimately, this project has provided a different viewpoint on how to approach timed
simulation and has demonstrated that it is an alternative which has merit. There is definite
scope to take this project further and develop a viable tool to help solve the pressing
challenges within the industry.

Page 54

PART VI
References & Appendix

A Timed CSP Simulator for Railway Systems

VI References & Appendix

15 Works Cited

"Schneider, S. (2000). Concurrent and Real-time Systems: The CSP Approach. Chichester:
John Wiley and Sons.

? Leuschel, M. and Butler, M. (2003) The ProB Animator and Model Checker for B. In
Proceedings of 12th International FME Symposium 2003 (FM2003).

?Larsen, K., Yi, W. et al. (1999). UPPAAL (4.0.13) [Computer program|. Available at
http://www.uppaal.com/ (Accessed 05 October 2010)

! Larsen, K., Pettersson, P. and Yi, W. (1997). UPPAAL in a Nutshell. Springer
International Journal of Software Tools for Technology Transfer. 1 (142), p134-152.

°Yi, W., Pettersson, P. and Daniels, M. (1994). Automatic Verification of Real-Time
Communicating Systems By Constraint-Solving. In Dieter Hogrefe and Stefan Leue, editors,
Proceedings of the 7th International Conference on Formal Description Techniques, p234-236.

% Behrmann, G., David, A. and Larsen, K. (2004). A Tutorial on Uppaal. Proceedings of the
4th International School on Formal Methods for the Design of Computer, Communication,
and Software Systems (SFM-RT 04). LNCS 3185.

"Lucas, P. (2002). Introduction to Prolog. Lecture Notes, Aberdeen University. p1-2

®Endriss, U. (2007). An Introduction to Prolog Programming. Lecture Notes, Amsterdam
University. pl, 4-6

? Andersson, J., Andersson, S., Boortz, K., Carlsson, M., Nilsson, H., Sjéland, T., and Widen,
J. (1993). SICStus Prolog User's Manual. Technical Report. UMI Order Number: T93-01.,

European Research Consortium for Informatics and Mathematics at SICS.

"Van Roy, P. (1994). 1983-1993: The Wonder Years of Sequential Prolog Implementation.
Journal of Logic Programming, 19:385-441

" Lipovaca, M. (2010). Learn You a Haskell for Great Good. p6.

“Ross, F. et al. (2008). Introduction To Haskell. p1-3.

" Leijen, D. (2001). Parsec, a fast combinator parser. pl.

" Peralta, S. J. (2003). Scripting Graphical Commands with Tcl/Tk Mini-HOWTO. p2-5.
' Roscoe, A.W. (2010). Understanding Concurrent Systems. Springer. p350

' Leuschel, M. and Butler, M. (2007). ProB: An Automated Analysis Toolset for the B
Method. International Journal on Software Tools for Technology Transfer, 10 (2). p185, p192.

Page 55

http://www.uppaal.com/

A Timed CSP Simulator for Railway Systems

'" Leuschel, M., Adhianto, L., Butler, M., Ferreira, C. and Mikhailov, L. (2001). Animation
and Model Checking of CSP and B Using Prolog Technology. In Proceedings of the ACM
Sigplan Workshop on Verification and Computational Logic, VCL’2001, p97-109

" Leuschel, M. (2001). Design and Implementation of the High-Level Specification Language
CSP(LP) in Prolog. In Proceedings of PADL 01, Volume 1990 of LNCS, p18.

" Hallerstede, S, Leuschel, M. (2003). Constraint-Based Deadlock Checking of High-Level
Specifications. p8.

* Henzinger, T., Kupferman, O., Vardi, M. (1996). 'A Space-Efficient On-the-fly
Algorithm for Real-Time Model Checking' Concur '96: Concurrency Theory: 7th
International Conference. Springer. p515

*'Fu, X., Bultan, T., Su, J. (2002). 'Formal Verification of e-Services and Workflows'
CAiSE '02/ WES '02 Revised Papers from the International Workshop on Web
Services, E-Business, and the Semantic Web. London: Springer-Verlag. p192

* Cormen, T., Leiserson, C., Rivest, R. and Stein, C. (2001). Introduction to
Algorithms, Second Edition. McGraw-Hill. p527-528

»Winter, K. (2002). Model Checking Railway Interlocking Systems. In Proceedings Twenty-
Fifth Australasian Computer Science Conference (ACSC2002), Melbourne, Australia. CRPIT,
4. Oudshoorn, M. J., Ed. ACS. p303-310.

' Schneider, S. (2000). Concurrent and Real-time Systems: The CSP Approach. Chichester:
John Wiley and Sons. p431-436.

Page 56

http://crpit.com/confpapers/CRPITV4Winter.pdf

A Timed CSP Simulator for Railway Systems

16 Appendix
Appendix 1 — Untimed Railway Model Execution

MAIN = Train I\ {| GreenSignal,ClearSignal |} |] Signals
Signals = Signal (1) Signal (2) Signal (3) Signal (4
Train = BehaveTrainl (CR.4.4) I BehaveTrain0(F5.2.2)

BehaveTrain0 (id. ffront.rear) = Moveff.ffront. ((ffront$%$4)+1) -> BehaveTrain2 (id. (
(ffront%4)+1) .rear)

BehaveTrainl (id. ffront.rear) = GreenSignal. ((ffront%4)+1) -> Moveff.ffront. ((ffr
ont%4)+1) -> BehaveTrainZ (id. ((ffront%4)+1) .rear)

BehaveTrain2 (id.ffront.rear) = Mover.rear.ffront -> ClearSignal.rear -> BehaveT
rainl (id.ffront.ffront)

Signal (i) = ClearsSignal.i -> GreenSignal.i -> Signal(i”

TET State Properties EnabledOperations 4= = Histary
irvariant_ok start_cepm_MAIN
CSP: MAIN Moveff.2.3
MAIN = Train I\ {| GreensSignal,ClearSignal |} |] Signals
Signals = Signal (1) Signal(2) Signal(3) Signal (4)

Train = BehaveTrainO(CR.4.4) I BehaveTrainl (FS.2.2)

BehaveTrainl (id.ffront.rear) = Moveff.ffront. ((ffront%4)+1) -> BehaveTrain2 (id. (
(ffront%4) +1) .rear)

BehaveTrainl (id. ffront.rear) = GreenSignal. ((ffront%4)+1l) -> Moveff.ffront. ((ffr
ont%4)+1) -» BehaveTrainZ (id. ((ffront%4)-+1) .rear)

BehaveTrain2 (id. ffront.rear) = Mover.rear.ffront -» ClearSignal.rear -> BehawveT
rainl (id.ffront.ffront)

Signal (i) = ClearSignal.i -> GreenSignal.i -> Signal(i”

i State Properties B ; Enabled0perations 4 Histary
iinwariant_ak. M ovefl. 2.3 Maneeff.d.1
CSP: BehaveTrainOdotTuple([FS.intZLint(2] I Mower start_cspr_bAaIN
MAIN = Train [| {| GreenSignal,ClearSignal |} |] Signals
Signals = Signal (1) Signal (2) Signal (3) I Signal (4)
Train = BehaveTrainl (CR.4.4) I BehaveTrainl (FS.2.2)
BehaveTrainl (id.ffront.rear) = Moveff.ffront. ((ffront%4)+1) —-> BehaveTrain2 (id. (
(ffront%4)+1) .rear)
BehaveTrainl (id.ffront.rear) = GreenSignal. ((ffront%4)+1) -> Moveff.ffront. ((ffr
ont%4)+1) -> BehaveTrain2 (id. ((ffront%4)+1) .rear)
BehaveTrainZ (id.ffront.rear) = Mover.rear.ffront -> ClesarSignal.rear —-> BehaveT
rainl (id.ffront.ffront)
Signal(i) = ClearSignal.i -» GreenSignal.i -> Eignal(iﬂ
©57 State Properties “=3 EnabledDperations 4 History
inw ariant_ok. ClearSignal. 2
CSP: GreenSianal [Zlnt{3Lint{4))+nt(1)->Moveff. 1315 hdover.2.3
hoveff.2.3
tdover.d.1
hdoveff.d.1
start_cspr_MAIN

After the main process
is activated, we are
given the option to
move the front of train
CR from track 4 to 1
(Moveff.4.1) or to
move the front of train
FS from track 2 to 3
(Moveff.2.3).

After moving the front
of train CR front track 4
to track 1, we now have
the option to make the
same movement with the
rear of train CR. Note
that the Moveff event
for train FS is still
available.

Later on during
execution, we can see here
an example of the
ClearSignal
synchronisation. Train FS
has no available actions
as it requires a
GreenSignal to continue.
It cannot execute
GreenSignal until Signal
has executed ClearSignal,
which it is about to do
with train CR.

Page 57

A Timed CSP Simulator for Railway Systems

MAIN = Train [[| {| GreenSignal,ClearSignal |} |] Signals

Signals = Signal (1) Signal (2) Signal(3) I Signal (4

Train = BehaveTrain0 (CR.4.4) I BehaveTrainl (F5.2.2)

BehaveTrainl (id.ffront.rear) = Moveff.ffront. ((ffront%4)+1) —-> BehaveTrain2 (id. (
(ffront%4)+1) .rear)

BehaveTrainl (id.ffront.rear) = GreenSignal. ((ffront%4)+1) =% Moveff.ffront. ((ffr
ont%4)+1) -> BehaveTrain2 (id. ((ffront%4)+1) .rear)

BehaveTrainZ (id.ffront.rear) = Mover.rear.ffront -> ClearSignal.rear -> BehaveT
rainl (id.ffront.ffront)

Signal (i) = ClearSignal.i -> GreenSignal.i > Siqnal(i)l

(77 State Properties

EnabledOperations 4= History

inwariant_ok
CSP: GreenSignal | Zlint(1 Lint(4])+nt(1]->Moveff.17.1 % ir

GreenSignal 2 ClearSignal 4
ClearSignal.2
tover 2.3
toveff.2.3
tover 4.1
It oveff.4.1
lstart_cspm_MAIN

(757 Grate Properties e EnabledOperations = Histary

invariant_ok b oweeff. 1.2
CSP: Moveff. 1.1 0nt1]intd]]+int(1)->BehaveTrain2(dc |Moveif. 3.4

GreenSignal 2
GreenSignal.4
ClearSignal 4
ClearSignal 2
Meorver 2.3
oveft.2.3
toever.d.1

e orveff. 4.1
start_cspm_MAIN

After two ClearSignals
have executed,
Signal(2) and Signal(4)
are both ready to
synchronise on
GreenSignal with the
corresponding trains.

Once the two
GreenSignals have
been executed, both
train fronts are free to
move onto the next
track again, continuing
the cycle.

Page 58

A Timed CSP Simulator for Railway Systems

Appendix 2 — Rational Number Framework

gcd(X,X,X):- I,

gcd(X,0,X):- !.

gcd(9,X,X):- I.

gcd(_X,1,1):- !.

ged(1,_X,1):- !.

gcd(X,Y,Z):-

X>Y, !, XY is X mod Y, gcd(XY,Y,Z).
gcd(X,Y,Z):-

X<Y, !, YX is Y mod X, gcd(X,YX,Z).

lem(X,Y,LCM): -
gcd(X,Y,GCD), LCM is X*Y//GCD.

simplify(A/A,1/1):-!.
simplify(A/1,A/1):-!.
simplify(1/A,1/A):-!.
simplify(A/B,C/D):-

gcd(A,B,E), C is A//E, D is B//E.

rat(A/B+C/D,E/F):- !,

lcm(B,D,Den), N is A*(Den//B) + C*(Den//D), simplify(N/Den,E/F).
rat(X+Y,E/F):-

rat(X,C/D), rat(Y,A/B), !, rat(C/D+A/B,E/F).

rat(A/B-C/D, E/F):- 1,

lcm(B,D,Den), N is A*(Den//B) - C*(Den//D), simplify(N/Den,E/F).
rat(X-Y,E/F):-

rat(X,C/D), rat(Y,A/B), !, rat(C/D-A/B,E/F).

rat(A/B=<C/D,E/F):- !,

AB is A/B,CD is C/D, (AB=<CD -> E/F = A/B ; E/F = C/D).
rat(X=<Y,E/F):-

rat(X,C/D), rat(Y,A/B), !, rat(C/D=<A/B,E/F).

rat(A/B>=C/D,E/F):- !,

AB is A/B,CD is C/D,(AB>=CD -> E/F = A/B ; E/F = C/D).
rat(X>=Y,E/F):-

rat(X,C/D), rat(Y,A/B), !, rat(C/D>=A/B,E/F).

rat(A/B, SA/SB):-

CA is A, CB is B, !, simplify(CA/CB,SA/SB).
rat(A, CA/1):-

CA is A.

fractoint(A/1,A).
fractoint(A/A,1).
fractoint(A,A) :- integer(A).

Page 59

A Timed CSP Simulator for Railway Systems

Appendix 3 — Choice and Concurrency find d Rules

find_d('[]'(X,Y,_Span),DF) :-
(find_d(X,D),find_d(Y,E) -> rat(D=<E,DV) ;
(find_d(X,D) -> DV=D ;

(find_d(Y,E) -> Dv=E ; fail))),
(fractoint(DV,DF) -> true ; rat(DV,DF)).

find_d(aParallel(_CList,X,_CListY,Y,_SrcSpan),DF) :-
(find_d(X,D),find_d(Y,E) -> rat(D=<E,DV) ;
(find_d(X,D) -> DV=D ;

(find_d(Y,E) -> Dv=E ; fail))),

(fractoint(DV,DF) -> true ; rat(DV,DF)).

find_d(eaParallel(_ECList,X,_ECListY,Y,_SrcSpan),DF) :-
(find_d(X,D),find_d(Y,E) -> rat(D=<E,DV) ;
(find_d(X,D) -> DV=D ;

(find_d(Y,E) -> Dv=E ; fail))),

(fractoint(DV,DF) -> true ; rat(DV,DF)).

find d('|]|"'(X,Y,_Span),DF) :-
(find_d(X,D),find_d(Y,E) -> rat(D=<E,DV) ;
(find_d(X,D) -> DV=D ;

(find_d(Y,E) -> DV=E ; fail))),
(fractoint(DV,DF) -> true ; rat(DV,DF)).

find_d(sharing(_CList,X,Y,_Span),DF) :-
(find_d(X,D),find_d(Y,E) -> rat(D=<E,DV) ;
(find_d(X,D) -> DV=D ;

(find_d(Y,E) -> DV=E ; fail))),
(fractoint(DV,DF) -> true ; rat(DV,DF)).

find_d(esharing(_CList,X,Y,_Span),DF) :-
(find_d(X,D),find_d(Y,E) -> rat(D=<E,DV) ;
(find_d(X,D) -> DV=D ;

(find_d(Y,E) -> DV=E ; fail))),
(fractoint(DV,DF) -> true ; rat(DV,DF)).

Page 60

A Timed CSP Simulator for Railway Systems

Appendix 4 — Choice and Concurrency calculate res Rules

calculate_res('[]'(X,Y,Span),DV,Res) :-
(calculate_res(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res(Y,DV,Y1l) -> true ; cspm_ttrans(Y,_AY,Y1,WF)),
Res="[]"(X1,Y1,Span).

calculate_res(aParallel(CListX,X,CListY,Y,SrcSpan),DV,Res) :-
(calculate_res(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res(Y,DV,Y1) -> true ; cspm_ttrans(Y,_AY,Y1,WF))
,Res=aParallel(CListX,X1,CListY,Y1,SrcSpan).

calculate_res(eaParallel(ECListX,X,ECListY,Y,SrcSpan),DV,Res) :-
(calculate_res(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res(Y,DV,Y1) -> true ; cspm_ttrans(Y,_AY,Y1,WF)),
Res=eaParallel (ECListX,X1,ECListY,Y1,SrcSpan).

calculate_res('|]||"(X,Y,Span),DV,Res) :-
(calculate_res(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res(Y,DV,Y1) -> true ; cspm_ttrans(Y,_AY,Y1,WF)),
Res="|]]"'(X1,Y1,Span).

calculate_res(sharing(CListX,X,Y,SrcSpan),DV,Res) :-
(calculate_res(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res(Y,DV,Y1) -> true ; cspm_ttrans(Y,_AY,Y1,WF)),
Res=sharing(CListX,X1,Y1,SrcSpan).

calculate_res(esharing(CListX,X,Y,SrcSpan),DV,Res) :-
(calculate_res(X,DV,X1) -> true ; cspm_ttrans(X,_AX,X1,WF)),
(calculate_res(Y,DV,Y1) -> true ; cspm_ttrans(Y,_AY,Y1,WF)),
Res=esharing(CListX,X1,Y1,SrcSpan).

Page 61

A Timed CSP Simulator for Railway Systems

Appendix 5 — Hiding, Control Flow and agent call calculate res Rules

calculate_res('\\'(Expr,CList,Span),DV,Res) :-
(cspm_trans('\\'(Expr,CList,Span),tau(hide(_ActionX)), Res ,WF) -> fail ;
(calculate_res(Expr,DV,NExpr) -> true ; cspm_ttrans(Expr,_ AX,NExpr,WF)),
Res="\\"(NExpr,CList,Span)).

calculate_res(ehide(Expr,CList,Span),DV,Res) :-
(cspm_trans(ehide(Expr,CList,Span),tau(hide(_ActionX)), Res ,WF) -> fail ;
(calculate_res(Expr,DV,NExpr) -> true ; cspm_ttrans(Expr, AX,NExpr,WF)),
Res=ehide(NExpr,CList,Span)).

calculate_res(';'(P,Q,SeqSpan),DV,Res) :-
(cspm_trans(';"'(P,Q,SeqSpan),tau(tick(_)), Res, WF) -> fail ;
(calculate_res(P,DV,P1) -> true ;

cspm_ttrans(P,_AP,P1, WF)),Res="';'(P1,Q,SeqSpan)).

calculate_res('/\\"'(X,Y,Span),DV,Res) :-
(calculate_res(X,DV,X1) -> true ;
cspm_ttrans(X,_AX,X1,WF)), (calculate_res(Y,DV,Y1) -> true ;
cspm_ttrans(Y,_AY,Y1,WF)),Res="/\\"'(X1,Y1,Span).

calculate_res(agent_call(_Span,F,Par),DV,Res) :-
unfold function call once(F,Par,Value),calculate res(Value,DV,Res).

Page 62

A Timed CSP Simulator for Railway Systems

Appendix 6 — update result Rule

///;;date_result(CSPState,Modifier,CurD,NewState) - ‘\\\\\

((CSPState =.. [OP,X,Y,Span],((OP == "\\' ; OP == ehide ; OP == ";') ->
NewState =.. [OP,X1,Y,Span] ; NewState =.. [OP,X1,Y1,Span]) ;
CSPState =.. [OP,CList,X,Y,Span], (OP == sharing ; OP == esharing),
NewState =.. [OP,CList,X1,Y1,Span] ;
CSPState =.. [OP,CListX,X,CListY,Y,Span],
NewState =.. [OP,CListX,X1,CListY,Y1,Span])
-> update_result(X,Modifier,CurD,X1),
((OP == "\\"' ; OP == ehide ; OP == ';') -> true ; update_result(Y,Modifier,CurD,Y1)) ;
((CSPState =.. [OP,X,E,Y,Span] ->
(ground(E) -> CSPStateD =.. [OP,X,E,Y,Span] ; CSPStateD =.. [OP,X,CurD,Y,Span]) ;
CSPState =.. [OP,E,Span],
(ground(E) -> CSPStateD =.. [OP,E,Span] ; CSPStateD =.. [OP,CurD,Span]))
-> calculate_res(CSPStateD,Modifier,NewState) ; NewState=CSPState)

. /

Page 63

A Timed CSP Simulator for Railway Systems

Appendix 7 — Non-ground Variable Substitution Code

% Uses update_result rule from haskell csp.pl
e use_module(haskell_csp,'ciafhaskell_csp',:update_resultf&:].

tcltk_goto_state (ActionAsTerm, StatelD) :-
~~mnf (translate:translate_event (ActionhsTerm, ActionhAsString)),
tcltk _goto_state (RctionhAsTerm, ActionfsString, StatelD) .
tcltk_goto_state (ActionfAsTerm, RctionhsString, StatelD) :-

(var (5tatelD) -» print message (var_state (tcltk goto state (ActionAsString, StatelD))) strue),
(visited expression(5tatelD, StateTempl, StateBody)
—-> true

; (print (state_does_not_exist(tcltk goto_state (ActionfksString, StatelD))),nl,fail)
Te

/- -- -- - %/
J/* NON-GROUND VARIABLE SUBSTITUTICH CCDE =/
/% - - - —#

% Extracts executed action's data

timedata(l, [H|_]) ,ActionAsTerm =.. TermhAsList,nthl(0,TermAsList,Check],
% Checks action is time (DW,RD, Span)
(Check == time,nth0(3,TermAsList,_) -> nthl(2,TermhslList,D), (fractoint (D,RD) -> true ; rat(D,RD)),

% Calls update result, substitutes the non-ground variable
% with original D and updates all time limits with time subtracted.
update result (StateTempl,H,RD, StateTempl?),
% Non-ground state is removed from visited expressions
retract (visited expression(StatelD, StateTempl, StateBody)).
% Replaced by the ground state. MNecessary step for backtrack to work
assert (visited expression(StatelD,StateTempl?, StateBody))
% If action is not a 3-variable timed event, the state is already ground.
; StateTempl? = StateTempl),

% The current expression is cleared

(retract (current_expression (CurlD, CurTempl, CurBody))->true),

% The current expression is updated with the new state

assert (current_expression(StatelD, StateTempl2, StateBody)),

/- -- -- - *f
/#* HON-GROUND SUBSTITUTICN CCDE ENDS *f
/% - - - Y

Page 64

A Timed CSP Simulator for Railway Systems

Appendix 8 — Global Time & Constraint Rules
:— use module (haskell csp, 'csp/haskell csp', [rat/2, fractoint/2]).

tcltk initialise(Nr) :-
retractall (timedata(
assert (timedata (1, [0])),
assert (timedata (2, [0]
tcltk_perform(Nr).

tcltk get time (Toutput) :-
timedata(l,Y),
list sum(Y, Sum),
(fractoint (Sum, Time) -> Toutput = Time ; rat(Sum,A/B),Toutput = [A,"'/',B]).

tcltk constraints(Nr,Evol) :-
(Evol >= 0 -> true ; fail),
current options(Cptions),
nthl (Nr,Options, (_Id, Action,ActionAsTerm, NewID)),
ActionAsTerm =.. TermAsList,
nth0 (0, TermAsList, Check),
(Check == time,nth0 (3, TermAsList,) -> nthO(l,TermAsList,ULimit),
(Evol < ULimit -> true ; fail) ; true).

list sum([], 0).

list sum([Head | Tail], TotalSum) :-
list sum(Tail, Suml),
rat (Head+Suml, TotalSum) .

tcltk timer (Nr,Evol) :-
(Ecltk constraints (Nr,Evol) ->
timedata(l,X),
retract (timedata(1l,)),
assert (timedata (1, [Evol|X])),
tcltk perform(Nr) ; fail).

tcltk perform(Nr) :-
current options (Options),
tcltk performZ (Nr,Options).

Page 65

A Timed CSP Simulator for Railway Systems

Appendix 9 — Backtrack and Forward

tecltk can backtrack - historwi[_|_]1).
teltk backtrack - W+ tcocltk can backtrack, !,

print message | 'Cannot backtrack®'),fail.
teltk _backtrack -

/% added code */
timedata(l, [HIT]),
retract(timedata(l,_)],
assert (timedata(1,T)),
timedata(2,X),
retract (timedata (2,)],
assert (timedata(2, [HIX])),
/* added code */

retract (history(History)),
retract (trace (Trace)),

retract (current expression|(CurID, ,)).!,
History= [LastID|EHist],

assert (history(EHist)),

visited expression(LastlD,LastExpr, LastBody),

assert (current_expression(LastID, LastExpr, LastBody)),

/* added code */

transition (LastlID,ActionfsTerm, ActID,CurID),

(RctionAsTerm =.. TermAsList,nthl (3, TermaslLisc,) ->

retractall (transition(LastID, ActionfAsTerm, ActID,CurlD)) ; true),
/* added code */

Trace= [LastTraceH|NewT],

assert(trace (HNewT)),

(retract (forward history (FwdHist)) -> true ; FwdHist=[]),
assert (forward history([forward (CurID, LastTraceH) |FwdHisc])) .

tecltk can forward :- forward historvi([_|[|_1).
tecltk forward :- Y+ tcltk can forward,!,

print message ('Cannot go forward'),fail.
teltk forward :-

/% added code */
timedata(2, [H|T]),

retract (timedata (2,)],
asggert (cimedata (2,T)),
timedata(l,X),

retract (timedata(l,)],
aszert (timedata(l, [H|X])),
/* added code */

retract (forward history([forward (FwdID,LastTraceH) |FwdHist])),
retract (history (EHist)),

retract (trace (Trace)),

retract (current expression (CurlD, , }).,!,

assert (forward history(FwdHistc)),

asgert (history([CarID|EHi=t])),

azgert (trace ([LastIraceH|Irace])),

wizited expression (FwdID, FwdExpr, FwdBody) ,

aszsert (current expresszion (FwdID, FwdExpr, FwdBody)) .

Page 66

A Timed CSP Simulator for Railway Systems

Appendix 10 — Abstract Syntax Tree

-— expressions
type LExp = Labeled Exp

data Exp
= Var LIdent

| IntExp Integer

| SecExp LRange (Maybe [LCompGen])

| ListExp LRange (Mavbe [LCompGen])

| ClosureComnprehension ([LExp], [LCompGen])

| Lec [LDecl] LExp

| Ifte LExp LExp LE=xp

| CallFunction LExp [[LExp]]

| CallBuiltIn LBuiltIn [[LExp]]

| Lambda [LPattern] LE=xp

| Stop

| Skip

| CTrue

| CFalse

| Events

| BoolSet

| IntSet

| ProcSet

| Wait LExp —- WAIT d

| TupleExp [LEXp]

| Parens LE=xp

| AndExp LExp LExXp

| OrExp LExp LExp

| HotExp LE=xp

| NegExp LExp

| Funl LBuiltIn LEXp

| Fun? LBuiltIn LExp LExp

| DotTuple [LEXp]

| Closure [LExp]

| ProcSharing LExp LProc LProc

| TimedTimeout LExXp LProc LProc —— Timed Timeout [{d}>

| TimedInterrupt LExp LProc LProc —- Timed Interrupt /S{d}\

| ProcAParallel LExp LExp LProc LProc

| ProcLinkParallel LLinkList LProc LProc

| ProcBRenaming [LEename] (Mavbe LCompGenList) LProc

| ProcException LExp LProc LProc

| ProcBEepSequence LCompGenlList LProc

| ProcRepInternalChoice LCompGenList LProc

| ProcRepExternalChoice LCompGenlist LProc

| ProcBReplnterleave LCompGenlList LProc

| ProcRepAParallel LCompGenList LExp LProc

| ProcRepLinkParallel LCompGFenlist LLinkList LProc

| ProcBepSharing LCompGenList LExp LProc—-

| PrefixExp LExp [LCommField] LProc--

| DelayExp LExp [LCommField] LExp LProc—— —--— Delay —{d}->

Page 67

A Timed CSP Simulator for Railway Systems

Appendix 11 — Precedence Table

bazeTakle :: OpTable
procTakle :: OpTable
(bazeTakle, procTable) = |

- [infixM (cspSym "." >> binCp mkDotPair) AssocRight]
r
-— dot.expression moved to a seperate 5Step
—— ToDo @ fix funipply and procRenaming
[postfixM funlBpplvImplicit
[postfixM procRenaming |
¢ [InfizxM (nfun2 T hat F Concat) Assoclefrt,
prefixM (nfunl T hash F LenZ } -- different from Roscoe Book

¢ [infizxM (nfun2 T times F Mult |} AssocLefc
InfixM (nfun2 T slash F Div | Rssocleft

infixM¥ (nfun? T percent F Mod | AssocLeft

¢ [InfizxM (nfun2 T plus F &dd) Assocleft,
infixM (nfun? T minus F_Sub) Assocleft

¢ [InfizM (nfun2 T eq F Eg) Assocleftc

rinfizxM (nfun2 T neq F _NEgq) ZAssoclLeft
rinfixM (nfun2 T ge F GE) Assocleft
finfizxM¥ (nfun2 T le F LE) AssoclLeft
pinfixM (nfun2 T 1t F LT) &Assocleft

infizM (do

= <- getMextPos

gtivm

e «<—- getLastPos

op <- mkLabeledNode (mkSreSpan = e) (BuiltIn F _GT)

return £ (\a b-> mkLabeledNode (posFromTo a b) £ Fun2 op a b)
| AssocLeft

¢ [prefixM (token T _not >> unOp NotExp |]
[infizxM | token T_and >»> binCp AndExp) AssocLeft
¢ [infixM (token T or >> binOp OrExp) RAssocleft

infixM proc_op_aparallel AssocLeft
¢ [infizxM proc op lparallel Assocleft

 [infixM procOpSharing AssocLeft

¢ [InfixM (nfun? T backslash F Hiding } AssocLeft]
¢ [InfixM (nfun2 T amp F Guard } AssocLeft]
, [InfixM (nfun? T semicolon F Sequential | Assocleft]
 [AinfixM timedInterrupt Assocleft] —— Timed Interrupt
¢ [InfixM (nfun2 T triangle F Interrupt | AssocLeft]
f [InfixM (nfun? T box F ExtChoice | RAssocLeft]
f [AnfixM timedTimeout AssoclLefr | —— Timeout

¢ [InfixM (nfun2 T rhd F Timeout } AssocLeft]
¢ [InfixM (nfun? T sgecap F IntChoice | RAssocLeft]

 [infixM procOpException AssocLeft]
¢ [InfixM (nfun? T interleave F_Interleave) AssocLeft]

» [prefizM | token T _wait »>> unOp Wait] -- Waitc

Page 68

A Timed CSP Simulator for Railway Systems

Appendix 12 — Parse Methods

timedTimeout :: PT (LProc -»> LProc -> PT LProc)

timedTimeout = try £ do
spos <— getHextPos
time <- between | token T_timeOpenBrack) (token T_timeCloseBrack) parseExp
epos <- getlLastPos

~

return £ (“a b -> mklLabeledNode (mkSrcSpan spos2 epos) £ TimedTimeout time a b)

timedInterrupt :: PT (LProc -> LProc -> PT LProc)
timedInterrupt = try £ do
spos <- getNextPos
time «- between | token T_interruptOpenBrack] (token T interruptCloseBrack) parseExp
epos <- getlLastPos
return £ (Za b -> mklabeledNode (mkSrcSpan spos epos) £ TimedInterrupt time a b)

parselelavExp :: PT LExp
parselelayvExp = do
spos <- getMNextPos
start <- parzceExp noProc -- channel or just an expression
rest «<- parsePrefix
epos <- getLastPos
case rest of
Nothing -»> fail "Expected rhs of delay expression”
Just (comm, time,body) -> mkLabeledNode [(mkSrcSpan spos epos) 5
DelayExp start comm time body
where
parsePrefix :: PT (Maybe ([LCommField],LExp,LExp)])
parsePrefix = optionMaybe £ do
commfields <- many parseCommField
time <- between (token T delayOpeniirrow) (token T delayCloselrrow) parseExp
exp <- parseProcReplicatedExp «<?> "rhs of prefix operation”
return (commfields, time, exp)

Page 69

A Timed CSP Simulator for Railway Systems

Appendix 13 — Time Input Codes for GUI

proc procPerformCption {} {
zet iCption [.frmInfo.frmPerform.list curselection]
if {£i0ption 1= """} {
incr iCption
set action [.frmInfo.frmPerform.list get [expr Sif

- 111
if {[.frmInfo.frmPerform.list get [expr :iCption - 1]] = "start ospm MATN"} {
if [prolog tcltk initialise($i0ption)] {
proclnsertHistoryOptionsState

}

if {fevol != "" && [prolog tcltk timer (510
proclnsertHistoryOptionsState

}
1 elseif {[string first "Evolution Transition" fzction] = 0} {
set evol [string trim fzction "Evolution Transition "]

if [prolog tcltk timer(iCption,sevol)] {
procInsertHistoryOptionsState
}
1 else |
if [prolog teltk timer(i0ption,0)]
procInsertHistoryOptionsState

Page 70

A Timed CSP Simulator for Railway Systems

Appendix 14 — Screenshot of Time Input Pop-up

r"?.é Prompt E@u

Fleaze enter the transition time:

[174

k|

Cancel |

l_
|Evu:u|utiu:un Tranzition [0..2)
Ewolution Tranzition 342 tautimeout]
Ewolution Tranzition [0..3/2] Ewolution Tranzition 7

start_cepm_MAIN

Page 71

A Timed CSP Simulator for Railway Systems

Appendix 15 — CSP Code for Railway Crossing Model

channsl trainnear, nearind, entercrossing, leavecrossing,
outind, downcommand, upcommand, down, up, confirm

MAIN = TRAIN [{trainnear, nearind, entercrossing, leavecrossing, outind} ||
{nearind, outind, downcommand, upcommand, down, up, confirm}]
CROSSING

CROSSING = CONTRCOLLER
[{nearind, outind, downcommand, upcommand, confirm} ||
{upcommand, downcommand, up, down, confirm}]
GATE \ {up,down,upcommand,downcommand, confirm}

CONTROLLER = nearind -> downcommand -> confirm -> CONTROLLER []
outind -> upcommand -> confirm -> CONTROLLER

GATE = downcommand -{100}-> down -> confirm -> GATE []

upcommand -{100}-> up -> confirm -> GATE
TRAIN = trainnear -> nearind -{300}-> entercrossing -{20}-=
leavecrossing -> outind -> TRAIN

Page 72

A Timed CSP Simulator for Railway Systems

Appendix 16 — Test Run of Railway Crossing Simulation

State Properties

EnabledOperations

€=

History

invariant_ok,
CSP: [d[stoplsre_span(15.30,15,38,670,71]).300.-d->[src_

Global Time: 0

J taulhide[downcommand]]

014 £

State Properties

_* |[nearind

trainnear
start_ceprm_MAIN

= |[rauftimenut)

Ewolution Tranzition 100
tau(hide[downcommand])

nearind
trainmnear

start_cepm_Malk

| Enabled0perations

= |

Histary

ineeariant_ok,
CSP: [dx[stop(src_span(15,30,15,38.670,717),200,-d-» [src_

Global Time: 100

| EmabledOperations

Al

_*|[Evolution Transition 200

Evolution Transition [0.. 200]

Histary

_* |[taulhidefzonfirm))
tau(hide[down]]
Laultimeout]

Evolution Transition 100

niearind
trairine.ar
start_capr_MAIN

trainnear
tau(hide[upcommand])

J outind

leaveciozsing
tau(timeout)

Evolution Transition 20
entercrossing
tau(timeout]

Eolution Transition 200
tau(hide(confim])
tau(hide[down])
tau(timeout]

Evalution Transition 100
tau(hide[downcommand])
riearind

trainnear
start_cspm_MAIN

I 4l

trainmear
E wolution Tranzition 100
E valution Transition [0..700]

State Properties

J taulhide(upcommand))
outind

leavecrossing
taultimeaut]

Evolution Transition 20
entercossing
Laultimeout)

E wolution Tranzition 200
taulhide(confim))
taulhide(down])
taultimeaut]

Evolution Transition 100
taulhide{dowrncommand))
riearing

E nabled0perations

|

taulhide[downcommand]]

History

invariant_ak,
CSP: trainnear-»-d-»[src_span(15,22,15,29,683,7).[].nearin:

Global Tirne: 420

traifnear

Evolution Transition [0..inf)

= |[taulbidelcanfim))
taulhide(up]]
taultimeout]

taulhide[upcommand]]
outind

leavecrossing
Laultimeowt]

entercrossing
taultimeout]

taulhide[confirm]]
tauhide[down]]

Evolution Transition 20

Evvolution Transition 100

Evvolution Transition 200

Page 73

A Timed CSP Simulator for Railway Systems

Appendix 17 — CSP Code for London Underground Model

datatype Trains = LUl | LUZ2 | LU3
datatype Signals = s1 | s2
k {0..3}
annel Moveff,Mover: Trains.Tracks
‘hannel Green, Clear: Signals
MATIN = Train [| {| Green, Clear |} |] Signal \

{Moveff.x.y, Mover.x.y, Green.z, Clear.z | x <- Trains, y <- Tracks, z <- Signals}

Train = BehaveTrain(LUl) ||| WAIT 100 ; BehaveTrain(LUZ2) |||
WAIT 200 ; BehaveTrain(LU3) ||| WAIT 300 ; Train
Signal = BehaveSignal(sl) ||| BehaveSignal(s2)
BehaveTrain(tID) = Moveff.tID.1l -{7}-> Mover.tID.l -> Green.sl -{7}->

Moveff.tID.2 -{7}-> Mover.tID.2 —-{20}-> WAIT 30 ;
Green.s2 —-{20}-> Moveff.tID.3 -{7}-> Mover.tID.3 ->
Clear.sl -{7}-> Moveff.tID.0 -{7}-> Mover.tID.0 -=>
Clear.sZ -> STOP

BehaveSignal (sID) = Green.sID -> Clear.sID -> BehaveSignal (sID)

Page 74

