
Electronic Communications of the EASST
Volume ?? (2011)

Proceedings of the
11th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2011)

A Simulator for Timed CSP

Marc Dragon, Andy Gimblett, Markus Roggenbach1

2 pages

Guest Editors: Jens Bendisposto, Cliff Jones, Michael Leuschel, Alexander Romanovsky
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 Acknowledging support by the SafeCap project, http://safecap.cs.ncl.ac.uk/index.php/Safecap Project Wiki.

http://www.easst.org/eceasst/
http://safecap.cs.ncl.ac.uk/index.php/Safecap_Project_Wiki


ECEASST

A Simulator for Timed CSP

Marc Dragon, Andy Gimblett, Markus Roggenbach†

Swansea University, Wales, UK

Abstract: We present a simulator for Timed CSP based on the tool ProB.

Keywords: Timed CSP, ProB, Process Algebra, Real-Time, Simulation.

Time is an integral aspect of computer systems. It is essential for modelling a system’s per-
formance, but may also affect its safety or security. Timed CSP [Sch00] conservatively extends
the process algebra CSP with timed primitives, where real numbers ≥ 0 model how time passes
with reference to a single, conceptually global, clock. While there have been approaches for
model checking Timed CSP ([Sch00, DHSZ06]), to the best of our knowledge we are the first to
present a simulator for Timed CSP. Here, we restrict time to rational values only. Theoretically,
this limits the expressibility of the language. Practically, this limitation turns out to be negligible
(for instance all examples of Schneider’s book [Sch00] can be dealt with in our simulator). The
simulator is the outcome of an undergraduate project at Swansea University [Dra11].

Our Timed CSP simulator ex-
tends the open source tool ProB
[Leu]. ProB’s CSP simulator
works as follows: The CSP

specification is analyzed by a
parser (written in Haskell) and
translated to a representation in
Prolog. A CSP Interpreter (in
Prolog) stores the “firing rules”

of CSP’s operational semantics. The Simulator (also in Prolog) determines the actions available
and the resultant states. A GUI (written in Tcl/Tk) allows the user to interact with the Simulator.

Timed CSP is closed under rational time [DNR11]. Consider, for example, the following firing
rule ( t

; stands for a timed transition of duration t):

P d′
; P′

(P .d Q) d′
; (P′ .d−d′ Q)

[0 < d′ ≤ d]

Let P .d Q have rational times only (in particular, d is rational). Let d′ be rational. Then d−d′

is rational and, by induction, P′ has rational times only. Thus, P′ .d−d′ Q has rational times only.
Decision 1 Our Timed CSP simulator deals with rational time only.

ProB also implements firing rules for those untimed CSP operators which usually are treated
as syntactic sugar, e.g., the untimed timeout P . Q = (P 2 Q) u Q. We follow ProB’s design:
Decision 2 All untimed and timed operators have their own timed firing rules.

† Acknowledging support by the SafeCap project, http://safecap.cs.ncl.ac.uk/index.php/Safecap Project Wiki.

1 / 2 Volume ?? (2011)

http://safecap.cs.ncl.ac.uk/index.php/Safecap_Project_Wiki


A Simulator for Timed CSP

To this end, in [DNR11] we extend Timed CSP’s operational semantics as given in [Sch00]:
(1) In a definitional way, as e.g. for the untimed timeout, (2) in a conservative way, as e.g. for the
replicated alphabetized parallel or for the conditional (for which [Sch00] gave no firing rules).

The core of our simulator is a rational arithmetic built on top of Prolog’s built-in proper inte-
gers. Simulating Timed CSP provides two challenges: (1) In order to calculate the largest time
step possible for a Timed CSP process, one has to analyze the process recursively. Consider, for
instance, the process T = (P .e Q) .f R with 0 < e < f and untimed processes P,Q and R. In T ,
the process P is enabled within the time interval [0,e). A time step of length e (and a τ-transition)
leads to the new state Q .f−e R. Thus, the largest time step possible in T is e – see [DNR11] for
details. (2) When the user chooses a timed transition of, say, d time units, the constant d needs
to be propagated recursively along the term structure. Given, e.g., a time step 0 < d < e for the
above term T , the resulting Timed CSP term is (P .e−d Q) .f−d R.

Currently, our simulator implements a slightly restricted sublanguage of Timed CSP: Pro-
cesses can include only rational constants in timed operators; while most Timed CSP opera-
tors have been implemented, the operator a@u→ P(u) (time of an action) is not supported yet.

The screen-shot shows a typ-
ical run of our simulator.
Besides simulating examples
given in [Sch00], we exten-
sively use our tool within the
SafeCap project in order to
explore how the change of
signalling rules affects rail-
way capacity.

The ProB team has checked our implementation and intends to make it part of the next ProB
distribution. This will require some minor changes to our code, mostly regarding syntax. It is fu-
ture work to remedy the above mentioned, surmountable restrictions and to apply our tool within
further application domains.

Acknowledgement We thank Erwin Catesbeiana (Jr.) for inspiring us to go the extra mile.

Bibliography

[DHSZ06] J.S. Dong, P. Hao, J. Sun, and X. Zhang. A Reasoning Method for Timed CSP Based
on Constraint Solving. In LNCS 4260, Springer 2006.

[Dra11] M. Dragon. A Timed CSP Simulator for Railway Systems, BSc Dissertation, Swansea
University, 2011.

[DNR11] M. Dragon, N. Nguyen, M. Roggenbach. Theoretical foundations for simulating
Timed CSP, Technical report CSR 1-2011, Swansea University, 2011.

[Leu] M. Leuschel. The ProB Animator and Model Checker. Last accessed June 2011.
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main Page.

[Sch00] S. Schneider. Concurrent and Real-time systems. Wiley, 2000.

Proc. AVoCS 2011 2 / 2

 http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page

