1 % (c) 2004-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(bsets_clp,
6 [empty_sequence/1,
7 is_sequence/2, is_sequence_wf/3, not_is_sequence/2, not_is_sequence_wf/3,
8 not_is_non_empty_sequence_wf/3,
9 injective_sequence_wf/3,
10 not_injective_sequence/3,
11 not_non_empty_injective_sequence/3,
12 injective_non_empty_sequence/3,
13 finite_non_empty_sequence/3,
14 test_finite_non_empty_sequence/4,
15 permutation_sequence_wf/3,
16 not_permutation_sequence/3,
17 size_of_sequence/3,
18 prepend_sequence/4, append_sequence/4, prefix_sequence_wf/4,
19 suffix_sequence/4, concat_sequence/4,
20 disjoint_union_wf/4,
21 concatentation_of_sequences/3,
22 tail_sequence/4, first_sequence/4, front_sequence/4, last_sequence/4,
23 rev_sequence/3,
24
25
26 % maplet/3,
27 % relation/1,
28 relation_over/3, relation_over_wf/4,
29 not_relation_over/4,
30 domain_wf/3,
31
32 range_wf/3,
33 identity_relation_over_wf/3, in_identity/3, not_in_identity/3,
34 invert_relation_wf/3,
35 tuple_of/3,
36 in_composition_wf/4, not_in_composition_wf/4, rel_composition_wf/5,
37 direct_product_wf/4,
38 parallel_product_wf/4, in_parallel_product_wf/4, not_in_parallel_product_wf/4,
39 rel_iterate_wf/5,
40 event_b_identity_for_type/3,
41
42 not_partial_function/4,
43 partial_function/3, partial_function_wf/4, partial_function_test_wf/5,
44
45 total_function/3, total_function_wf/4, total_function_test_wf/5,
46
47 % enumerate_total_bijection/3,
48 total_bijection/3, total_bijection_wf/4,
49
50 not_total_function/4,
51 not_total_bijection/4,
52
53
54 range_restriction_wf/4, range_subtraction_wf/4,
55 in_range_restriction_wf/4, not_in_range_restriction_wf/4,
56 in_range_subtraction_wf/4, not_in_range_subtraction_wf/4,
57 domain_restriction_wf/4, domain_subtraction_wf/4,
58 in_domain_restriction_wf/4, not_in_domain_restriction_wf/4,
59 in_domain_subtraction_wf/4, not_in_domain_subtraction_wf/4,
60 override_relation/4,
61 in_override_relation_wf/4, not_in_override_relation_wf/4,
62 image_wf/4, image_for_closure1_wf/4,
63 special_operator_for_image/3, image_for_special_operator/5, apply_fun_for_special_operator/6,
64
65 in_domain_wf/3, not_in_domain_wf/3,
66 apply_to/4, apply_to/5, apply_to/6,
67 override/5,
68
69 %sum_over_range/2, mul_over_range/2,
70
71 disjoint_union_generalized_wf/3,
72
73 partial_surjection/3, not_partial_surjection_wf/4,
74 partial_surjection_test_wf/5,
75
76 total_relation_wf/4,
77 not_total_relation_wf/4,
78
79 surjection_relation_wf/4, total_surjection_relation_wf/4,
80 not_surjection_relation_wf/4, not_total_surjection_relation_wf/4,
81
82 total_surjection/3, total_surjection_wf/4,
83 not_total_surjection_wf/4,
84
85 partial_injection/3, partial_injection_wf/4,
86 not_partial_injection/4,
87
88 total_injection/3, total_injection_wf/4,
89 not_total_injection/4,
90
91 partial_bijection/3, partial_bijection_wf/4,
92 not_partial_bijection/4,
93
94 relational_trans_closure_wf/3, %relational_reflexive_closure/2,
95 in_closure1_wf/3, not_in_closure1_wf/3
96 ]).
97
98
99 :- use_module(library(terms)).
100 :- use_module(self_check).
101
102 :- use_module(debug).
103 :- use_module(tools).
104
105 :- use_module(module_information,[module_info/2]).
106 :- module_info(group,kernel).
107 :- module_info(description,'This module provides more advanced operations for the basic datatypes of ProB (mainly for relations, functions, sequences).').
108
109 :- use_module(tools_printing).
110
111 :- use_module(delay).
112
113 :- use_module(typechecker).
114 :- use_module(error_manager).
115
116 :- use_module(kernel_objects).
117 :- use_module(kernel_records).
118 :- use_module(kernel_tools).
119
120 :- use_module(kernel_waitflags).
121 :- use_module(kernel_equality,[equality_objects_wf/4]).
122
123 :- use_module(custom_explicit_sets).
124 :- use_module(avl_tools,[avl_fetch_pair/3]).
125 :- use_module(bool_pred,[negate/2]).
126 :- use_module(closures,[is_symbolic_closure/1]).
127 :- use_module(bsyntaxtree, [conjunct_predicates/2,
128 mark_bexpr_as_symbolic/2,
129 create_texpr/4,
130 safe_create_texpr/3,
131 get_texpr_type/2
132 ]).
133
134 /* --------- */
135 /* SEQUENCES */
136 /* ------- - */
137
138 :- assert_must_succeed((bsets_clp:empty_sequence([]))).
139 :- assert_must_fail((bsets_clp:empty_sequence([int(1)]))).
140 empty_sequence(X) :- empty_set(X). % TO DO: add WF
141
142 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_empty_sequence([(int(2),int(33)),(int(1),int(22))]))).
143 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_empty_sequence([(int(1),int(33))]))).
144 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_empty_sequence([]))).
145
146 not_empty_sequence(X) :- var(X),!,
147 X = [(int(1),_)|_].
148 not_empty_sequence(X) :- is_custom_explicit_set_nonvar(X),!,
149 is_non_empty_explicit_set(X).
150 not_empty_sequence([(int(_),_)|_]). % clousure, avl_set dealt with clause above
151
152 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_empty_sequence_wf([(int(1),int(33))],WF),WF)).
153 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_empty_sequence_wf([(int(1),pred_true),(int(2),pred_false)],WF),WF)).
154 not_empty_sequence_wf(X,_WF) :- nonvar(X),!, not_empty_sequence(X).
155 not_empty_sequence_wf(X,WF) :-
156 (preferences:preference(use_smt_mode,true) -> not_empty_sequence(X)
157 ; get_enumeration_starting_wait_flag(not_empty_sequence_wf,WF,LWF),
158 not_empty_sequence_lwf(X,LWF)).
159
160 :- block not_empty_sequence_lwf(-,-).
161 not_empty_sequence_lwf(S,_) :- nonvar(S),!,not_empty_sequence(S).
162 not_empty_sequence_lwf([(int(1),_)|_],_).
163
164 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:is_sequence([(int(1),int(22))],[int(22)]))).
165 :- assert_must_succeed(bsets_clp:is_sequence(closure(['_zzzz_unit_tests'],[couple(integer,integer)],b(member(b(identifier('_zzzz_unit_tests'),couple(integer,integer),[generated]),b(value([(int(1),int(22))]),set(couple(integer,integer)),[])),pred,[])),[int(22)])).
166
167 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:is_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
168 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)]))).
169 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(1),int(33)),(int(0),int(22))],[int(22),int(33),int(44)]))).
170 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(3),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
171 :- assert_must_succeed((is_sequence(R,global_set('Name')),R = [])).
172 :- assert_must_succeed((is_sequence(R,global_set('Name')),
173 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
174 :- assert_must_succeed((is_sequence(R,global_set('Name')),
175 R = [(int(1),fd(2,'Name'))] )).
176 :- assert_must_succeed((is_sequence(R,global_set('Name')),
177 R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
178 :- assert_must_succeed((is_sequence(R,global_set('Name')),
179 R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
180 :- assert_must_succeed((is_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
181 global_set('Name')) )).
182 :- assert_must_succeed((is_sequence(R,[int(1),int(2)]),
183 R = [(int(2),int(2)),(int(1),int(1))] )).
184 :- assert_must_fail((is_sequence(R,[int(1),int(2)]),
185 R = [(int(2),int(2)),(int(3),int(1))] )).
186 :- assert_must_fail((is_sequence(R,[int(1),int(2)]),
187 R = [(int(2),int(2)),(int(1),int(3))] )).
188 :- assert_must_fail((is_sequence(R,global_set('Name')),
189 R = [(int(0),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
190 :- assert_must_succeed((is_sequence(X,global_set('Name')),
191 (preferences:get_preference(randomise_enumeration_order,true) -> true
192 ; kernel_objects:enumerate_basic_type(X,seq(global('Name')))),
193 X = [(int(1),fd(1,'Name'))])). % can take a long time with RANDOMISE_ENUMERATION_ORDER
194
195 is_sequence(X,Type) :- init_wait_flags(WF,[is_sequence]),
196 is_sequence_wf(X,Type,WF),
197 ground_wait_flags(WF).
198
199 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([int(1),int(2),int(3)],WF),WF)).
200 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([int(1)],WF),WF)).
201 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([],WF),WF)).
202 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:is_sequence_domain([int(0)],WF),WF)).
203 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:is_sequence_domain([int(2),int(3)],WF),WF)).
204 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_is_sequence_domain([int(2),int(3)],WF),WF)).
205 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_is_sequence_domain([int(0)],WF),WF)).
206 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_is_sequence_domain([int(1)],WF),WF)).
207 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_is_sequence_domain([],WF),WF)).
208
209 % check if a set is the domain of a sequence, i.e., an interval 1..n with n>=0
210 :- use_module(custom_explicit_sets,[construct_interval_closure/3]).
211 :- use_module(kernel_cardinality_attr,[finite_cardinality_as_int_wf/3]).
212 :- block is_sequence_domain(-,?).
213 is_sequence_domain(Domain,WF) :-
214 finite_cardinality_as_int_wf(Domain,int(Max),WF),
215 construct_interval_closure(1,Max,Interval), equal_object_wf(Domain,Interval,is_sequence_domain,WF).
216 :- block not_is_sequence_domain(-,?).
217 not_is_sequence_domain(Domain,WF) :-
218 finite_cardinality_as_int_wf(Domain,int(Max),WF),
219 construct_interval_closure(1,Max,Interval), not_equal_object_wf(Domain,Interval,WF).
220
221 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_wf([(int(1),pred_true)],
222 [pred_true,pred_false],WF),WF)).
223 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_wf([(int(1),pred_true),(int(2),pred_false),(int(3),pred_true)],
224 [pred_true,pred_false],WF),WF)).
225 :- assert_must_succeed((bsets_clp:is_sequence_wf([(int(X),R)],[pred_true],_WF),X==1, R==pred_true)).
226 :- assert_must_succeed((bsets_clp:is_sequence_wf([(int(X),R),(int(Y),R)],[pred_true],_WF),X=2,
227 (preferences:preference(use_clpfd_solver,true) -> Y==1 ; Y=1), R==pred_true)).
228
229 is_sequence_wf(Seq,Range,WF) :- is_sequence_wf_ex(Seq,Range,WF,_).
230 % is_sequence_wf_ex also returns expansion; if it was done
231 :- block is_sequence_wf_ex(-,?,?,?).
232 is_sequence_wf_ex(FF,Range,WF,FF) :-
233 nonvar(FF), FF = closure(_,_,_),
234 custom_explicit_sets:is_definitely_maximal_set(Range),
235 % we do not need the Range; this means we can match more closures (e.g., lambda)
236 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
237 is_sequence_domain(FFDomain,WF).
238 is_sequence_wf_ex(Seq,Range,WF,Res) :-
239 expand_and_convert_to_avl_set_warn(Seq,AER,is_sequence_wf_ex,'ARG : seq(?)',WF),!,
240 is_avl_sequence(AER),
241 is_avl_relation_over_range(AER,Range,WF),
242 custom_explicit_sets:construct_avl_set(AER,Res).
243 is_sequence_wf_ex(X,Type,WF,EX) :-
244 % try_ensure_seq_numbering(X,1),
245 expand_custom_set_to_list_wf(X,EX,_,is_sequence_wf_ex,WF),
246 is_sequence2(EX,[],Type,0,_MinSize,WF).
247
248 % will make this much faster x:seq(STRING) & card(x)=400 & 401:dom(x) (40 ms rather than > 2 secs)
249 % but this does not work -eval_file /Users/leuschel/git_root/prob_examples/examples/Setlog/prob-ttf/plavis-TransData_SP_21_simplified.prob
250 %:- block try_ensure_seq_numbering(-,?).
251 %try_ensure_seq_numbering([H|T],NextNr) :- var(H),!, print(nr(NextNr)),nl,
252 % H = (int(NextNr),_), N1 is NextNr+1,
253 % try_ensure_seq_numbering(T,N1).
254 %try_ensure_seq_numbering(_,_).
255
256 :- block is_sequence2(-,?,?,?,?,?).
257 is_sequence2([],IndexesSoFar,_Type,Size,MinSize,_WF) :- MinSize = Size,
258 contiguous_set_of_indexes(IndexesSoFar,Size).
259 /* not very good to do the checking at the end; can we move part of the checking earlier ? */
260 is_sequence2([(int(Idx),X)|Tail],IndexesSoFar,Type,Size,MinSize,WF) :-
261 less_than_direct(0,Idx), %is_index_greater_zero(Idx),
262 not_element_of_wf(int(Idx),IndexesSoFar,WF),
263 check_element_of_wf(X,Type,WF), S1 is Size+1,
264 clpfd_interface:clpfd_leq(Idx,MinSize,_Posted),
265 (var(Tail)
266 -> clpfd_interface:clpfd_domain(MinSize,Low,_Up), % TO DO: ensure that final size at least Low
267 (number(Low),Low>S1 -> Tail = [_|_] % TO DO: proper reification; what if MinSize gets constrained later
268 ; expand_seq_if_necessary(Idx,S1,Tail)) % the sequence must be longer; force it
269 ; true
270 ),
271 is_sequence2(Tail,[int(Idx)|IndexesSoFar],Type,S1,MinSize,WF).
272
273 :- block expand_seq_if_necessary(-,?,-).
274 expand_seq_if_necessary(MinSize,S1,Tail) :- % TO DO: proper reification on MinSize above
275 number(MinSize), MinSize>S1, (var(Tail) ; Tail==[]),
276 !,
277 Tail = [_|_].
278 expand_seq_if_necessary(_,_,_).
279
280 :- block contiguous_set_of_indexes(-,?).
281 contiguous_set_of_indexes([],_).
282 contiguous_set_of_indexes([H|T],Size) :- contiguous_set_of_indexes1(T,H,Size).
283
284 :- block contiguous_set_of_indexes1(-,?,?).
285 contiguous_set_of_indexes1([],int(1),_).
286 contiguous_set_of_indexes1([int(H2)|T],int(H1),Size) :- less_than_equal_direct(H1,Size),
287 less_than_equal_direct(H2,Size), less_than_equal_indexes(T,[H1,H2],Size).
288
289
290 less_than_equal_indexes([],All,_) :- clpfd_interface:clpfd_alldifferent(All).
291 less_than_equal_indexes([int(H)|T],All,Size) :- less_than_equal_direct(H,Size),less_than_equal_indexes(T,[H|All],Size).
292
293 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(4),int(7))],[int(7),int(6)],WF),WF)).
294 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(3),int(8))],[int(7),int(6)],WF),WF)).
295 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(7),int(6)],WF),WF)).
296 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(2),int(6)),(int(3),int(7)),(int(4),int(7))],[int(7),int(6)],WF),WF)).
297 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(0),int(7)),(int(2),int(7))],[int(7),int(6)],WF),WF)).
298 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_sequence([(int(1),int(22))],[int(22)]))).
299 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
300 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)]))).
301 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_sequence([(int(3),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
302 :- assert_must_fail((not_is_sequence(R,global_set('Name')),R = [])).
303 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
304 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
305 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
306 R = [(int(1),fd(2,'Name'))] )).
307 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
308 R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
309 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
310 R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
311 :- assert_must_fail((not_is_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
312 global_set('Name')) )).
313 :- assert_must_fail((not_is_sequence(R,[int(1),int(2)]),
314 R = [(int(2),int(2)),(int(1),int(1))] )).
315 :- assert_must_succeed((not_is_sequence(R,[int(1),int(2)]),
316 R = [(int(2),int(2)),(int(3),int(1))] )).
317 :- assert_must_succeed((not_is_sequence(R,[int(1),int(2)]),
318 R = [(int(2),int(2)),(int(1),int(3))] )).
319
320
321 not_is_sequence(X,Type) :- init_wait_flags(WF,[not_is_sequence]),
322 not_is_sequence_wf(X,Type,WF),
323 ground_wait_flags(WF).
324
325 :- block not_is_sequence_wf(-,?,?).
326 not_is_sequence_wf(FF,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
327 % we do not need the Range; this means we can match more closures (e.g., lambda)
328 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
329 not_is_sequence_domain(FFDomain,WF).
330 not_is_sequence_wf(Seq,Range,WF) :-
331 expand_and_convert_to_avl_set_warn(Seq,AER,not_is_sequence_wf,'ARG /: seq(?)',WF),
332 !,
333 (is_avl_sequence(AER) -> is_not_avl_relation_over_range(AER,Range,WF)
334 ; true).
335 not_is_sequence_wf(X,Type,WF) :- expand_custom_set_to_list_wf(X,EX,_Done,not_is_sequence_wf,WF),
336 not_is_sequence2(EX,[],Type,WF).
337
338 :- block not_is_sequence2(-,?,?,?).
339 not_is_sequence2([],IndexesSoFar,_,_WF) :- not_contiguous_set_of_indexes(IndexesSoFar).
340 not_is_sequence2([(int(Idx),X)|Tail],IndexesSoFar,Type,WF) :-
341 membership_test_wf(IndexesSoFar,int(Idx),MemRes,WF),
342 not_is_sequence3(MemRes,Idx,X,Tail,IndexesSoFar,Type,WF).
343
344 :- block not_is_sequence3(-,?,?,?,?,?,?).
345 not_is_sequence3(pred_true,_Idx,_X,_Tail,_IndexesSoFar,_Type,_WF).
346 not_is_sequence3(pred_false,Idx,_X,_Tail,_IndexesSoFar,_Type,_WF) :- nonvar(Idx),Idx<1,!.
347 not_is_sequence3(pred_false,Idx,X,Tail,IndexesSoFar,Type,WF) :-
348 membership_test_wf(Type,X,MemRes,WF),
349 not_is_sequence4(MemRes,Idx,Tail,IndexesSoFar,Type,WF).
350
351 :- block not_is_sequence4(-,?,?,?,?,?).
352 not_is_sequence4(pred_false,_Idx,_Tail,_IndexesSoFar,_Type,_WF).
353 not_is_sequence4(pred_true,Idx,Tail,IndexesSoFar,Type,WF) :-
354 not_is_sequence2(Tail,[int(Idx)|IndexesSoFar],Type,WF).
355
356 not_contiguous_set_of_indexes(Indexes) :-
357 when(ground(Indexes),(sort(Indexes,Sorted),not_contiguous_set_of_indexes2(Sorted,1))).
358 not_contiguous_set_of_indexes2([int(N)|T],N1) :-
359 when(?=(N,N1),
360 ((N \= N1) ; (N=N1, N2 is N1+1, not_contiguous_set_of_indexes2(T,N2)))).
361
362
363
364
365
366 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_non_empty_sequence([(int(1),int(22))],[int(22)]))).
367 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_non_empty_sequence([(int(1),int(2))],[int(22)]))).
368 :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),R = [])).
369 :- assert_must_fail((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),
370 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
371 :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),
372 R = [(int(2),fd(1,'Name')),(int(4),fd(2,'Name'))] )).
373 :- assert_must_fail((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),
374 R = [(int(1),fd(1,'Name')),(int(2),fd(1,'Name'))] )).
375 :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,[int(1),int(2)]),
376 R = [(int(1),int(2)),(int(2),int(3))] )).
377
378 % S /: seq1(T)
379 not_is_non_empty_sequence_wf(S,T,_) :- not_is_non_empty_sequence(S,T).
380 :- block not_is_non_empty_sequence(-,?).
381 not_is_non_empty_sequence([],_) :- !.
382 not_is_non_empty_sequence(X,Type) :-
383 empty_sequence(X) ; not_is_sequence(X,Type).
384
385
386
387 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([(int(1),int(22))],[int(22)],WF),WF)).
388 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
389 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
390 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(22)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
391 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([],global_set('Name'),WF),WF)).
392 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
393 kernel_waitflags:ground_det_wait_flag(WF), R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
394 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
395 ground_det_wait_flag(WF), R = [(int(1),fd(2,'Name'))] )).
396 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
397 ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
398 :- assert_must_fail((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
399 ground_det_wait_flag(WF), R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
400 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_sequence_wf([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
401 global_set('Name'),WF),WF) ).
402 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF),
403 ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(1),int(1))] )).
404 :- assert_must_fail((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF),
405 ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(3),int(1))] )).
406 :- assert_must_fail((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF),
407 ground_det_wait_flag(WF), R = [(int(2),int(2)),(int(1),int(3))] )).
408
409
410
411 :- block injective_sequence_wf(-,-,?).
412 injective_sequence_wf(Seq,Type,WF) :- /* corresponds to iseq */
413 nonvar(Seq),
414 %expand_and_convert_to_avl_set_warn(Seq,AER,injective_sequence_wf_aux,'ARG : iseq(?)',WF),
415 Seq=avl_set(AER),
416 !,
417 is_avl_sequence(AER),
418 is_injective_avl_relation(AER,_ExactRange), % Should we check _ExactRange <: Type ??
419 is_avl_relation_over_range(AER,Type,WF).
420 injective_sequence_wf(Seq,Type,WF) :-
421 cardinality_as_int_for_wf(Type,MaxCard),
422 custom_explicit_sets:blocking_nr_iseq(MaxCard,ISeqSize),
423 block_get_wait_flag(ISeqSize,injective_sequence_wf,WF,LWF),
424 injective_sequence_wf_aux(Seq,Type,MaxCard,WF,LWF).
425
426 :- block injective_sequence_wf_aux(-,?,?,?,-).
427 injective_sequence_wf_aux(Seq,Type,_,WF,_) :- /* corresponds to iseq */
428 nonvar(Seq),
429 expand_and_convert_to_avl_set_warn(Seq,AER,injective_sequence_wf_aux,'ARG : iseq(?)',WF),!,
430 %Seq=avl_set(AER),
431 !,
432 is_avl_sequence(AER),
433 is_injective_avl_relation(AER,_ExactRange), % Should we check _ExactRange <: Type ??
434 is_avl_relation_over_range(AER,Type,WF).
435 injective_sequence_wf_aux(Seq,Type,MaxCard,WF,LWF) :-
436 expand_custom_set_to_list_wf(Seq,ESeq,_,injective_sequence_wf,WF),
437 is_sequence_wf(ESeq,Type,WF),
438 ? injective_sequence2(ESeq,0,[],Type,WF,MaxCard,LWF).
439
440 :- block injective_sequence2(-,?,?,?,?,?,-),injective_sequence2(-,?,?,?,?,-,?).
441 injective_sequence2([],_,_,_Type,_WF,_MaxCard,_LWF).
442 injective_sequence2([(int(Index),X)|Tail],CardSoFar,SoFar,Type,WF,MaxCard,LWF) :-
443 (number(MaxCard) -> CardSoFar< MaxCard, %less_than_equal_direct(Index,MaxCard) % does not enumerate index
444 in_nat_range_wf(int(Index),int(0),int(MaxCard),WF) % ensures the index gets enumerated, see test 1914, x:iseq(50001..50002) & y:1..100005 & SIGMA(yy).(yy:dom(x)|x(yy)) = y & y>50002
445 ; true),
446 check_element_of_wf(X,Type,WF),
447 not_element_of_wf(X,SoFar,WF),
448 add_new_element_wf(X,SoFar,SoFar2,WF),
449 C1 is CardSoFar+1,
450 (C1 == MaxCard -> Tail=[] ; true),
451 ? injective_sequence2(Tail,C1,SoFar2,Type,WF,MaxCard,LWF).
452
453
454 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_injective_sequence([(int(1),int(22))],[int(22)],WF),WF)).
455 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_injective_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
456 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_injective_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
457 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_injective_sequence([(int(2),int(22)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
458 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),_WF),R = [])).
459 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
460 ground_det_wait_flag(WF),
461 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
462 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
463 ground_det_wait_flag(WF),
464 R = [(int(1),fd(2,'Name'))] )).
465 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
466 ground_det_wait_flag(WF),
467 R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
468 :- assert_must_fail((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF),
469 ground_det_wait_flag(WF),
470 R = [(int(2),int(2)),(int(1),int(1))] )).
471 :- assert_must_succeed((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
472 ground_det_wait_flag(WF),
473 R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
474 :- assert_must_succeed((bsets_clp:not_injective_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
475 global_set('Name'),WF),
476 ground_det_wait_flag(WF) )).
477 :- assert_must_succeed((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF),
478 ground_det_wait_flag(WF),
479 R = [(int(2),int(2)),(int(3),int(1))] )).
480 :- assert_must_succeed((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF),
481 ground_det_wait_flag(WF),
482 R = [(int(2),int(2)),(int(1),int(3))] )).
483 :- block not_injective_sequence(-,?,?), not_injective_sequence(?,-,?).
484 not_injective_sequence(Seq,_,_) :- Seq==[],!,fail.
485 not_injective_sequence(Seq,Type,WF) :- nonvar(Seq),
486 expand_and_convert_to_avl_set_warn(Seq,AER,not_injective_sequence,'ARG /: iseq(?)',WF),!,
487 (\+ is_avl_sequence(AER) -> true
488 ; is_injective_avl_relation(AER,ExactRange) -> not_subset_of_wf(ExactRange,Type,WF)
489 ; true).
490 not_injective_sequence(Seq,Type,WF) :- /* corresponds to Iseq */
491 %get_middle_wait_flag(not_injective_sequence,WF,LWF),
492 kernel_tools:ground_value_check(Seq,SV),
493 not_injective_sequence1(Seq,Type,WF,SV).
494 :- block not_injective_sequence1(?,?,?,-).
495 not_injective_sequence1(Seq,Type,WF,_) :-
496 expand_custom_set_to_list_wf(Seq,ESeq,_,not_injective_sequence1,WF),
497 (not_is_sequence_wf(ESeq,Type,WF)
498 ; /* CHOICE POINT !! */
499 (is_sequence_wf(ESeq,Type,WF),not_injective_sequence2(ESeq,[],Type,WF))).
500 :- block not_injective_sequence2(-,?,?,?).
501 not_injective_sequence2([(int(_),X)|Tail],SoFar,Type,WF) :-
502 membership_test_wf(SoFar,X,MemRes,WF),
503 not_injective_sequence3(MemRes,X,Tail,SoFar,Type,WF).
504
505 :- block not_injective_sequence3(-,?,?,?,?,?).
506 not_injective_sequence3(pred_true,_X,_Tail,_SoFar,_Type,_WF).
507 not_injective_sequence3(pred_false,X,Tail,SoFar,Type,WF) :-
508 add_new_element_wf(X,SoFar,SoFar2,WF),
509 not_injective_sequence2(Tail,SoFar2,Type,WF).
510
511 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(1),int(22))],[int(22)],WF),WF)).
512 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
513 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
514 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(33))],[int(44),int(33),int(22)],WF),WF)).
515 :- assert_must_succeed((bsets_clp:not_non_empty_injective_sequence(R,global_set('Name'),WF),
516 ground_det_wait_flag(WF), R = [])).
517 :- assert_must_fail((bsets_clp:not_non_empty_injective_sequence(R,global_set('Name'),WF),
518 ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
519 :- assert_must_succeed((bsets_clp:not_non_empty_injective_sequence(R,[int(1),int(2)],WF),
520 ground_det_wait_flag(WF), R = [(int(2),int(2)),(int(1),int(3))] )).
521
522 :- block not_non_empty_injective_sequence(-,?,?).
523 not_non_empty_injective_sequence([],_Type,_WF) :- !.
524 not_non_empty_injective_sequence(X,Type,WF) :-
525 empty_sequence(X) ; not_injective_sequence(X,Type,WF).
526
527
528 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_non_empty_sequence([(int(1),int(22))],[int(22)],WF),WF)).
529 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_non_empty_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
530 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_non_empty_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
531 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_non_empty_sequence([(int(2),int(44)),(int(1),int(44))],[int(22),int(33),int(44)],WF),WF)).
532 :- assert_must_fail((bsets_clp:injective_non_empty_sequence(R,global_set('Name'),WF),
533 ground_det_wait_flag(WF),R = [])).
534 :- assert_must_succeed((bsets_clp:injective_non_empty_sequence(R,global_set('Name'),WF),
535 ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
536 :- block injective_non_empty_sequence(-,-,?). /* corresponds to iseq1 */
537 injective_non_empty_sequence(A,Type,WF) :- nonvar(A),A=avl_set(AS), !,
538 injective_sequence_wf(avl_set(AS),Type,WF),is_non_empty_explicit_set_wf(avl_set(AS),WF).
539 injective_non_empty_sequence(Seq,Type,WF) :-
540 ((nonvar(Seq),Seq=closure(_,_,_)) -> try_expand_custom_set_wf(Seq,ESeq,injective_non_empty_sequence,WF) ; ESeq=Seq),
541 injective_sequence_wf(ESeq,Type,WF),not_empty_sequence_wf(ESeq,WF).
542
543 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:finite_non_empty_sequence([(int(1),int(22))],[int(22)],WF),WF)).
544 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:finite_non_empty_sequence([(int(1),int(33)),(int(2),int(33))],[int(22),int(33)],WF),WF)).
545 :- assert_must_fail((bsets_clp:finite_non_empty_sequence(R,global_set('Name'),WF),ground_det_wait_flag(WF),ground_det_wait_flag(WF),R = [])).
546 :- assert_must_succeed((bsets_clp:finite_non_empty_sequence(R,global_set('Name'),WF),
547 ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
548 :- block finite_non_empty_sequence(-,?,?).
549 finite_non_empty_sequence(Seq,Type,WF) :- /* corresponds to Seq1 */
550 is_sequence_wf_ex(Seq,Type,WF,ESeq),
551 (var(ESeq) -> not_empty_sequence_wf(Seq,WF) ; not_empty_sequence_wf(ESeq,WF)).
552
553
554 :- block test_finite_non_empty_sequence(-,?,-,?).
555 test_finite_non_empty_sequence(Seq,_Type,Res,_WF) :-
556 Seq == [],!, Res=pred_false.
557 test_finite_non_empty_sequence(Seq,Type,Res,WF) :- var(Res),!,
558 ground_value_check(Seq,GrSeq),
559 ? test_finite_non_empty_sequence2(Res,Seq,Type,GrSeq,WF). % will trigger and enumerate Res below
560 % Note: we cannot rely on Res being enumerated; e.g., in case a WD error occurs
561 test_finite_non_empty_sequence(Seq,Type,Res,WF) :-
562 test_finite_non_empty_sequence2(Res,Seq,Type,_,WF).
563
564 % TODO: improve to incrementally check if something is a sequence
565 :- block test_finite_non_empty_sequence2(-,?,?,-,?).
566 test_finite_non_empty_sequence2(pred_true,Seq,Type,_,WF) :-
567 finite_non_empty_sequence(Seq,Type,WF).
568 test_finite_non_empty_sequence2(pred_false,Seq,Type,_,WF) :-
569 not_is_non_empty_sequence_wf(Seq,Type,WF).
570
571
572
573 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:permutation_sequence_wf([(int(1),int(22))],[int(22)],WF),WF)).
574 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:permutation_sequence_wf([(int(2),int(33)),(int(1),int(22))],[int(22),int(33)],WF),WF)).
575 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:permutation_sequence_wf([(int(2),int(33)),(int(1),int(23))],[int(23),int(33),int(44)],WF),WF)).
576 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:permutation_sequence_wf([(int(2),int(44)),(int(1),int(44))],[int(44)],WF),WF)).
577 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1)],WF),
578 ground_det_wait_flag(WF),R = [(int(1),int(1))] )).
579 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF),
580 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(2))] )).
581 :- assert_must_succeed((bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF),
582 ground_det_wait_flag(WF),R = [(int(1),int(2)),(int(2),int(1))] )).
583 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[pred_true /* bool_true */,pred_false /* bool_false */],WF), kernel_waitflags:ground_wait_flags(WF), nonvar(R),
584 R = [(int(1),pred_false /* bool_false */),(int(2),pred_true /* bool_true */)] )).
585 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1)],WF),
586 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(1))] )).
587 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),ground_det_wait_flag(WF),R = [])).
588 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),
589 ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
590 :- assert_must_succeed((bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),
591 ground_det_wait_flag(WF),
592 kernel_objects:equal_object(R,[(int(1),fd(1,'Name')),(int(3),fd(2,'Name')),(int(2),fd(3,'Name'))]) )).
593 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF),
594 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(3))] )).
595 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),
596 ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
597 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(4),int(3),int(2),int(1)],WF),
598 ground_det_wait_flag(WF), R=[(int(1),int(1)),(int(2),int(2)),(int(3),int(3)),(int(4),int(4))])).
599
600 :- block permutation_sequence_wf(-,-,?).
601 permutation_sequence_wf(SeqFF,Type,WF) :- nonvar(SeqFF),
602 custom_explicit_sets:dom_range_for_specific_closure(SeqFF,FFDomain,FFRange,function(bijection),WF),!,
603 equal_object_wf(FFRange,Type,permutation_sequence_wf_1,WF),
604 is_sequence_domain(FFDomain,WF).
605 permutation_sequence_wf(Seq,Type,WF) :-
606 expand_and_convert_to_avl_set_warn(Seq,AER,permutation_sequence_wf,'ARG : perm(?)',WF),!,
607 is_avl_sequence(AER),
608 is_injective_avl_relation(AER,Range),
609 kernel_objects:equal_object_wf(Range,Type,permutation_sequence_wf_2,WF).
610 permutation_sequence_wf(Seq,Type,WF) :-
611 try_expand_custom_set_wf(Seq,ESeq,permutation_sequence_wf,WF),
612 cardinality_as_int_wf(Type,int(Card),WF),
613 when(nonvar(Card), (setup_sequence_wf(Card,SkelSeq,perm,WF),
614 CardGround=true,
615 kernel_objects:equal_object_wf(SkelSeq,ESeq,permutation_sequence_wf_3,WF))),
616 %injective_sequence_wf(ESeq,Type,WF,LWF),
617 surjective_iseq_0(SkelSeq,ESeq,Type,WF,Card,CardGround).
618 % quick_all_different_range(ESeq,[],Type,WF).
619
620 :- block surjective_iseq_0(-,-,?,?,?,-).
621 surjective_iseq_0(SkelSeq,_ESeq,Type,WF,_Card,Ground) :-
622 nonvar(Ground),
623 nonvar(SkelSeq),
624 preference(use_clpfd_solver,true), % try and use an optimized version calling global_cardinality in CLPFD module
625 get_global_cardinality_list(Type,YType,GCL,_,WF),
626 % this dramatically reduces runtime for NQueens40_perm; maybe we should do this only when necessary, i.e., when surjective_iseq blocks on PreviousRemoveDone
627 % check why it slows down SortByPermutation_v2
628 !,
629 global_cardinality_range(SkelSeq,[],YType,GCL,WF).
630 surjective_iseq_0(_,ESeq,Type,WF,Card,_) :-
631 %quick_propagate_range(ESeq,Type,WF), % ensure that we propagate type information to all elements; p:perm(5..20) & p(10)=21 will fail straightaway (surjective_iseq will block);
632 % but this slows down EulerWay.mch ; maybe because it sets up enumerators ? TO DO: investigate
633 surjective_iseq(ESeq,Type,WF,Card).
634
635 %:- use_module(clpfd_interface,[clpfd_alldifferent/1]).
636 % collect range and then call CLPFD global_cardinality using GCL (Global Cardinality List Ki-Vi)
637 :- use_module(library(clpfd), [global_cardinality/3]).
638 :- block global_cardinality_range(-,?,?,?,?).
639 global_cardinality_range([],Acc,_Type,GCL,WF) :-
640 global_cardinality(Acc,GCL,[consistency(value)]),
641 add_fd_variables_for_labeling(Acc,WF). % this is needed for efficiency for NQueens40_perm !!
642 global_cardinality_range([(_,Y)|T],Acc,Type,GCL,WF) :-
643 get_simple_fd_value(Type,Y,FDYVAL),
644 global_cardinality_range(T,[FDYVAL|Acc],Type,GCL,WF).
645
646
647 :- use_module(library(avl), [avl_domain/2]).
648 :- use_module(b_global_sets,[all_elements_of_type_wf/3,b_integer_set/1]).
649 % try and convert a B set into a list suitable for calling clpfd:global_cardinality
650 % get_global_cardinality_list(avl_set(A) % TO DO: extend to integer_lists
651 get_global_cardinality_list(global_set(G),Type,GCL,list,WF) :- !,
652 all_elements_of_type_wf(G,Values,WF), % can only work for finite sets, not for STRING, NATURAL, REAL, ...
653 (b_integer_set(G) -> Type=integer ; Type=global(G)),
654 findall(X-1,(get_simple_fd_value(Type,VV,X),member(VV,Values)),GCL).
655 get_global_cardinality_list(avl_set(A),Type,GCL,list,_WF) :- !,
656 A = node(TopValue,_True,_,_,_),
657 get_simple_fd_value(Type,TopValue,_), % we have CLPFD values
658 avl_domain(A,Values),
659 findall(X-1,(get_simple_fd_value(Type,VV,X),member(VV,Values)),GCL).
660 get_global_cardinality_list(Set,integer,GCL,interval(L1,U1),_WF) :- nonvar(Set),
661 is_interval_closure_or_integerset(Set,L1,U1), number(L1),number(U1),
662 global_cardinality_list_interval(L1,U1,GCL).
663
664 global_cardinality_list_interval(From,To,[]) :- From>To, !.
665 global_cardinality_list_interval(From,To,[From-1|T]) :-
666 F1 is From+1, global_cardinality_list_interval(F1,To,T).
667
668 %try_get_simple_fd_value(Type,V,Val) :- nonvar(V),get_simple_fd_value(Type,V,Val).
669 get_simple_fd_value(integer,int(X),X).
670 get_simple_fd_value(global(T),fd(X,T),X).
671 % try_get_simple_fd_value(pred_false,0). try_get_simple_fd_value(pred_true,1). ??
672 % TO DO: maybe also treat pairs ? but we need complete values; see module clpfd_lists !
673
674 setup_sequence_wf(0,R,_,_) :- !, R=[].
675 setup_sequence_wf(Card,_,PP,WF) :- \+ number(Card), !,
676 add_error_wf(infinite_sequence,'Cannot generate infinite sequence for', PP,unkown,WF). % triggered in test 1979
677 setup_sequence_wf(Card,[(int(1),_)|T] ,_PP,_WF) :- Card>0, C1 is Card-1,
678 setup_sequence(C1,T,2).
679 setup_sequence(0,R,_) :- !, R=[].
680 setup_sequence(Card,[(int(Nr),_)|T], Nr ) :- Card>0, C1 is Card-1,
681 N1 is Nr+1,
682 setup_sequence(C1,T,N1).
683
684 :- block surjective_iseq(?,?,?,-),surjective_iseq(?,-,?,?), surjective_iseq(-,?,?,?).
685 surjective_iseq(avl_set(S),Type,WF,Done) :-
686 expand_custom_set_wf(avl_set(S),ES,surjective_iseq,WF),
687 surjective_iseq(ES,Type,WF,Done).
688 surjective_iseq(closure(P,T,B),Type,WF,Done) :-
689 expand_custom_set_wf(closure(P,T,B),ES,surjective_iseq,WF),
690 surjective_iseq(ES,Type,WF,Done).
691 % no case for global_set: cannot be a relation
692 surjective_iseq([],T,WF,_) :- empty_set_wf(T,WF).
693 surjective_iseq([(int(_Nr),El)|Tail],Type,WF,_PreviousRemoveDone) :-
694 remove_element_wf(El,Type,NType,WF,Done),
695 surjective_iseq(Tail,NType,WF,Done).
696 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_permutation_sequence([(int(1),int(22))],[int(22)],WF),WF)).
697 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33)],WF),WF)).
698 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(33)),(int(1),int(23))],[int(23),int(33),int(44)],WF),WF)).
699 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(44)),(int(1),int(44))],[int(44)],WF),WF)).
700 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1)],WF),
701 ground_det_wait_flag(WF),R = [(int(1),int(1))] )).
702 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF),
703 ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(1),int(1))] )).
704 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF),
705 ground_det_wait_flag(WF),R = [(int(1),int(2)),(int(2),int(1))] )).
706 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF),
707 ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(3),fd(2,'Name')),(int(2),fd(3,'Name'))] )).
708 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,[int(1)],WF),
709 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(1))] )).
710 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),_WF),R = [])).
711 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF),
712 ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
713 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF),
714 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(3))] )).
715 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF),
716 ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
717 :- block not_permutation_sequence(-,?,?).
718 not_permutation_sequence(SeqFF,Type,WF) :- nonvar(SeqFF),
719 custom_explicit_sets:dom_range_for_specific_closure(SeqFF,FFDomain,FFRange,function(bijection),WF),!,
720 equality_objects_wf(FFRange,Type,Result,WF),
721 when(nonvar(Result),(Result=pred_false -> true ; not_is_sequence_domain(FFDomain,WF))).
722 not_permutation_sequence(Seq,Type,WF) :-
723 kernel_tools:ground_value_check(Seq,SV),
724 not_permutation_sequence1(Seq,Type,SV,WF).
725 :- block not_permutation_sequence1(?,-,?,?), not_permutation_sequence1(?,?,-,?).
726 not_permutation_sequence1(avl_set(A),Type,_,WF) :- is_ground_set(Type), !, Seq=avl_set(A),
727 if(not_injective_sequence(Seq,Type,WF),
728 true, % no backtracking required; we could even use regular if with ->
729 not_surj_avl(Seq,Type,WF)
730 ).
731 not_permutation_sequence1(avl_set(A),Type,_,WF) :- !, Seq=avl_set(A),
732 (not_injective_sequence(Seq,Type,WF)
733 ; injective_sequence_wf(Seq,Type,WF),
734 not_surj_avl(Seq,Type,WF)).
735 not_permutation_sequence1(Seq,Type,_,WF) :-
736 expand_custom_set_to_list_wf(Seq,ESeq,Done,not_permutation_sequence1,WF),
737 not_permutation_sequence2(ESeq,Type,WF,Done).
738
739 not_surj_avl(Seq,Type,WF) :- range_wf(Seq,Range,WF),
740 not_equal_object_wf(Range,Type,WF). % TO DO: one could even just check cardinality as Seq is inj
741 %expand_custom_set_to_list_wf(Seq,ESeq,_,not_permutation_sequence1,WF),
742 % not_surjective_seq(ESeq,Type,WF).
743 % check if it is a ground set that cannot be instantiated
744 is_ground_set(V) :- var(V),!,fail.
745 is_ground_set(avl_set(_)).
746 is_ground_set(global_set(_)).
747 is_ground_set([]).
748
749 % here we could have a choice point in WF0
750 :- block not_permutation_sequence2(?,?,?,-).
751 not_permutation_sequence2(Seq,Type,WF,_) :- not_injective_sequence(Seq,Type,WF).
752 not_permutation_sequence2(Seq,Type,WF,_) :-
753 injective_sequence_wf(Seq,Type,WF), not_surjective_seq(Seq,Type,WF).
754
755 :- block not_surjective_seq(-,?,?).
756 not_surjective_seq([],T,WF) :- not_empty_set_wf(T,WF).
757 not_surjective_seq([(int(_),El)|Tail],Type,WF) :-
758 delete_element_wf(El,Type,NType,WF),
759 not_surjective_seq(Tail,NType,WF).
760
761 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(1),int(22))],int(1),_WF))).
762 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22))],int(2),_WF))).
763 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22))],int(3),_WF))).
764 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22)),(int(3),int(33))],int(3),_WF))).
765 :- assert_must_succeed((bsets_clp:size_of_sequence(X,R,_WF),
766 X = [(int(1),int(2)),(int(2),int(1))],
767 R = int(2))).
768 :- assert_must_succeed((preferences:preference(use_clpfd_solver,false) -> true
769 ; preferences:preference(use_smt_mode,false) -> true
770 ; bsets_clp:size_of_sequence(X,R,_WF), R=int(RI),
771 clpfd_interface:clpfd_geq2(RI,2,_), nonvar(X), X = [(I1,_),(I2,_)|T],
772 I1==int(1), I2==int(2), T=[], RI==2 )).
773 :- assert_must_succeed((bsets_clp:size_of_sequence(X,R,_WF),X = [(int(1),_),(int(2),_)],R = int(2))).
774 :- assert_must_succeed((bsets_clp:size_of_sequence(X,_R,_WF),X =[(int(1),_),(int(2),_)] )).
775 :- assert_must_succeed_any((bsets_clp:size_of_sequence(X,int(2),_WF),nonvar(X),X=[_|Y],nonvar(Y),Y=[_|Z],Z==[])).
776 :- assert_must_succeed((bsets_clp:size_of_sequence([],int(0),_WF))).
777 :- assert_must_succeed((bsets_clp:size_of_sequence([],int(0),_WF))).
778 :- assert_must_succeed((bsets_clp:size_of_sequence([(int(1),int(4))],int(1),_WF))).
779 :- assert_must_succeed((bsets_clp:size_of_sequence([],_,_WF))).
780 :- assert_must_fail((bsets_clp:size_of_sequence(X,int(1),_WF),
781 X = [(int(1),_),(int(2),_)|_])).
782 :- block size_of_sequence(-,-,?).
783 size_of_sequence(Seq,int(Res),WF) :- size_of_sequence1(Seq,Res,WF),
784 set_up_sequence_skel(Seq,Res,WF).
785
786 % setup sequence skeleton if we have some CLPFD bounds information about the size
787 % currently still quite limited: only sets up if sequence is a variable; + does the setup only once
788 :- use_module(library(clpfd), [(#<=>)/2]).
789 :- use_module(clpfd_interface,[clpfd_domain/3]).
790 set_up_sequence_skel(Seq,Res,WF) :-
791 var(Seq), % to do: also deal with cases when Seq partially instantiated
792 var(Res),
793 preferences:preference(use_clpfd_solver,true),
794 !,
795 clpfd_interface:clpfd_geq2(Res,0,_), % assert that size must not be negative
796 clpfd_interface:try_post_constraint((Res#>0) #<=> Trigger), % generate reified trigger for when we can instantiate Seq
797 set_up_sequence_skel_aux(Seq,Res,Trigger,WF).
798 set_up_sequence_skel(_,_,_). % TO DO: check if Size interval shrinks
799 :- block set_up_sequence_skel_aux(-,?,-,?).
800 set_up_sequence_skel_aux(Seq,_Res,_Trigger,_WF) :-
801 nonvar(Seq),
802 !. % to do: also deal with cases when Seq partially instantiated
803 set_up_sequence_skel_aux(Seq,Res,_Trigger,_WF) :-
804 (number(Res) ; preferences:preference(use_smt_mode,true)),
805 !,
806 gen_seq_for_res(Res,Seq).
807 set_up_sequence_skel_aux(Seq,Res,_Trigger,WF) :-
808 get_large_finite_wait_flag(set_up_sequence_skel,WF,LWF), % delay, avoid costly unification with partially instantaited list skeleton; TO DO: in future we may use the kernel_cardinality attribute instead
809 when((nonvar(LWF) ; nonvar(Seq) ; nonvar(Res)), (nonvar(Seq) -> true ; gen_seq_for_res(Res,Seq))).
810
811 gen_seq_for_res(Res,Seq) :-
812 clpfd_domain(Res,FDLow,FDUp), % FDLow could also be 0
813 gen_sequence_skeleton(1,FDLow,FDUp,S),
814 Seq=S.
815 gen_sequence_skeleton(N,M,FDUp,S) :- N>M,!,(FDUp==M -> S=[] ; true).
816 gen_sequence_skeleton(N,Max,FDUp,[(int(N),_)|T]) :-
817 N1 is N+1,
818 gen_sequence_skeleton(N1,Max,FDUp,T).
819
820 :- block size_of_sequence1(-,-,?).
821 size_of_sequence1(Seq,ResInt,WF) :-
822 nonvar(Seq),is_custom_explicit_set_nonvar(Seq),
823 size_of_custom_explicit_set(Seq,Size,WF),!,
824 equal_object_wf(Size,int(ResInt),size_of_sequence1,WF).
825 /* TO DO: CHECK BELOW: would it not be better to use cardinality ?? */
826 /*
827 size_of_sequence1(Seq,Size,WF) :- !,kernel_cardinality_attr:finite_cardinality_as_int_wf(Seq,int(Size),WF), check_indexes(Seq,Size).
828
829 construct_interval_closure(1,Size,Domain),
830 total_function_wf(FF,Domain,Range,_WF)
831 % we could also call total_function 1..Size --> _RangeType; would setup domain ?
832 :- block check_indexes(-,?).
833 check_indexes([],_) :- !.
834 check_indexes([(int(X),_)|T],Size) :- !,
835 less_than_equal_direct(X,Size), check_indexes(T,Size).
836 check_indexes(_,_).
837 */
838 size_of_sequence1(Seq,Size,_WF) :- Size==0,!, empty_sequence(Seq).
839 size_of_sequence1(Seq,Size,WF) :-
840 expand_custom_set_to_list_wf(Seq,ESeq,_,size_of_sequence1,WF),
841 (var(ESeq),nonvar(Size) -> size_of_var_seq(ESeqR,0,Size),
842 ESeqR=ESeq % unify after to do propagation in one go, without triggering coroutines inbetween
843 ; size_of_seq2(ESeq,0,Size),
844 (var(Size),var(ESeq) -> less_than_equal_direct(0,Size) % propagate that Size is positive
845 ; true)
846 ).
847 /* small danger of expanding closure while still var !*/
848 :- block size_of_seq2(-,?,-).
849 size_of_seq2([],Size,Size).
850 size_of_seq2([I|Tail],SizeSoFar,Res) :-
851 S2 is SizeSoFar + 1,
852 check_index(I,Res), % don't instantiate I yet; allow other kernel_predicates to freely instantiate it
853 less_than_equal_direct(S2,Res),
854 %(ground(Res) -> safe_less_than_equal(size_of_seq2,S2,Res) ; true),
855 size_of_seq2(Tail,S2,Res).
856 size_of_var_seq([],Size,Size).
857 size_of_var_seq([(int(S2),_)|Tail],SizeSoFar,Res) :-
858 S2 is SizeSoFar + 1,safe_less_than_equal(size_of_var_seq,S2,Res),
859 (var(Tail) -> size_of_var_seq(Tail,S2,Res) ; size_of_seq2(Tail,S2,Res)).
860
861
862 :- block check_index(-,?).
863 check_index((I,_),Res) :- check_index1(I,Res).
864 :- block check_index1(-,?).
865 check_index1(int(Idx),Res) :- less_than_equal_direct(Idx,Res).
866
867 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(1),int(22))],[(int(2),int(22)),(int(1),int(33))],WF),WF)).
868 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[],[(int(1),int(33))],WF),WF)).
869 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(2),int(44)),(int(1),int(22))],[(int(1),int(33)),(int(3),int(44)),(int(2),int(22))],WF),WF)).
870 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(1),int(22))],[(int(1),int(22)),(int(2),int(33))],WF),WF)).
871 :- assert_must_succeed((bsets_clp:prepend_sequence(int(7),[],[(int(1),int(7))],_WF))).
872 :- assert_must_succeed((bsets_clp:prepend_sequence(int(7),X,R,_WF),
873 X = [(int(2),int(4)),(int(1),int(3))],
874 kernel_objects:equal_object(R,[(int(1),int(7)),(int(2),int(3)),(int(3),int(4))]))).
875 % code for insert_front operator: El -> Seq
876 :- block prepend_sequence(?,-,-,?).
877 prepend_sequence(El,Seq,Res,_WF) :- Seq==[],!,
878 equal_object_optimized([(int(1),El)],Res,prepend_sequence).
879 prepend_sequence(El,Seq,Res,WF) :- nonvar(Seq),is_custom_explicit_set(Seq,prepend_sequence),
880 prepend_custom_explicit_set(Seq,El,ERes),!,
881 equal_sequence(Res,ERes,WF).
882 prepend_sequence(El,Seq,Res,WF) :- nonvar(Res),is_custom_explicit_set(Res,prepend_sequence),
883 tail_sequence_custom_explicit_set(Res,First,Tail,unknown,WF),!,
884 equal_object_wf(El,First,prepend_sequence,WF),
885 equal_sequence(Seq,Tail,WF).
886 prepend_sequence(El,Seq,Res,WF) :-
887 equal_cons_wf(Res,(int(1),El),ShiftSeq,WF),
888 shift_seq_indexes(Seq,1,ShiftSeq,WF).
889
890 :- block shift_seq_indexes(-,-,?,?),shift_seq_indexes(-,?,-,?).
891 shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :-
892 Offset == 0,!, equal_sequence(Seq,ShiftedSeq,WF).
893 shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :- nonvar(Seq),!,
894 expand_custom_set_to_list_wf(Seq,ESeq,_,shift_seq_indexes,WF),
895 shift_seq_indexes2(ESeq,Offset,ShiftedSeq,WF,Done),
896 (Done == done
897 -> true
898 ; % also propagate in the other way: TO DO: make a more efficient fine-grained two-ways propagation; maybe using CHR
899 NegOffset is -Offset,
900 expand_custom_set_to_list_wf(ShiftedSeq,ESeq1,_,shift_seq_indexes,WF),
901 shift_seq_indexes2(ESeq1,NegOffset,ESeq,WF,_)).
902 shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :- NegOffset is -Offset,
903 % compute in the other direction; TO DO: make a more efficient fine-grained two-ways propagation; maybe using CHR
904 expand_custom_set_to_list_wf(ShiftedSeq,ESeq,_,shift_seq_indexes,WF),
905 shift_seq_indexes2(ESeq,NegOffset,Seq,WF,Done),
906 (Done == done
907 -> true
908 ; % also propagate in the original way:
909 expand_custom_set_to_list_wf(Seq,ESeq1,_,shift_seq_indexes,WF),
910 shift_seq_indexes2(ESeq1,Offset,ESeq,WF,_)).
911
912 :- block shift_seq_indexes2(-,?,?,?,?).
913 shift_seq_indexes2([],_,R,WF,Done) :- !, Done = done, empty_set_wf(R,WF).
914 shift_seq_indexes2([Pair|Tail],Offset,Res,WF,Done) :- !,
915 Pair = (int(N),El),
916 equal_cons_wf(Res,(int(NewN),El),ShiftTail,WF),
917 int_plus(int(N),int(Offset),int(NewN)),
918 shift_seq_indexes2(Tail,Offset,ShiftTail,WF,Done).
919 shift_seq_indexes2(Seq,Offset,Res,WF,Done) :-
920 add_internal_error('Unexpected set argument: ',shift_seq_indexes2(Seq,Offset,Res,WF,Done)), fail.
921
922 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([(int(1),int(22))],int(33),[(int(2),int(33)),(int(1),int(22))],WF),WF)).
923 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([],int(33),[(int(1),int(33))],WF),WF)).
924 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([(int(2),int(44)),(int(1),int(22))],int(33),[(int(1),int(22)),(int(3),int(33)),(int(2),int(44))],WF),WF)).
925 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:append_sequence([(int(1),int(22))],int(33),[(int(1),int(33)),(int(2),int(22))],WF),WF)).
926 :- assert_must_succeed((bsets_clp:append_sequence([],int(7),[(int(1),int(7))],_WF))).
927 :- assert_must_succeed((bsets_clp:append_sequence(X,int(7),R,_WF),
928 X = [(int(2),int(4)),(int(1),int(3))],
929 kernel_objects:equal_object(R,[(int(1),int(3)),(int(2),int(4)),(int(3),int(7))]))).
930
931 % code for the insert_tail operator Seq<-El
932 :- block append_sequence(-,?,-,?).
933 append_sequence(Seq,El,Res,_WF) :- Seq==[],!,
934 equal_object_optimized([(int(1),El)],Res,append_sequence).
935 append_sequence(Seq,El,Res,WF) :-
936 nonvar(Seq),is_custom_explicit_set_nonvar(Seq),
937 append_custom_explicit_set(Seq,El,ERes,WF),!,
938 equal_sequence(Res,ERes,WF).
939 append_sequence(Seq,El,Res,WF) :-
940 nonvar(Res),is_custom_explicit_set_nonvar(Res),
941 % we know result: deconstruct into last El and front Seq
942 front_sequence_custom_explicit_set(Res,Last,Front), !,
943 equal_object_wf(El,Last,append_sequence,WF),
944 equal_sequence(Seq,Front,WF).
945 append_sequence(Seq,El,Res,WF) :-
946 (var(Seq) -> size_of_sequence(Res,INewSize,WF), INewSize=int(NewSize) ; true),
947 equal_cons_wf(Res,(int(NewSize),El),ResT,WF),
948 append_sequence2(Seq,ResT,NewSize,WF).
949
950 :- block append_sequence2(-,?,-,?).
951 append_sequence2(Seq,ResT,_NewSize,WF) :- var(Seq),!,
952 equal_sequence(Seq,ResT,WF).
953 append_sequence2(Seq,ResT,NewSize,WF) :-
954 try_expand_custom_set_wf(Seq,ESeq,append_sequence2,WF),
955 equal_sequence(ESeq,ResT,WF),
956 size_of_sequence(ESeq,Size,WF),
957 int_plus(Size,int(1),int(NewSize)).
958
959 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:prefix_sequence([(int(1),int(22))],int(1),[(int(1),int(22))]))).
960 :- assert_must_succeed(exhaustive_kernel_succeed_check(bsets_clp:prefix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(2),[(int(1),int(11)),(int(2),int(22))]))).
961 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:prefix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(3),[(int(1),int(11)),(int(2),int(22))]))).
962 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(1),X),X = [(int(1),int(1))])).
963 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(0),[]),X = [(int(1),int(1))])).
964 :- assert_must_abort_wf((bsets_clp:prefix_sequence_wf(X,int(-1),_R,WF),X = [(int(1),int(1))]),WF).
965 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(2),Y),
966 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
967 kernel_objects:equal_object(Y,[(int(1),int(1)),(int(2),int(3))]) )).
968 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(1),Y),
969 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
970 kernel_objects:equal_object(Y,[(int(1),int(1))]) )).
971 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(3),Y),
972 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
973 kernel_objects:equal_object(Y,X) )).
974
975 prefix_sequence(Seq,N,R) :- init_wait_flags(WF,[prefix_sequence]),
976 prefix_sequence_wf(Seq,N,R,WF),
977 ground_wait_flags(WF).
978
979 % Prefix of a sequence (s /|\ n)
980 prefix_sequence_wf(Seq,int(Num),Res,WF) :-
981 prefix_sequence1(Seq,Num,Res,WF),
982 propagate_size(Res,Num,WF).
983
984 % the size of the result of (s /|\ n) is the number n
985 :- block propagate_size(-,-,?).
986 propagate_size(Res,Num,WF) :-
987 var(Res),!,
988 (Num<0 -> preferences:preference(disprover_mode,false) % don't do anything; we may want to generate WD error
989 ; Num < 4 -> size_of_sequence(Res,int(Num),WF)
990 ; Prio is 1+Num // 100,
991 get_wait_flag(Prio,propagate_size,WF,LWF), % avoid setting up very large skeletons too early
992 block_size_of_sequence(LWF,Res,int(Num),WF)
993 ).
994 propagate_size(_,Num,_) :- number(Num), !. % no need to propagate
995 propagate_size(_,_Num,_) :- \+ preferences:preference(find_abort_values,false),
996 !. % do not propagate as we could prevent detection of WD errors below
997 propagate_size([],Num,_WF) :- !,
998 Num=0. % Note: this could prevent a wd-error being detected
999 propagate_size(avl_set(A),Num,WF) :- var(Num),
1000 % with partially instantated sets we get slowdowns (SimpleCSGGrammar2_SlowCLPFD)
1001 % TO DO: treat list skeletons
1002 !,
1003 size_of_sequence(avl_set(A),int(Num),WF). % Note: this could prevent a wd-error being detected
1004 propagate_size(_,_,_). % should we also propagate the other way around ?
1005
1006 :- block block_size_of_sequence(-,?,?,?).
1007 block_size_of_sequence(_,Seq,Size,WF) :- size_of_sequence(Seq,Size,WF).
1008
1009 :- block prefix_sequence1(-,?,?,?), prefix_sequence1(?,-,?,?).
1010 prefix_sequence1(_Seq,Num,Res,WF) :- Num==0,!, empty_set_wf(Res,WF).
1011 prefix_sequence1(_Seq,Num,_Res,WF) :- Num<0,!, % according to version 1.8.8 of Atelier-B manual Num must be in 0..size(_Seq)
1012 add_wd_error('negative index in prefix_sequence (/|\\)! ', Num,WF).
1013 prefix_sequence1(Seq,Num,Res,WF) :-
1014 is_custom_explicit_set(Seq,prefix),
1015 prefix_of_custom_explicit_set(Seq,Num,ERes,WF),!, % TO DO: check Num <= size(Seq)
1016 equal_object_wf(Res,ERes,prefix_sequence1,WF).
1017 prefix_sequence1(Seq,Num,Res,WF) :-
1018 expand_custom_set_to_list_wf(Seq,ESeq,_,prefix_sequence1,WF),
1019 unify_same_index_elements(Res,ESeq,WF),
1020 unify_same_index_elements(Seq,Res,WF),
1021 prefix_seq(ESeq,Num,0,Res,WF).
1022 :- block prefix_seq(-,?,?,?,?).
1023 prefix_seq([],Max,Sze,Res,WF) :-
1024 (less_than_direct(Sze,Max)
1025 -> add_wd_error('index larger than size of sequence in prefix_sequence (/|\\)! ', (Max,Sze),WF)
1026 ; true),
1027 empty_set_wf(Res,WF).
1028 %(less_than(int(_Sze),int(_Max))
1029 % -> (print_message('Index bigger than sequence size in prefix_sequence (/|\\) !'),
1030 % print_message(Max))
1031 % /* in the AtelierB book this is allowed, in Wordsworth + AMN on web it is not ?? */
1032 % ; true).
1033 prefix_seq([(int(N),El)|Tail],Max,SizeSoFar,Res,WF) :-
1034 prefix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF).
1035 :- block prefix_seq2(-,?,?,?,?,?,?).
1036 prefix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF) :- % SizeSoFar is always ground
1037 (less_than_equal_direct(N,Max), equal_cons_wf(Res,(int(N),El),PTail,WF)
1038 ;
1039 less_than_direct(Max,N), equal_object_wf(Res,PTail,prefix_seq2,WF)
1040 ),
1041 ( SizeSoFar<N -> NewSizeSoFar=N ; NewSizeSoFar = SizeSoFar ),
1042 prefix_seq(Tail,Max,NewSizeSoFar,PTail,WF).
1043
1044 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:suffix_sequence([(int(1),int(22))],int(0),[(int(1),int(22))],WF),ground_det_wait_flag(WF))).
1045 :- assert_must_succeed(exhaustive_kernel_succeed_check(bsets_clp:suffix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(1),[(int(1),int(22)),(int(2),int(33))],_WF))).
1046 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:suffix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(2),[(int(1),int(22)),(int(2),int(33))],_WF))).
1047 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(0),X,_WF),X = [(int(1),int(1))])).
1048 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(1),[],_WF),X = [(int(1),int(1))])).
1049 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(2),Y,_WF),
1050 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
1051 kernel_objects:equal_object(Y,[(int(1),int(4))]) )).
1052 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(1),Y,_WF),
1053 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
1054 kernel_objects:equal_object(Y,[(int(1),int(3)),(int(2),int(4))]) )).
1055 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(2),Y,_WF),
1056 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
1057 kernel_objects:equal_object(Y,[(int(1),int(4))]) )).
1058 :- assert_must_abort_wf(bsets_clp:suffix_sequence([(int(1),int(11)),(int(2),int(22))],int(-1),_R,WF),WF).
1059 :- assert_must_abort_wf(bsets_clp:suffix_sequence([(int(1),int(11)),(int(2),int(22))],int(3),_R,WF),WF).
1060
1061 % kernel_waitflags:assert_must_abort2_wf(bsets_clp:suffix_sequence([int(11),int(22)],int(-1),_R,WF),WF)
1062
1063 % suffix of a sequence (s \|/ n); also called restrict at tail (Atelier B) or Drop
1064 :- block suffix_sequence(-,?,?,?).
1065 suffix_sequence(Seq,int(Num),Res,WF) :-
1066 suffix_sequence1(Seq,Num,Res,WF).
1067 :- block suffix_sequence1(?,-,?,?).
1068 suffix_sequence1(Seq,Num,Res,WF) :- Num==0, !, equal_object_wf(Res,Seq,suffix_sequence1_1,WF).
1069 suffix_sequence1(_Seq,Num,_Res,WF) :- Num<0, !, add_wd_error('negative index in suffix_sequence (\\|/)! ', Num,WF).
1070 suffix_sequence1(Seq,Num,Res,WF) :- is_custom_explicit_set(Seq,suffix),
1071 suffix_of_custom_explicit_set(Seq,Num,ERes,WF),!,
1072 equal_object_wf(Res,ERes,suffix_sequence1_2,WF).
1073 suffix_sequence1(Seq,Num,Res,WF) :-
1074 expand_custom_set_to_list_wf(Seq,ESeq,_,suffix_sequence,WF), suffix_seq(ESeq,Num,0,Res,WF).
1075 :- block suffix_seq(-,?,?,?,?).
1076 suffix_seq([],Max,Sze,Res,WF) :-
1077 (less_than_direct(Sze,Max)
1078 -> add_wd_error('index larger than size of sequence in suffix_sequence (\\|/)! ', '>'(Max,Sze),WF)
1079 ; true), empty_set_wf(Res,WF).
1080 suffix_seq([(int(N),El)|Tail],Max,SizeSoFar,Res,WF) :-
1081 suffix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF).
1082 :- block suffix_seq2(-,?,?,?,?,?,?).
1083 suffix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF) :-
1084 (less_than_equal_direct(N,Max), equal_object_wf(Res,PTail,suffix_seq2,WF)
1085 ;
1086 less_than_direct(Max,N),int_minus(int(N),int(Max),int(NN)),
1087 equal_cons_wf(Res,(int(NN),El),PTail,WF)
1088 ),
1089 (N>SizeSoFar -> (NewSizeSoFar=N)
1090 ; (NewSizeSoFar = SizeSoFar)),
1091 suffix_seq(Tail,Max,NewSizeSoFar,PTail,WF).
1092
1093
1094
1095 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:concat_sequence([],[(int(1),int(33))],[(int(1),int(33))],WF),WF)).
1096 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:concat_sequence([(int(1),int(22)),(int(2),int(33))],[(int(1),int(33)),(int(2),int(44))],[(int(2),int(33)),(int(3),int(33)),(int(1),int(22)),(int(4),int(44))],WF),WF)). % not wfdet because of pending label_el_nr from clpfd_lists
1097 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:concat_sequence([(int(1),int(22))],[(int(1),int(33))],[(int(2),int(33)),(int(1),int(22))],WF),WF)).
1098 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:concat_sequence([(int(1),int(22))],[(int(1),int(33))],[(int(2),int(22)),(int(1),int(33))],WF),WF)).
1099 :- assert_must_succeed((bsets_clp:concat_sequence([],X,Y,_WF),
1100 X = [(int(1),int(1))], Y==X)).
1101 :- assert_must_succeed((bsets_clp:concat_sequence(X,[],Y,_WF), X = [(int(1),int(1))], Y==X)).
1102 :- assert_must_succeed((bsets_clp:concat_sequence([(int(1),int(1))],[],Y,_WF), Y==[(int(1),int(1))])).
1103 :- assert_must_succeed((bsets_clp:concat_sequence(X,X,Y,_WF),
1104 X = [(int(1),int(1))], kernel_objects:equal_object(Y,[(int(1),int(1)),(int(2),int(1))]))).
1105 :- assert_must_succeed((bsets_clp:concat_sequence(X,X,Y,_WF),
1106 X = [(int(2),int(88)),(int(1),int(77))],
1107 kernel_objects:equal_object(Y,[(int(1),int(77)),(int(2),int(88)),(int(3),int(77)),(int(4),int(88))]))).
1108
1109 :- block /* concat_sequence(-,-,?,?), */
1110 concat_sequence(?,-,-,?), concat_sequence(-,?,-,?).
1111 concat_sequence(S1,S2,Res,WF) :- Res==[],!, empty_set_wf(S1,WF), empty_set_wf(S2,WF).
1112 concat_sequence(S1,S2,Res,WF) :-
1113 (var(S1),var(S2) -> get_wait_flag(2,concat,WF,LWF) % we have at least two solutions; TODO maybe use cardinality as wait_flag?
1114 ; LWF=1),
1115 concat_sequence2(LWF,S1,S2,Res,WF).
1116
1117 :- block concat_sequence2(-,?,-,?,?), concat_sequence2(-,-,?,?,?).
1118 concat_sequence2(_,S1,S2,Res,WF) :- S1==[],!,equal_sequence(S2,Res,WF).
1119 concat_sequence2(_,S1,S2,Res,WF) :- S2==[],!,equal_sequence(S1,Res,WF).
1120 concat_sequence2(LWF,S1,S2,Res,WF) :-
1121 try_expand_and_convert_to_avl_with_check(S1,AS1,concat1),
1122 try_expand_and_convert_to_avl_with_check(S2,AS2,concat2),
1123 concat_sequence3(LWF,AS1,AS2,Res,WF).
1124
1125 concat_sequence3(_,S1,S2,Res,WF) :- nonvar(S1),is_custom_explicit_set(S1,concat_sequence),
1126 concat_custom_explicit_set(S1,S2,ERes,WF),!,
1127 equal_sequence(Res,ERes,WF).
1128 concat_sequence3(_LWF,S1,S2,Res,WF) :-
1129 %try_expand_custom_set_wf(S1,ES1,concat,WF),
1130 size_of_sequence(S1,int(Size1),WF),
1131 (number(Size1) -> true
1132 ; size_of_sequence(S2,Size2,WF),
1133 size_of_sequence(Res,SizeRes,WF),
1134 int_minus(SizeRes,Size2,int(Size1)),
1135 in_nat_range_wf(int(Size1),int(0),SizeRes,WF)
1136 % is this required: ?? ,in_nat_range_wf(Size2,int(0),SizeRes,WF)
1137 ),
1138 concat_sequence_aux(Size1,S1,S2,Res,WF).
1139
1140
1141 :- assert_must_succeed( (bsets_clp:equal_sequence([(int(1),A)|T1],[(int(1),int(22))|T2],_WF),
1142 A==int(22),T2=[],T1==[] )) .
1143 :- assert_must_succeed( (bsets_clp:equal_sequence([(int(1),A)|T],avl_set(node((int(2),string(a)),true,0,node((int(1),string(c)),true,0,empty,empty),node((int(3),string(b)),true,0,empty,empty))),_WF),
1144 check_eqeq(A,string(c)),
1145 kernel_objects:equal_object(T,[(int(2),B)|T2]), check_eqeq(B,string(a)),
1146 kernel_objects:equal_object(T2,[(int(3),C)]), check_eqeq(C,string(b))) ).
1147 % equal_object optimized for sequences; can infer that pairs with same index have same value
1148 % TO DO: complete and make more efficient
1149 %equal_sequence(X,Y,_WF) :- nonvar(X),nonvar(Y),
1150 % is_custom_explicit_set(X,eval_sequence), is_custom_explicit_set(Y,eval_sequence),!,
1151 % equal_explicit_sets(X,Y).
1152 equal_sequence(X,Y,WF) :- nonvar(X),nonvar(Y),
1153 get_seq_head(X,XI,XEl,XT), get_seq_head(Y,YI,YEl,YT), XI==YI,!,
1154 % THIS CURRENTLY ONLY CHECKS FRONTMOST indexes
1155 equal_object_wf(XEl,YEl,equal_sequence_1,WF),
1156 equal_sequence(XT,YT,WF).
1157 equal_sequence(X,Y,WF) :-
1158 /* (is_custom_explicit_set(Y) -> monitor_equal_sequence_againts_custom_set(X,Y,WF)
1159 ; is_custom_explicit_set(X) -> monitor_equal_sequence_againts_custom_set(Y,X,WF)
1160 ; true), does not seem to buy anything; equal_object already powerful enough */
1161 equal_object_wf(X,Y,equal_sequence_2,WF).
1162
1163 % enforces the constraint that there is only one possible elemenent per index:
1164 %:- block monitor_equal_sequence_againts_custom_set(-,?,?).
1165 %monitor_equal_sequence_againts_custom_set([],_,_) :- !.
1166 %monitor_equal_sequence_againts_custom_set([El|T],CS,WF) :- !,
1167 % element_of_custom_set_wf(El,CS,WF),
1168 % monitor_equal_sequence_againts_custom_set(T,CS,WF).
1169 %monitor_equal_sequence_againts_custom_set(_,_,_).
1170
1171 get_seq_head([(Idx,El)|Tail],Idx,El,Tail).
1172 %get_seq_head(avl_set(AVL),Idx,El,Tail) :- does not seem to buy anything; equal_object already powerful enough
1173 % custom_explicit_sets:avl_min_pair(AVL,Idx,El),
1174 % custom_explicit_sets:direct_remove_element_from_avl(AVL,(Idx,El),Tail). % TO DO: only compute if indexes ==
1175
1176
1177 :- block concat_sequence_aux(-,?,?,?,?).
1178 concat_sequence_aux(Size1,_S1,_S2,Res,WF) :- nonvar(Res),Res=avl_set(_),
1179 size_of_custom_explicit_set(Res,int(RSize),WF), number(RSize),
1180 Size1 > RSize,!, % S1 is longer than Res; no solution (prevent WD error below)
1181 fail.
1182 concat_sequence_aux(Size1,S1,S2,Res,WF) :- nonvar(Res),Res=avl_set(_),
1183 % split Result into prefix and suffix
1184 prefix_of_custom_explicit_set(Res,Size1,Prefix,WF), % we could call versions which do not check WD
1185 suffix_of_custom_explicit_set(Res,Size1,Postfix,WF),
1186 !,
1187 equal_sequence(S1,Prefix,WF), equal_sequence(S2,Postfix,WF).
1188 concat_sequence_aux(Size1,S1,S2,Res,WF) :-
1189 shift_seq_indexes(S2,Size1,NewS2,WF),
1190 % We can do something stronger than disjoint union: we know that the indexes are disjoint!
1191 % Hence: if (int(X),Y) : Res & (int(X),Z) : S1 => Y=Z
1192 % Hence: if (int(X),Y) : Res & (int(X),Z) : S2 => Y=Z
1193 unify_same_index_elements(S1,Res,WF),
1194 unify_same_index_elements(Res,S1,WF),
1195 unify_same_index_elements(NewS2,Res,WF),
1196 unify_same_index_elements(Res,NewS2,WF),
1197 disjoint_union_wf(S1,NewS2,Res,WF).
1198
1199 % Check if (int(X),Y) pairs in Seq2 have a matching (int(X),Z) in Seq1 and then unify(Y,Z)
1200 :- block unify_same_index_elements(-,?,?).
1201 unify_same_index_elements(avl_set(A),Seq,WF) :- !,
1202 unify_same_index_elements_aux(Seq,A,WF).
1203 unify_same_index_elements(_,_,_). % TO DO: maybe also support other partially instantiated lists
1204
1205 :- block unify_same_index_elements_aux(-,?,?).
1206 unify_same_index_elements_aux([],_,_) :- !.
1207 unify_same_index_elements_aux([(int(Idx),El)|T],A,WF) :- !,
1208 try_find_index_element(Idx,El,A,WF),
1209 unify_same_index_elements_aux(T,A,WF).
1210 unify_same_index_elements_aux(_,_,_).
1211
1212 :- block try_find_index_element(-,?,?,?).
1213 try_find_index_element(Idx,El,AVL,WF) :-
1214 avl_fetch_pair(int(Idx),AVL,AvlEl),
1215 !,
1216 % We have found an entry with the same index: El and AvlEl must be identical:
1217 equal_object_wf(El,AvlEl,try_find_index_element,WF).
1218 try_find_index_element(_Idx,_El,_AVL,_WF). % :- print(not_found(_Idx,_AVL)),nl.
1219
1220 % TO DO: add waitflags + use within partition_wf
1221 % computes union of two sets which are guaranteed to be disjoint: means that if two of three sets known the other one can be determined
1222
1223 :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([int(3)],[int(2),int(1)],[int(1),int(3),int(2)],WF),WF)).
1224 :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([],[int(2),int(1)],[int(1),int(2)],WF),WF)).
1225 :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([int(1),int(2)],[],[int(2),int(1)],WF),WF)).
1226 :- assert_must_succeed((bsets_clp:disjoint_union_wf([int(1)],[int(2)],Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]))).
1227 :- assert_must_succeed((bsets_clp:disjoint_union_wf(A,B,[int(1)],_WF),B=[H],H==int(1),A==[])).
1228
1229 % a union where we know that Set1 and Set2 are disjoint
1230 % this means we can propagate elements of Set1/2 more easily to result
1231 disjoint_union_wf(Set1,Set2,Res,WF) :-
1232 (var(Res)
1233 -> disjoint_union_wf0(Set1,Set2,DRes,DRes,WF),
1234 equal_object_optimized(Res,DRes) % try and convert result to AVL
1235 ; disjoint_union_wf0(Set1,Set2,Res,Res,WF)).
1236
1237 % disjoint_union_wf0(Set1,Set2,UnionOfSet1Set2, SuperSet, WF)
1238 :- block disjoint_union_wf0(-,-,-,?,?).
1239 disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Set1==[],!,equal_object_wf(Set2,Res,disjoint_union_wf0_1,WF).
1240 disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Set2==[],!,equal_object_wf(Set1,Res,disjoint_union_wf0_2,WF).
1241 disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Res==[],!,empty_set_wf(Set1,WF), empty_set_wf(Set2,WF).
1242 disjoint_union_wf0(Set1,Set2,Res,FullRes,WF) :-
1243 ((nonvar(Set1);nonvar(Set2)) -> true ; get_cardinality_powset_wait_flag(Res,disjoint_union_wf0,WF,_Card,CWF)),
1244 disjoint_union0(Set1,Set2,Res,FullRes,WF,CWF).
1245
1246 :- block disjoint_union0(-,-,?,?,?,-), disjoint_union0(-,?,-,-,?,?), disjoint_union0(?,-,-,-,?,?).
1247 disjoint_union0(Set1,Set2,Res,_,WF,_) :- Set1==[],!,equal_object_wf(Set2,Res,disjoint_union0_1,WF).
1248 disjoint_union0(Set1,Set2,Res,_,WF,_) :- Set2==[],!,equal_object_wf(Set1,Res,disjoint_union0_2,WF).
1249 disjoint_union0(S1,S2,Res,_F,WF,_CWF) :-
1250 ground_value(Res),
1251 ( ground_value(S1) -> !,
1252 check_subset_of_wf(S1,Res,WF), % TO DO: check if we can merge the check_subset and difference set in one predicate
1253 difference_set_wf(Res,S1,S2,WF)
1254 ; ground_value(S2) -> !,
1255 check_subset_of_wf(S2,Res,WF),
1256 difference_set_wf(Res,S2,S1,WF)
1257 ; var(S1),var(S2) -> !, % CWF nonvar
1258 % see test 1408; allows to generate subsets of Res and avoid enumeration warnings
1259 check_subset_of_wf(S1,Res,WF),
1260 %check_subset_of(S1,Res), % without waitflag: will generate ground version
1261 difference_set_wf(Res,S1,S2,WF)
1262 ).
1263 disjoint_union0(Set1,Set2,Res,_,WF,_) :- nonvar(Set1),
1264 is_custom_explicit_set_nonvar(Set1),
1265 union_of_explicit_set(Set1,Set2,Union), !, % TODO: if it fails: copy/propagate values to result?
1266 equal_object_wf(Union,Res,disjoint_union0_3,WF).
1267 disjoint_union0(Set1,Set2,Res,Full,WF,_) :-
1268 expand_custom_set_to_list_no_dups_wf(Set1,ESet1,_,disjoint_union0_1,WF),
1269 expand_custom_set_to_list_no_dups_wf(Set2,ESet2,_,disjoint_union0_2,WF),
1270 disj_union1(ESet1,ESet2,Res,Full,WF).
1271
1272 :- block disj_union1(-,-,?,?,?).
1273 disj_union1(X,Y,Res,FullRes,WF) :-
1274 var(X) -> disj_union2(Y,X,Res,FullRes,WF) ; disj_union2(X,Y,Res,FullRes,WF).
1275
1276 disj_union2([],Y,Res,_,_WF) :- equal_object_optimized(Y,Res,disj_union2).
1277 disj_union2([X|TX],Y,Res,FullRes,WF) :-
1278 remove_element_wf(X,Res,TR,WF), % was: equal_cons_wf(Res,X,TR,WF) but error was that it could force X to be a certain value
1279 kernel_tools:ground_value_check(X,XV),
1280 (nonvar(XV) -> equal_cons_wf(Res,X,TR,WF)
1281 ; check_element_of_wf(X,FullRes,WF), % ensure that we set up proper constraints for X; e.g., for x \/ y = 1..10 & x /\ y = {}
1282 when(nonvar(XV), equal_cons_wf(Res,X,TR,WF))
1283 ), % ensure that we instantiate Res if TR known; otherwise we may get pending co-routines, e.g. test 506, SyracuseGrammar
1284 disj_union3(TX,Y,TR,FullRes,WF).
1285
1286 :- block disj_union3(-,-,-,?,?).
1287 disj_union3(X,Y,Res,_,WF) :- Res==[],!,empty_set_wf(X,WF),empty_set_wf(Y,WF).
1288 disj_union3(X,Y,Res,FullRes,WF) :- disj_union1(X,Y,Res,FullRes,WF).
1289
1290
1291 :- block disjoint_union_generalized_wf(-,?,?).
1292 %disjoint_union_generalized_wf([Set1|T],Res,_WF) :- T==[],!, % just one set; probably not covered at the moment (ast_cleanup simplifies partition with single set
1293 % equal_object(Set1,Res).
1294 disjoint_union_generalized_wf(ListOfSets,Res,WF) :-
1295 %expand_custom_set_to_list_wf(SetsOfSets,ESetsOfSets,_,disjoint_union_generalized_wf,WF), % this is a list of sets
1296 disjoint_union_generalized2(ListOfSets,[],Res,WF).
1297 :- block disjoint_union_generalized2(-,?,?,?).
1298 disjoint_union_generalized2([],S,Res,WF) :- !, equal_object_optimized_wf(S,Res,disjoint_union_generalized2,WF).
1299 disjoint_union_generalized2([H|T],UnionSoFar,Res,WF) :- !,
1300 disjoint_union_wf0(H,UnionSoFar,UnionSoFar2,Res,WF),
1301 %% print_message(called_disjoint_union(H,UnionSoFar,UnionSoFar2)), %%
1302 disjoint_union_generalized2(T,UnionSoFar2,Res,WF).
1303 disjoint_union_generalized2(L,S,Res,WF) :-
1304 add_internal_error('Not a list: ',disjoint_union_generalized2(L,S,Res,WF)),fail.
1305 % TO DO: if there are more than two sets: it may be interesting to set up constraint that
1306 % each set is a subset of the full set;
1307 % (would avoid enumeration warning in, e.g., x \/ y \/ z = 1..10 & x /\ y = {} & x /\ z = {} & y /\ z = {} & card(x)=card(y)+2 )
1308
1309 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:concatentation_of_sequences([(int(1),[]),(int(3),[(int(1),int(22)),(int(2),int(33))]),(int(2),[(int(1),int(11))])],
1310 [(int(1),int(11)),(int(2),int(22)),(int(3),int(33))],_WF))).
1311 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:concatentation_of_sequences([(int(1),[]),(int(2),[(int(1),int(33))])],[(int(1),int(33))],_WF))).
1312 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:concatentation_of_sequences([(int(1),[]),(int(2),[(int(1),int(55))])],Res,WF),
1313 kernel_waitflags:ground_wait_flags(WF),
1314 kernel_objects:equal_object(Res,[(int(1),int(55))]) )).
1315 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:concatentation_of_sequences([(int(1),[(int(1),int(22))]),(int(2),[(int(1),int(55))])],Res,WF),
1316 kernel_waitflags:ground_wait_flags(WF),
1317 kernel_objects:equal_object(Res,[(int(1),int(22)),(int(2),int(55))]) )).
1318 :- block concatentation_of_sequences(-,?,?).
1319 concatentation_of_sequences(SeqOfSeq,Res,WF) :-
1320 try_expand_and_convert_to_avl_with_check(SeqOfSeq,ES,conc),
1321 ? concs2(ES,Res,WF).
1322
1323 concs2(SeqOfSeq,Res,WF) :- is_custom_explicit_set(SeqOfSeq,conc),
1324 conc_custom_explicit_set(SeqOfSeq,CRes),!,
1325 equal_object_wf(CRes,Res,concs2,WF).
1326 concs2(SeqOfSeq,Res,WF) :- empty_set_wf(SeqOfSeq,WF),empty_set_wf(Res,WF).
1327 concs2(SeqOfSeq,Res,WF) :- not_empty_set_wf(SeqOfSeq,WF),
1328 front_sequence(SeqOfSeq,Front,WF),
1329 concatentation_of_sequences(Front,FrontRes,WF),
1330 last_sequence(SeqOfSeq,Last,WF),
1331 concat_sequence(FrontRes,Last,Res,WF).
1332
1333 :- assert_must_abort_wf(bsets_clp:tail_sequence([],_R,unknown,WF),WF).
1334 :- assert_must_abort_wf(bsets_clp:tail_sequence([],[],unknown,WF),WF).
1335 :- assert_must_succeed(exhaustive_kernel_succeed_check(
1336 bsets_clp:tail_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(5))],unknown,_WF)) ).
1337 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:tail_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],
1338 [(int(1),int(5)),(int(2),int(6))],unknown,_WF)) ).
1339 :- assert_must_succeed((bsets_clp:tail_sequence(X,R,unknown,_),
1340 X = [(int(1),int(6)),(int(2),int(5))],
1341 kernel_objects:equal_object(R,[(int(1),int(5))]) )).
1342 :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(1),int(5))],unknown,_),
1343 X = [(int(1),int(6)),(int(2),int(5))] )).
1344 :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(1),int(5)),(int(2),int(7))],unknown,_),
1345 X = [(int(1),int(6)),(int(2),int(5)),(int(3),int(7))] )).
1346 :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(2),int(7)),(int(1),int(5))],unknown,_),
1347 X = [(int(1),int(6)),(int(2),int(5)),(int(3),int(7))] )).
1348 :- block tail_sequence(-,?,?,?).
1349 tail_sequence(S1,Res,Span,WF) :- is_custom_explicit_set(S1,tail_sequence),
1350 tail_sequence_custom_explicit_set(S1,_,TRes,Span,WF),!,
1351 equal_object_wf(TRes,Res,tail_sequence,WF).
1352 tail_sequence(S1,Res,Span,WF) :- expand_custom_set_to_list_wf(S1,ES1,_,tail_sequence,WF),
1353 tail2(ES1,Res,Span,WF).
1354
1355 tail2([],_,Span,WF) :-
1356 add_wd_error_span('tail applied to empty sequence!',[],Span,WF).
1357 tail2([H|T],Res,_Span,WF) :- domain_subtraction_wf([int(1)],[H|T],IntRes,WF),
1358 shift_seq_indexes(IntRes,-1,Res,WF).
1359
1360
1361 :- assert_must_abort_wf(bsets_clp:first_sequence([],_R,unknown,WF),WF).
1362 :- assert_must_abort_wf(bsets_clp:first_sequence([],int(1),unknown,WF),WF).
1363 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:first_sequence([(int(1),int(4)),(int(2),int(5))],int(4),unknown,_WF)) ).
1364 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:first_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],int(4),unknown,_WF)) ).
1365 :- assert_must_succeed((bsets_clp:first_sequence(X,R,unknown,_WF),
1366 X = [(int(1),int(2)),(int(2),int(1))],
1367 R = int(2))).
1368
1369 :- block first_sequence(-,?,?,?).
1370 first_sequence([],_,Span,WF) :- !,add_wd_error_span('first applied to empty sequence!',[],Span,WF).
1371 first_sequence(Seq,Res,Span,WF) :- apply_to(Seq,int(1),Res,Span,WF).
1372
1373
1374
1375 :- assert_must_abort_wf(bsets_clp:front_sequence([],_R,WF),WF).
1376 :- assert_must_abort_wf(bsets_clp:front_sequence([],[],WF),WF).
1377 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:front_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(4))],_WF)) ).
1378 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:front_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],[(int(1),int(4)),(int(2),int(5))],_WF)) ).
1379 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:front_sequence(X,R,WF),
1380 X = [(int(1),int(2)),(int(2),int(55))],kernel_waitflags:ground_wait_flags(WF),
1381 kernel_objects:equal_object(R,[(int(1),int(2))]))).
1382 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:front_sequence(X,R,WF),
1383 X = [(int(3),int(33))|R], kernel_waitflags:ground_wait_flags(WF),
1384 kernel_objects:equal_object(R,[(int(1),int(2)),(int(2),int(55))]) )).
1385
1386 front_sequence(Seq,Res,WF) :- front_sequence(Seq,Res,unknown,WF).
1387 :- block front_sequence(-,?,?,?).
1388 front_sequence(S1,Res,_Span,WF) :-
1389 is_custom_explicit_set(S1,front_sequence),
1390 front_sequence_custom_explicit_set(S1,_,FRes),!,
1391 equal_object_wf(FRes,Res,front_sequence,WF).
1392 front_sequence(Seq,Res,Span,WF) :- expand_custom_set_to_list_wf(Seq,ESeq,_,front_sequence,WF),
1393 front2(ESeq,Res,Span,WF).
1394 front2([],_,Span,WF) :- add_wd_error_span('front applied to empty sequence!',[],Span,WF).
1395 front2([H|T],Res,_Span,WF) :- size_of_sequence([H|T],int(Size),WF),
1396 (number(Size) -> true ; size_of_sequence(Res,SizeRes,WF), int_plus(SizeRes,int(1),int(Size))),
1397 when(ground(Size), domain_subtraction_wf([int(Size)],[H|T],Res,WF)).
1398
1399
1400 :- assert_must_abort_wf(bsets_clp:last_sequence([],_R,WF),WF).
1401 :- assert_must_abort_wf(bsets_clp:last_sequence([],int(1),WF),WF).
1402 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:last_sequence([(int(1),int(4)),(int(2),int(5))],int(5),_WF)) ).
1403 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:last_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],int(6),_WF)) ).
1404 :- assert_must_succeed((bsets_clp:last_sequence(X,R,_WF),
1405 X = [(int(1),int(2)),(int(2),int(55))],R = int(55))).
1406 :- assert_must_succeed((bsets_clp:last_sequence(X,R,_WF), X = [(int(1),int(55))], R = int(55))).
1407 :- assert_must_succeed((bsets_clp:last_sequence([(int(1),[(int(1),int(22))]),(int(2),[(int(1),int(55))])],R,_WF), R == [(int(1),int(55))])).
1408
1409 last_sequence(Seq,Res,WF) :- last_sequence(Seq,Res,unknown,WF).
1410 :- block last_sequence(-,?,?,?).
1411 last_sequence(Seq,Res,_Span,WF) :-
1412 is_custom_explicit_set(Seq,last_sequence),
1413 last_sequence_explicit_set(Seq,Last), !,
1414 equal_object_wf(Last,Res,last_sequence,WF).
1415 last_sequence([],_,Span,WF) :- !,add_wd_error_span('last applied to empty sequence!',[],Span,WF).
1416 last_sequence(Seq,Res,Span,WF) :-
1417 size_of_sequence(Seq,int(Size),WF),
1418 last_sequence_aux(Size,Seq,Res,Span,WF).
1419 :- block last_sequence_aux(-,?,?,?,?).
1420 last_sequence_aux(Size,Seq,Res,Span,WF) :-
1421 apply_to(Seq,int(Size),Res,Span,WF).
1422
1423
1424 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(5)),(int(2),int(4))],WF),WF )).
1425 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4))],[(int(1),int(4))],WF),WF )).
1426 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([],[],WF),WF )).
1427 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],[(int(1),int(6)),(int(3),int(4)),(int(2),int(5))],WF),WF )).
1428 :- assert_must_succeed((bsets_clp:rev_sequence([],[],_WF))).
1429 :- assert_must_succeed((bsets_clp:rev_sequence(X,R,_WF),
1430 X = [(int(1),int(2)),(int(2),int(1))],
1431 kernel_objects:equal_object(R,[(int(2),int(2)),(int(1),int(1))]) )).
1432 :- assert_must_succeed((bsets_clp:rev_sequence(X,R,_WF),
1433 X = [(int(1),int(23)),(int(2),int(1)),(int(3),int(55))],
1434 kernel_objects:equal_object(R,[(int(3),int(23)),(int(2),int(1)),(int(1),int(55))]) )).
1435 :- assert_must_succeed((bsets_clp:rev_sequence(R,X,_WF),
1436 X = [(int(1),int(23)),(int(2),int(1)),(int(3),int(55))],
1437 kernel_objects:equal_object(R,[(int(3),int(23)),(int(2),int(1)),(int(1),int(55))]) )).
1438 :- assert_must_succeed((bsets_clp:rev_sequence(X,_R,_WF),
1439 X = [(int(2),int(1)),(int(1),int(23)),(int(3),int(55))] )).
1440 :- assert_must_succeed((bsets_clp:rev_sequence(_R,X,_WF),
1441 X = [(int(3),int(55)),(int(1),int(23)),(int(2),int(1))] )).
1442
1443 /* reverse of sequence */
1444 :- block rev_sequence(-,-,?).
1445 rev_sequence(S1,Res,WF) :-
1446 (nonvar(S1) -> rev_sequence2(S1,Res,WF)
1447 ; rev_sequence2(Res,S1,WF)).
1448
1449 rev_sequence2(S1,Res,WF) :- reverse_custom_explicit_set(S1,RS1),!,
1450 equal_object_wf(Res,RS1,WF).
1451 rev_sequence2(S1,Res,WF) :-
1452 expand_custom_set_to_list_wf(S1,ES1,_,rev_sequence2,WF),
1453 size_of_sequence(ES1,int(Size1),WF),
1454 % TO DO: we could also try and get the size from the result Res
1455 rev_sequence3(ES1,Size1,Res,WF).
1456
1457 :- block rev_sequence3(?,-,-,?).
1458 rev_sequence3(E,_Size,Res,WF) :- nonvar(Res), reverse_custom_explicit_set(Res,RevRes),!,
1459 equal_object_wf(E,RevRes,WF).
1460 rev_sequence3(E,Size,Res,WF) :- var(Size), !,
1461 % try to obtain size from result as well
1462 size_of_sequence(Res,int(Size),WF), rev_sequence3b(E,Size,Res,WF).
1463 ?rev_sequence3(E,S,R,WF) :- rev_sequence4(E,S,R,WF).
1464
1465 :- block rev_sequence3b(?,-,?,?).
1466 rev_sequence3b(E,S,R,WF) :- rev_sequence4(E,S,R,WF).
1467
1468 :- block rev_sequence4(-,?,?,?).
1469 rev_sequence4([],_,Res,WF) :- empty_set_wf(Res,WF).
1470 rev_sequence4([(int(N),El)|Tail],Size1,Res,WF) :-
1471 ? equal_cons_wf(Res,(NewN,El),RTail,WF),
1472 % compute NewN = Size - (N-1)
1473 int_minus(int(N),int(1),N1),
1474 int_minus(int(Size1),N1,NewN),
1475 (ground(NewN) -> true ; in_nat_range(NewN,int(0),int(Size1))),
1476 ? rev_sequence4(Tail,Size1,RTail,WF).
1477
1478
1479 /* --------- */
1480 /* RELATIONS */
1481 /* --------- */
1482
1483 %maplet(X,Y,(X,Y)).
1484
1485 % relation([]).
1486 % relation([(_X,_Y)|T]) :- relation(T).
1487
1488 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:relation_over_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
1489 :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:relation_over([],[int(1),int(2)],[int(2)]) )).
1490 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(int(1),int(2))],[int(1),int(2)],[int(2)]) )).
1491 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([([int(1)],[int(2)])],[[int(1)],[],[int(2)]],[[int(2)]]) )).
1492 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(pred_true /* bool_true */,pred_false /* bool_false */)],[pred_false /* bool_false */,pred_true /* bool_true */],[pred_false /* bool_false */]) )).
1493 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((pred_true /* bool_true */,int(2)),fd(1,'Name'))],[(pred_false /* bool_false */,int(1)),(pred_true /* bool_true */,int(2))],[fd(2,'Name'),fd(1,'Name')]) )).
1494 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((rec([field(a,fd(1,'Name'))]),int(2)),fd(1,'Name'))],[(rec([field(a,fd(1,'Name'))]),int(1)),(rec([field(a,fd(1,'Name'))]),int(2))],[fd(2,'Name'),fd(1,'Name')]) )).
1495 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((rec([field(a,fd(2,'Name')),field(b,fd(1,'Name'))]),int(2)),fd(1,'Name'))],[(rec([field(a,fd(1,'Name')),field(b,fd(1,'Name'))]),int(1)),(rec([field(a,fd(1,'Name')),field(b,fd(2,'Name'))]),int(2)),(rec([field(a,fd(2,'Name')),field(b,fd(1,'Name'))]),int(2))],[fd(2,'Name'),fd(1,'Name')]) )).
1496 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((pred_true /* bool_true */,int(2)),string('STRING1'))],[(pred_false /* bool_false */,int(1)),(pred_true /* bool_true */,int(2))],[string('STRING2'),string('STRING1')]) )).
1497 :- assert_must_succeed(exhaustive_kernel_succeed_check( /* multiple solutions !!*/ bsets_clp:relation_over([(int(1),int(2)),(int(2),int(2))],[int(1),int(2)],[int(2)]) )).
1498 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(int(1),int(2)),(int(1),int(3))],[int(1),int(2)],[int(3),int(2)]) )).
1499 :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:relation_over([(int(1),int(2)),(int(2),int(1))],[int(1),int(2)],[int(2)]) )).
1500 :- assert_must_fail(( bsets_clp:relation_over([(int(1),int(1))],[int(1),int(2)],[int(2)]) )).
1501 :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(3)]),
1502 X==[(int(1),int(3))] )).
1503 :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(3)]),
1504 X==[(int(1),int(3)),(int(2),int(3))] )).
1505 :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(4),int(5)]),
1506 X==[(int(2),int(4)),(int(2),int(5))] )).
1507
1508 relation_over(R,Dom,Ran) :- init_wait_flags(WF,[relation_over]),
1509 relation_over_wf(R,Dom,Ran,WF),
1510 ground_wait_flags(WF).
1511
1512 :- block relation_over_wf(-,-,-,?).
1513 relation_over_wf(R,Dom,Ran,WF) :-
1514 kernel_equality:get_cardinality_relation_over_wait_flag(Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels),
1515 ? relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels).
1516
1517 :- block relation_over1(-,?,?,?,-,?,?).
1518 relation_over1(FF,Domain,Range,WF,_WFR,_MaxCard,_MaxNrOfRels) :-
1519 nonvar(FF),
1520 custom_explicit_sets:is_definitely_maximal_set(Range),
1521 % we do not need the Range; this means we can match more closures (e.g., lambda)
1522 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,_,WF),!,
1523 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF).
1524 relation_over1(FF,Domain,Range,WF,_WFR,_MaxCard,_MaxNrOfRels) :- nonvar(FF),
1525 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,_,WF),!,
1526 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
1527 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
1528 relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels) :- var(R),!,
1529 expand_custom_set_to_list_wf(R,ER,_,relation_over1,WF),
1530 ? relation_over2(ER,[],Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels,none).
1531 relation_over1(R,Domain,Range,WF,_WFR,_MaxCard,_) :-
1532 expand_and_convert_to_avl_set_catch(R,AER,relation_over1,'ARG : ? <-> ?',ResultStatus,WF),!,
1533 (ResultStatus=avl_set
1534 -> is_avl_relation_over_domain(AER,Domain,WF),
1535 is_avl_relation_over_range(AER,Range,WF)
1536 ; (debug_mode(on) -> add_message_wf(relation_over,'SYMBOLIC <-> check: ',R,unknown,WF) ; true),
1537 symbolic_domain_subset_check(R,Domain,WF),
1538 symbolic_range_subset_check(R,Range,WF)
1539 ).
1540 relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels) :-
1541 expand_custom_set_to_list_wf(R,ER,_,relation_over1,WF),
1542 ? relation_over2(ER,[],Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels,none).
1543
1544 % check the domain of a symbolic closure value FF whose domain is FFDomain and expected domain is Domain:
1545 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF) :-
1546 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
1547 [b_operator(domain,[FF]),Domain],unknown),WF2),
1548 check_subset_of_wf(FFDomain,Domain,WF2).
1549 % ditto for range
1550 check_range_subset_for_closure_wf(FF,FFRange,Range,WF) :-
1551 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
1552 [b_operator(range,[FF]),Range],unknown),WF2),
1553 check_subset_of_wf(FFRange,Range,WF2).
1554
1555
1556 % try and expand set to AVL and catch enumeration warning exceptions and set OK result value
1557 % if it succeeds with OK = avl_set -> we have an avl_set
1558 % if it fails: it cannot be expanded at the moment
1559 % if it retuns keep_symbolic: expansion cannot be performed and can never be performed; keep set symbolic
1560 expand_and_convert_to_avl_set_catch(R,_AS,_Origin,_Operator,_ResultStatus,_WF) :- var(R),!,fail.
1561 expand_and_convert_to_avl_set_catch(R,_AS,_Origin,_Operator,ResultStatus,_WF) :-
1562 is_infinite_explicit_set(R),!, % we could also use is_infinite_or_symbolic_closure
1563 ResultStatus=keep_symbolic.
1564 expand_and_convert_to_avl_set_catch(R,AS,Origin,Operator,ResultStatus,WF) :-
1565 catch(
1566 (expand_and_convert_to_avl_set(R,AS,Origin,Operator),ResultStatus=avl_set),
1567 enumeration_warning(_,_,_,_,_),
1568 (add_message_wf(Origin,'Attempting symbolic treatment, enumeration warning occured while expanding ARG for ',
1569 Operator,b(value(R),any,[]),WF),
1570 ResultStatus=keep_symbolic)).
1571
1572 expand_and_convert_to_avl_set_warn(R,_AS,_Origin,_Operator,_WF) :- var(R),!,fail.
1573 expand_and_convert_to_avl_set_warn(R,AS,Origin,Operator,WF) :-
1574 % TO DO: check for not fully instantiated closures, like memoization closures where ID not yet known
1575 % it is used before a cut: we need to expand straightaway without choice points
1576 (is_symbolic_closure(R)
1577 -> add_message_wf(Origin,'Expanding symbolic set argument ARG for predicate ',Operator,b(value(R),any,[]),WF)
1578 ; true),
1579 % TODO: instead of observe_enumeration_warnings we could push onto the call-stack and pass WF
1580 observe_enumeration_warnings(expand_and_convert_to_avl_set(R,AS,Origin,Operator),
1581 add_message_wf(Origin,'Enumeration warning occured while expanding argument ARG for predicate ',
1582 Operator,b(value(R),any,[]),WF)).
1583 %expand_and_convert_to_avl_set(R,AS,_,Operator,Values) :-
1584 % observe_enumeration_warnings(expand_and_convert_to_avl_set(R,AS,,),
1585 % display_warning_message(Operator,Values)).
1586 %display_warning_message(Operator,Values) :-
1587 % format(user_error,'Enumeration Warning for Operator ~w~n',[Operator]),
1588 % maplist(translate:print_bvalue,Values),nl.
1589
1590 :- block relation_over2(-,?,?,?,?,-,?,?,?).
1591 relation_over2([],_,_,_,_WF,_WFR,_MaxCard,_MaxNrOfRels,_LastPair).
1592 relation_over2(REL,SoFar,Domain,Range,WF,WFR,MaxCard,MaxNrOfRels,LastPair) :-
1593 (var(REL) -> NewLastPair=(X,Y) ; NewLastPair=none), %remember whether we freely chose X,Y
1594 REL = [(X,Y)|T],
1595 ? (number(MaxCard)
1596 -> MaxCard>0,C1 is MaxCard-1 ,(C1=0 -> T=[] ; true)
1597 ; C1=MaxCard),
1598 % TO DO: try to enumerate elements in order
1599 ? ordered_pair(LastPair,X,Y,not_equal),
1600 ? check_element_of_wf(X,Domain,WF),
1601 check_element_of_wf(Y,Range,WF),
1602 not_element_of_wf((X,Y),SoFar,WF),
1603 update_waitflag(MaxNrOfRels,WFR,NewWFR,WF),
1604 ? relation_over2(T,[(X,Y)|SoFar],Domain,Range,WF,NewWFR,C1,MaxNrOfRels,NewLastPair).
1605
1606 % check that new pair is greater than previous pair, if that pair was freely chosen
1607 ordered_pair(none,_,_,_).
1608 ordered_pair((LastX,LastY),NewX,NewY,Eq) :- ordered_value(LastX,NewX,EqualX),
1609 check_second_component(EqualX,LastY,NewY,Eq).
1610
1611 :- block check_second_component(-,?,?,?).
1612 check_second_component(equal,X,Y,EqRes) :- ordered_value(X,Y,EqRes).
1613 check_second_component(not_equal,_X,_Y,not_equal). % no need to check 2nd component
1614
1615 :- block ordered_value(-,?,?), ordered_value(?,-,?).
1616 ordered_value(pred_true /* bool_true */,B,Eq) :- !, (B=pred_true /* bool_true */ -> Eq=equal ; Eq=not_equal).
1617 ordered_value(pred_false /* bool_false */,B,Eq) :- !, B=pred_false /* bool_false */, Eq=equal.
1618 ordered_value(int(X),int(Y),Eq) :- !,
1619 kernel_objects:less_than_equal_direct(X,Y), equal_atomic_term(X,Y,Eq).
1620 ordered_value(fd(NrX,T),fd(NrY,T),Eq) :- !,
1621 kernel_objects:less_than_equal_direct(NrX,NrY),
1622 equal_atomic_term(NrX,NrY,Eq).
1623 ordered_value((X1,X2),(Y1,Y2),Eq) :- !, ordered_pair((X1,X2),Y1,Y2,Eq).
1624 ordered_value(string(X),string(Y),Eq) :- !, less_equal_atomic_term(X,Y,Eq).
1625 ordered_value(rec(FX),rec(FY),Eq) :- !,
1626 ordered_fields(FX,FY,Eq).
1627 ordered_value([],Y,Eq) :- !, (Y==[] -> Eq=equal ; Eq=not_equal). % empty set is the smallest set
1628 ordered_value(avl_set(A),Y,Eq) :- !,
1629 (Y==[] -> fail
1630 ; Y=avl_set(B) -> (A @< B -> Eq=not_equal ; A@>B -> fail ; Eq=equal)
1631 ; print(assuming_strictly_ordered(avl_set(A),Y)),nl,
1632 Eq=not_equal). % TO DO: treat sets better
1633 ordered_value([H|T],Y,Eq) :- !, ordered_value_cons(Y,H,T,Eq).
1634 ordered_value(term(floating(F1)),term(floating(F2)),Eq) :- !,
1635 kernel_reals:real_less_than_equal_wf(term(floating(F1)),term(floating(F2)),no_wf_available),
1636 equal_atomic_term(F1,F2,Eq).
1637 ordered_value(A,B,not_equal) :- print(assuming_strictly_ordered(A,B)),nl.
1638
1639 ordered_value_cons([],_,_,_) :- !,fail.
1640 ordered_value_cons([H2|T2],H,T,Eq) :- !,ordered_pair((H,T),H2,T2,Eq). % Note: order different than for avl_sets!
1641 ordered_value_cons(Y,H,T,not_equal) :- write(assuming_strictly_ordered([H|T],Y)),nl.
1642
1643 :- block ordered_fields(-,?,?).
1644 ordered_fields([],RHS,Eq) :- !,RHS=[], Eq=equal.
1645 ordered_fields([field(Name,ValX)|TX],RHS,Eq) :- !,RHS=[field(Name,ValY)|TY],
1646 ordered_value(ValX,ValY,Equal1), check_next_field(Equal1,TX,TY,Eq).
1647 ordered_fields(FX,FY,Eq) :- add_internal_error('Unknown fields: ',ordered_fields(FX,FY,Eq)), Eq=not_equal.
1648
1649 :- block check_next_field(-,?,?,?).
1650 check_next_field(equal,TX,TY,EqRes) :- ordered_fields(TX,TY,EqRes).
1651 check_next_field(not_equal,_X,_Y,not_equal). % no need to check next field
1652
1653 :- block less_equal_atomic_term(-,?,?), less_equal_atomic_term(?,-,?).
1654 less_equal_atomic_term(A,B,Res) :- (A==B -> Res=equal ; A @<B, Res=not_equal).
1655
1656 :- block equal_atomic_term(-,?,?), equal_atomic_term(?,-,?).
1657 equal_atomic_term(A,B,Res) :- (A==B -> Res=equal ; Res=not_equal).
1658
1659
1660 :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:not_relation_over([(int(1),int(2)),(int(2),int(1))],[int(1),int(2)],[int(2)],_WF) )).
1661 :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:not_relation_over([(int(1),int(2))],[],[int(2)],_WF) )).
1662 :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:not_relation_over([(int(1),pred_true)],[int(1)],[pred_true],_WF) )).
1663 :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:not_relation_over([],[int(1)],[pred_true],_WF) )).
1664 :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(2))],[int(3)],[int(1),int(2)],_) ).
1665 :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(2))],[int(1)],[int(3)],_) ).
1666 :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(3)),(int(1),int(2))],[int(1)],[int(3)],_) ).
1667 :- assert_must_fail( bsets_clp:not_relation_over([(int(1),int(3))],[int(1)],[int(3)],_) ).
1668 :- assert_must_fail( bsets_clp:not_relation_over([],[int(1)],[int(3)],_) ).
1669 :- assert_must_fail( bsets_clp:not_relation_over([],[],[],_) ).
1670 :- block not_relation_over(-,?,?,?).
1671
1672 not_relation_over(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
1673 % we do not need the Range; this means we can match more closures (e.g., lambda)
1674 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,_,WF),!,
1675 not_subset_of_wf(FFDomain,Domain,WF).
1676 not_relation_over(FF,Domain,Range,WF) :- nonvar(FF),
1677 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,_,WF),!,
1678 not_both_subset_of(FFDomain,FFRange,Domain,Range,WF).
1679 /* could be slightly more efficient: but not clear if warrants additional complexity in code:
1680 not_relation_over(FF,Domain,Range,WF) :- nonvar(FF),
1681 check_element_can_be_decided(Domain), % ensures that check_element_of_wf will not block below
1682 check_element_can_be_decided(Range), % ensures that check_element_of_wf will not block below
1683 expand_and_convert_to_avl_set(FF,AER,no_relation_over,''),!,
1684 (is_avl_relation_over_domain(AER,Domain,WF)
1685 -> \+ is_avl_relation_over_range(AER,Range,WF)
1686 ; true).
1687 check_element_can_be_decided(X) :- var(X),!,fail.
1688 check_element_can_be_decided(avl_set(_)).
1689 check_element_can_be_decided([]).
1690 check_element_can_be_decided(closure(P,T,B)) :-
1691 custom_explicit_sets:is_interval_closure_or_integerset(closure(P,T,B),Low,Up),
1692 ground(Low), ground(Up).
1693 */
1694 not_relation_over(R,Dom,Ran,WF) :-
1695 expand_custom_set_to_list_wf(R,ER,_,not_relation_over,WF),
1696 %% print(not_rel(ER,Dom,Ran)),nl,
1697 not_relation_over2(ER,Dom,Ran,WF).
1698
1699
1700 %not_relation_over2(R,_,_) :- when(nonvar(R), (R\=[], R\=[_|_])) . % TYPE ERROR !
1701 :- block not_relation_over2(-,?,?,?).
1702 not_relation_over2([(X,Y)|T],Domain,Range,WF) :-
1703 membership_test_wf(Domain,X,MemRes,WF),
1704 not_relation_over3(MemRes,Y,T,Domain,Range,WF).
1705
1706 :- block not_relation_over3(-,?,?,?,?,?).
1707 not_relation_over3(pred_false,_Y,_T,_Domain,_Range,_WF).
1708 not_relation_over3(pred_true,Y,T,Domain,Range,WF) :-
1709 membership_test_wf(Range,Y,MemRes,WF),
1710 not_relation_over4(MemRes,T,Domain,Range,WF).
1711
1712 :- block not_relation_over4(-,?,?,?,?).
1713 not_relation_over4(pred_false,_T,_Domain,_Range,_WF).
1714 not_relation_over4(pred_true,T,Domain,Range,WF) :-
1715 not_relation_over2(T,Domain,Range,WF).
1716
1717
1718
1719 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf([],[],WF),WF)).
1720 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf([(int(1),int(3))],[int(1)],WF),WF)).
1721 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf(
1722 [(int(0),int(55)),(int(2),int(3)),(int(1),int(3))],[int(1),int(2),int(0)],WF),WF)).
1723 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf(
1724 [(int(99),int(55)),(int(2),int(3)),(int(99),int(4))],[int(2),int(99)],WF),WF)).
1725 :- assert_must_succeed((bsets_clp:domain_wf([],Res,_WF),Res=[])).
1726 :- assert_must_succeed((bsets_clp:domain_wf([(int(1),int(2))],Res,_WF),
1727 kernel_objects:equal_object(Res,[int(1)]))).
1728 :- assert_must_succeed((bsets_clp:domain_wf([(int(1),int(2)),(int(1),int(1))],Res,_WF),
1729 kernel_objects:equal_object(Res,[int(1)]))).
1730 :- assert_must_succeed((bsets_clp:domain_wf([(int(2),int(2)),(int(1),int(2))],Res,_WF),
1731 kernel_objects:equal_object(Res,[int(1),int(2)]))).
1732 :- assert_must_succeed((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(3),int(2)]),
1733 kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(3),int(2))]))).
1734 :- assert_must_succeed((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]),
1735 kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(1),int(2))]))).
1736 :- assert_must_fail((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]),
1737 kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(3),int(2))]))).
1738
1739 :- block domain_wf(-,-,?).
1740 domain_wf(Rel,Res,WF) :- Res == [],!,
1741 empty_set_wf(Rel,WF).
1742 domain_wf(Rel,Res,WF) :- var(Rel),!, % hence Res must me nonvar
1743 (is_custom_explicit_set(Res,domain_wf)
1744 -> expand_custom_set_to_list_wf(Res,Res2,_,propagate_result_to_input2,WF) % avoid expanding twice
1745 ; Res2 = Res),
1746 propagate_result_to_input(Res2,Rel,domain,WF),
1747 domain_wf1(Rel,Res2,WF).
1748 domain_wf(Rel,Res,WF) :- domain_wf1(Rel,Res,WF).
1749
1750
1751 % propagate result of domain/range back to original relation
1752 propagate_result_to_input(Result,OriginalRel,DomOrRange,WF) :-
1753 propagate_empty_set_wf(Result,result,OriginalRel,WF), % this will trigger before LWF ground
1754 (preferences:preference(use_smt_mode,true)
1755 -> propagate_result_to_input1(Result,OriginalRel,1,DomOrRange)
1756 % hopefully full CHR implementation will avoid the need for this hack
1757 % ; kernel_objects:is_marked_to_be_computed(OriginalRel) -> true % get_last_wait_flag(propagate_result_to_input,WF,LWF)
1758 ;
1759 get_wait_flag(2000,propagate_result_to_input,WF,LWF), % TO DO: determine right value for Priority ?
1760 % higher number for data_validation mode seems slightly counterproductive (on private_source_not_available tests)
1761 propagate_result_to_input1(Result,OriginalRel,LWF,DomOrRange) % this slows down test 289 if not guarded, 1088 if guarded
1762 ).
1763
1764 :- block propagate_result_to_input1(-,?,?,?), propagate_result_to_input1(?,-,-,?).
1765 % Note: if arg 2 (Rel) is known we will not propagate
1766 propagate_result_to_input1([],Rel,_,_) :- !, empty_set(Rel).
1767 propagate_result_to_input1(Result,Input,LWF,DomOrRange) :-
1768 (kernel_objects:is_marked_to_be_computed(Input) -> true
1769 ; propagate_result_to_input2(Result,Input,LWF,DomOrRange)).
1770
1771 %:- block propagate_result_to_input2(-,?).
1772 :- block propagate_result_to_input2(-,?,?,?), propagate_result_to_input2(?,-,-,?).
1773 % maybe do in CHR in future: x:dom(R) => #z.(x,z) : R
1774 % TO DO: make stronger; also support avl_set ...
1775 propagate_result_to_input2([],_Rel,_,_) :- !. % nothing can be said; we could have repeated entries for previous domain elements
1776 propagate_result_to_input2([D|T],Rel,LWF,DomOrRange) :- %print(propagate_result_to_input2([D|T],Rel,LWF,DomOrRange)),nl,
1777 !,
1778 (Rel == [] -> fail % we would need more relation elements to generate the domain/range
1779 ; nonvar(Rel) -> true % no propagation
1780 ; (DomOrRange=domain -> Rel = [(D,_)|RT] ; Rel = [(_,D)|RT]),
1781 propagate_result_to_input2(T,RT,LWF,DomOrRange)
1782 ).
1783 propagate_result_to_input2(CS,Rel,LWF,DomOrRange) :- var(Rel), is_custom_explicit_set(CS),!,
1784 expand_custom_set_to_list(CS,Res,_,propagate_result_to_input2),
1785 propagate_result_to_input2(Res,Rel,LWF,DomOrRange).
1786 propagate_result_to_input2(_1,_2,_LWF,_DomOrRange).
1787
1788 :- block domain_wf1(-,?,?).
1789 domain_wf1(Rel,Res,WF) :- is_custom_explicit_set(Rel,domain_wf),
1790 domain_of_explicit_set_wf(Rel,Dom,WF), !,
1791 equal_object_wf(Dom,Res,domain_wf1,WF).
1792 domain_wf1(Rel,Res,WF) :-
1793 expand_custom_set_to_list_wf(Rel,Relation,_,domain_wf,WF),
1794 newdomain1(Relation,[],Res,WF),
1795 quick_propagate_domain(Relation,Res,WF).
1796
1797 :- block quick_propagate_domain(-,?,?).
1798 quick_propagate_domain([],_,_WF).
1799 quick_propagate_domain([(X,_)|T],FullRes,WF) :-
1800 quick_propagation_element_information(FullRes,X,WF,FullRes1), % should we use a stronger check ?
1801 quick_propagate_domain(T,FullRes1,WF).
1802
1803 %:- block newdomain1(-,?,-,?). % why was this commented out ?
1804 :- block newdomain1(-,?,?,?).
1805 /* newdomain1(Rel,SoFar,Res,WF) :- var(Rel), !,
1806 domain_propagate_result(Res,Rel,SoFar,WF). */
1807 newdomain1(Dom,SoFar,Res,WF) :- newdomain2(Dom,SoFar,Res,WF).
1808
1809 %:- block newdomain2(-,?,?,?).
1810 newdomain2([],_SoFar,Res,WF) :- empty_set_wf(Res,WF).
1811 newdomain2([(X,Y)|T],SoFar,Res,WF) :-
1812 (Res==[]
1813 -> MemRes=pred_true, % no new elements can appear, all Xs must already be in SoFar
1814 check_element_of_wf(X,SoFar,WF)
1815 ; membership_test_wf(SoFar,X,MemRes,WF),
1816 % now check that card of Relation is greater or equal to Result; if equal set MemRes to pred_false
1817 % if card(Result)=card(dom(Result)) => all elements in Result must be fresh domain elements
1818 card_greater_equal_check([(X,Y)|T],Res,MemRes)
1819 ),
1820 newdomain3(MemRes,X,T,SoFar,Res,WF).
1821
1822 :- block newdomain3(-,?,?,?,?,?).
1823 newdomain3(pred_true,_,T,SoFar,Res,WF) :- newdomain1(T,SoFar,Res,WF).
1824 newdomain3(pred_false,X,T,SoFar,Res,WF) :-
1825 kernel_objects:mark_as_non_free(X,domain), % X is linked to a particular Y -> it is not free
1826 add_element_wf(X,SoFar,SoFar2,WF),
1827 equal_cons_wf(Res,X,Res2,WF),
1828 newdomain1(T,SoFar2,Res2,WF).
1829
1830
1831 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_domain_wf(int(2),[(int(2),int(7))],WF),WF)).
1832 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_wf(int(2),[(int(1),int(6)),(int(2),int(7))],WF),WF)). % used to be wfdet; but dom_symbolic can create existential quantifier, not all co-routines/... evaluated in wfdet
1833 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_wf(int(22),[(int(1),int(6)),(int(22),int(7)),(int(33),int(7))],WF),WF)). % used to be wfdet (see above)
1834 :- assert_must_succeed((bsets_clp:in_domain_wf(int(1),[(int(1),int(2))],_))).
1835 :- assert_must_succeed((bsets_clp:in_domain_wf(int(3),[(int(1),int(2)),(int(3),int(4))],_))).
1836 :- assert_must_fail((bsets_clp:in_domain_wf(int(3),[],_))).
1837 :- assert_must_fail((bsets_clp:in_domain_wf(int(3),[(int(1),int(2))],_))).
1838 /* a more efficient version than using element_of and computing domain */
1839
1840 % just like not_empty_set_wf but instantiates with (El,_) as first element
1841 in_domain_wf(El,S,WF) :- var(S),!,
1842 (preferences:preference(use_smt_mode,true) -> S=[(El,_)|_]
1843 ; get_enumeration_starting_wait_flag(not_empty_domain_wf,WF,LWF),
1844 in_domain_lwf(El,S,LWF,WF)).
1845 ?in_domain_wf(El,Rel,WF) :- in_domain_wf_lazy(El,Rel,WF).
1846 :- block in_domain_lwf(-,-,-,?).
1847 % was :- block in_domain_lwf(-,?,-,?). but this prevents instantiating El in case Rel becomes known ! see e.g. private_examples/ClearSy/ComparePv10Pv11/DebugPv10/ test 1952, 2270
1848 %:- block in_domain_lwf(-,-,?,?),in_domain_lwf(?,-,-,?). % this annotation fails test 1703
1849 in_domain_lwf(El,Rel,LWF,WF) :- % tools_printing:print_term_summary(in_domain_lwf(El,Rel,LWF)),
1850 (var(Rel) -> ground_value_check(El,GrVal),
1851 in_domain_lwf2(El,Rel,LWF,GrVal,WF) % we could also wait at least until WF0 is fully grounded?
1852 ; not_empty_set_unless_closure_wf(Rel,WF),
1853 in_domain_wf_lazy(El,Rel,WF)).
1854
1855 :- block in_domain_lwf2(?,-,-,-,?).
1856 in_domain_lwf2(El,Rel,_LWF,_Grval,WF) :- % tools_printing:print_term_summary(in_domain_lwf2(El,Rel,_LWF,_Grval)),
1857 (var(Rel) -> Rel = [(El,_)|_]
1858 % can create a choice point when unifying with large avl_set:, see rule_Rule_DB_PSR_0003_C
1859 % maybe we should delay even further
1860 ; not_empty_set_unless_closure_wf(Rel,WF),
1861 in_domain_wf_lazy(El,Rel,WF)).
1862
1863 not_empty_set_unless_closure_wf(closure(_,_,_),_) :- !. % do not check this; in_domain_wf or other call will find a solution anyway; no need to set up closure constraints twice
1864 not_empty_set_unless_closure_wf(Rel,WF) :- not_empty_set_wf(Rel,WF).
1865
1866 % does not instantiate to [(El,_)|_]
1867 :- block in_domain_wf_lazy(?,-,?).
1868 in_domain_wf_lazy(_DomainElement,[],_WF) :- !,fail.
1869 in_domain_wf_lazy(DomainElement,avl_set(A),_WF) :-
1870 kernel_tools:ground_value(DomainElement), !,
1871 check_in_domain_of_avlset(DomainElement,A).
1872 % TO DO: check for infinite closures
1873 in_domain_wf_lazy(DomainElement,ES,WF) :-
1874 is_custom_explicit_set(ES,in_domain_wf_lazy),
1875 domain_of_explicit_set_wf(ES,Dom,WF),!,
1876 ? check_element_of_wf(DomainElement,Dom,WF).
1877 in_domain_wf_lazy(El,Rel,WF) :-
1878 expand_custom_set_to_list_wf(Rel,Relation,Done,in_domain_wf_lazy,WF),
1879 get_binary_choice_wait_flag(in_domain_wf_lazy(El),WF,LWF), % TO DO: get_pow2_binary_choice_priority(Len,Prio), get_binary_choice_wait_flag_exp_backoff
1880 % if Done == true -> we can use maybe clpfd_inlist or clpfd:element or quick_propagate
1881 quick_propagation_domain_element_list(Done,Relation,El,WF),
1882 in_domain2(El,Relation,WF,LWF).
1883
1884 % a custom implementation of quick_propagation_element_information for checking domain elements and lists only
1885 :- use_module(clpfd_lists,[try_in_fd_value_list_check/4]).
1886 :- block quick_propagation_domain_element_list(-,?,?,?).
1887 quick_propagation_domain_element_list(_,_,_,_) :- preferences:preference(use_clpfd_solver,false),!.
1888 quick_propagation_domain_element_list(_,_,El,_) :- ground(El),!.
1889 quick_propagation_domain_element_list(_,RelList,El,WF) :-
1890 try_in_fd_value_list_check(RelList,(El,_),couple_left(_),WF). % use couple_left to ignore range values
1891
1892
1893 :- block in_domain2(?,-,?,?).
1894 in_domain2(El,[(X,_Y)|T],WF,LWF) :-
1895 (T==[]
1896 -> equal_object_wf(El,X,in_domain2,WF)
1897 ; kernel_objects:equality_objects_lwf(El,X,EqRes,LWF,WF),
1898 in_domain3(EqRes,El,T,WF,LWF)
1899 ).
1900
1901 :- block in_domain3(-,?,?,?,?).
1902 in_domain3(pred_true,_El,_T,_WF,_LWF).
1903 in_domain3(pred_false,El,T,WF,LWF) :-
1904 get_new_subsidiary_wait_flag(LWF,in_domain2(El,T),WF,NewLWF), % not necessary if T only has single element
1905 in_domain2(El,T,WF,NewLWF).
1906
1907
1908 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[],WF),WF)).
1909 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(2),int(7))],WF),WF)).
1910 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(2),int(7)),(int(4),int(3))],WF),WF)).
1911 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_in_domain_wf(int(4),[(int(2),int(7)),(int(4),int(3))],WF),WF)).
1912 :- assert_must_fail((bsets_clp:not_in_domain_wf(int(1),[(int(1),int(2))],_))).
1913 :- assert_must_fail((bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2)),(int(3),int(4))],_))).
1914 :- assert_must_succeed((bsets_clp:not_in_domain_wf(int(3),[],_))).
1915 :- assert_must_succeed((bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2))],_))).
1916 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2)),(int(2),int(3))],WF),WF)).
1917 /* a more efficient version than using not_element_of and computing domain */
1918
1919
1920 :- block not_in_domain_wf(?,-,?).
1921 not_in_domain_wf(DomainElement,ES,WF) :- is_custom_explicit_set(ES,not_in_domain),
1922 domain_of_explicit_set_wf(ES,Dom,WF),!,
1923 not_element_of_wf(DomainElement,Dom,WF).
1924 not_in_domain_wf(El,Rel,WF) :-
1925 expand_custom_set_to_list_wf(Rel,Relation,_,not_in_domain,WF),
1926 not_in_domain2(Relation,El,WF).
1927 :- block not_in_domain2(-,?,?).
1928 not_in_domain2([],_,_WF).
1929 not_in_domain2([(X,_Y)|T],E,WF) :- not_equal_object_wf(E,X,WF), not_in_domain2(T,E,WF).
1930
1931
1932
1933
1934 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf([],[],WF),WF)).
1935 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf([(int(1),int(3))],[int(3)],WF),WF)).
1936 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf(
1937 [(int(0),int(55)),(int(2),int(3)),(int(1),int(3))],[int(3),int(55)],WF),WF)).
1938 :- assert_must_succeed((bsets_clp:range_wf([],Res,_WF),Res=[])).
1939 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2))],Res,_WF),
1940 kernel_objects:equal_object(Res,[int(2)]))).
1941 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(1)),(int(2),int(1))],Res,_WF),
1942 kernel_objects:equal_object(Res,[int(1)]))).
1943 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2)),(int(1),int(1))],Res,_WF),
1944 kernel_objects:equal_object(Res,[int(1),int(2)]))).
1945 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2)),(int(1),int(1)),(int(2),int(3))],Res,_WF),
1946 kernel_objects:equal_object(Res,[int(1),int(3),int(2)]))).
1947 :- assert_must_succeed((bsets_clp:range_wf(X,Res,_WF),
1948 X = [(int(1),int(2)),(int(1),int(1)),(int(2),int(3))],
1949 kernel_objects:equal_object(Res,[int(1),int(3),int(2)]))).
1950 :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2),
1951 X = [(int(1),int(2)),(int(1),int(1)),(int(2),int(2))])).
1952 :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2),
1953 X = [(int(2),int(1)),(int(1),int(2)),(int(2),int(2))])).
1954 :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2),
1955 X = [])).
1956 :- assert_must_succeed((bsets_clp:range_wf([([],[]),([int(0)],[int(0)]),
1957 ([int(0),int(1)],[int(0),int(1)]),([int(0),int(2)],[int(0),int(2)]),
1958 ([int(0),int(3)],[int(0),int(3)]),([int(0),int(4)],[int(0),int(4)]),([int(1)],[int(1)]),
1959 ([int(1),int(2)],[int(1),int(2)]),([int(1),int(3)],[int(1),int(3)]),
1960 ([int(1),int(4)],[int(1),int(4)]),([int(2)],[int(2)]),([int(2),int(3)],[int(2),int(3)]),
1961 ([int(2),int(4)],[int(2),int(4)]),([int(3)],[int(3)]),([int(3),int(4)],
1962 [int(3),int(4)]),([int(4)],[int(4)])],_Res,_WF))).
1963 :- assert_must_succeed((bsets_clp:range_wf([([],[]),([int(0)],[int(0)]),
1964 ([int(0),int(1)],[int(0),int(1)]),
1965 ([int(0),int(3)],[int(0),int(3)]),([int(0),int(4)],[int(0),int(4)]),([int(1)],[int(1)]),
1966 ([int(1),int(2)],[int(1),int(2)])],_Res,_WF))).
1967
1968
1969 :- block range_wf(-,-,?).
1970 range_wf(Rel,Res,WF) :- Res ==[],!, empty_set_wf(Rel,WF).
1971 range_wf(Rel,Res,WF) :- Rel ==[],!, empty_set_wf(Res,WF).
1972 range_wf(Rel,Res,WF) :- range_wf1(Rel,Res,WF),
1973 propagate_result_to_input(Res,Rel,range,WF).
1974
1975 :- block range_wf1(-,?,?).
1976 range_wf1(Rel,Res,WF) :-
1977 is_custom_explicit_set(Rel,range_wf1),
1978 range_of_explicit_set_wf(Rel,Range,WF), !,
1979 ? equal_object_wf(Range,Res,range_wf1,WF).
1980 range_wf1(Rel,Res,WF) :-
1981 % TO DO : propagate information that card of Res <= card of Rel; similar thing for domain
1982 expand_custom_set_to_list_wf(Rel,Relation,_,range_wf1,WF),
1983 newrange2(Relation,[],Res,WF),
1984 quick_propagate_range(Relation,Res,WF).
1985
1986
1987 :- block quick_propagate_range(-,?,?).
1988 quick_propagate_range([],_,_WF).
1989 quick_propagate_range([(_,Y)|T],FullRes,WF) :-
1990 quick_propagation_element_information(FullRes,Y,WF,FullRes1), % should we use a stronger check ?
1991 quick_propagate_range(T,FullRes1,WF).
1992
1993 :- block newrange2(-,?,?,?).
1994 newrange2([],_SoFar,Res,WF) :-
1995 ? empty_set_wf(Res,WF).
1996 newrange2([(X,Y)|T],SoFar,Res,WF) :-
1997 (Res==[]
1998 -> MemRes=pred_true, check_element_of_wf(Y,SoFar,WF)
1999 ; membership_test_wf(SoFar,Y,MemRes,WF),
2000 card_greater_equal_check([(X,Y)|T],Res,MemRes), % check that card of Relation is greater or equal to Result; if equal set MemRes to pred_false
2001 (var(MemRes) -> prop_empty_pred_true(Res,MemRes) %,print(delay_range(Y,T)),nl
2002 % TO DO: we could look further in T if we can decide membership for other elements in T ?
2003 ; true)
2004 ),
2005 newrange3(MemRes,Y,T,SoFar,Res,WF).
2006
2007 :- block prop_empty_pred_true(-,?).
2008 prop_empty_pred_true([],R) :- !, R=pred_true.
2009 prop_empty_pred_true(_,_).
2010
2011 % card_greater_equal_check(Set1,Set2,EqFlag) : check that cardinality of Set1 is greater or equal to that of Set2; set EqFlag to pred_false if they are equal
2012 % checking is stopped if EqFlag becomes nonvar
2013 % tested by testcase 1061
2014 :- block card_greater_equal_check(-,?,-), card_greater_equal_check(?,-,-).
2015 card_greater_equal_check(_,_,Flag) :- nonvar(Flag),!. % no longer required; even though we could prune failure !? done later in newrange2/newdomain2 ??!!
2016 card_greater_equal_check([],Set2,Flag) :- !,empty_set(Set2),
2017 Flag=pred_false. % Flag set indicates that both sets have same size
2018 card_greater_equal_check(_,[],_) :- !.
2019 card_greater_equal_check([_|T],[_|R],Flag) :- !, card_greater_equal_check(T,R,Flag).
2020 % To do: deal with AVL args as Result + also use efficient_card_for_set for closures
2021 %card_greater_equal_check([_|T],Set,Flag) :- efficient_card_for_set(B,CardB,CodeB),!,
2022 % f: 1..7 -->> 1..n & n>=7 & n<10 still does not work well
2023 % TO DO: can we merge code with check_card_greater_equal
2024 card_greater_equal_check(_,_,_).
2025
2026
2027 :- block newrange3(-,?,?,?,?,?).
2028 ?newrange3(pred_true,_Y,T,SoFar,Res,WF) :- newrange2(T,SoFar,Res,WF).
2029 newrange3(pred_false,Y,T,SoFar,Res,WF) :-
2030 kernel_objects:mark_as_non_free(Y,range), % Y is linked to a particular X -> it is not free
2031 add_element_wf(Y,SoFar,SoFar2,WF),
2032 equal_cons_wf(Res,Y,Res2,WF),
2033 ? newrange2(T,SoFar2,Res2,WF).
2034
2035
2036 :- assert_must_succeed((bsets_clp:identity_relation_over_wf([],Res,_WF),Res=[])).
2037 :- assert_must_succeed((bsets_clp:identity_relation_over_wf([int(1),int(2)],Res,_WF),
2038 Res=[(int(1),int(1)),(int(2),int(2))])).
2039 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:identity_relation_over_wf([int(2),int(4)],[(int(4),int(4)),(int(2),int(2))],WF),WF)).
2040 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:identity_relation_over_wf([int(1),int(2),int(4)],[(int(4),int(4)),(int(2),int(2)),(int(1),int(1))],WF),WF)).
2041 :- assert_must_fail((bsets_clp:identity_relation_over_wf([int(1)|_],_,_WF),fail)). /* check: no loop */
2042
2043 :- block identity_relation_over_wf(-,?,?).
2044 identity_relation_over_wf(Set1,IDRel,WF) :-
2045 expand_custom_set_to_list_wf(Set1,ESet1,_,identity_relation_over_wf,WF),
2046 identity_relation_over2(ESet1,IDRel,WF).
2047
2048 :- block identity_relation_over2(-,?,?).
2049 identity_relation_over2([],Res,WF) :- empty_set_wf(Res,WF).
2050 identity_relation_over2([X|T1],Res,WF) :- equal_cons_wf(Res,(X,X),T2,WF), % equal_object([(X,X)|T2],Res),
2051 identity_relation_over2(T1,T2,WF).
2052
2053
2054
2055 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_identity((int(1),int(1)),[int(1),int(2)],WF),WF)).
2056 :- assert_must_fail((bsets_clp:in_identity((int(1),int(2)),[int(1),int(2)],_WF))).
2057 :- assert_must_fail((bsets_clp:in_identity((int(3),int(3)),[int(1),int(2)],_WF))).
2058 :- assert_must_fail((bsets_clp:in_identity((int(1),int(2)),[],_WF))).
2059 in_identity((X,Y),Domain,WF) :-
2060 ? equal_object_wf(X,Y,in_identity,WF), check_element_of_wf(X,Domain,WF).
2061
2062 :- assert_must_fail((bsets_clp:not_in_identity((int(1),int(1)),[int(1),int(2)],_WF))).
2063 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_identity((int(1),int(2)),[int(1),int(2)],WF),WF)).
2064 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_identity((int(3),int(3)),[int(1),int(2)],WF),WF)).
2065 :- assert_must_succeed((bsets_clp:not_in_identity((int(1),int(2)),[],_WF))).
2066 not_in_identity((X,Y),Domain,WF) :-
2067 equality_objects_wf(X,Y,Eq,WF),
2068 not_in_id2(Eq,X,Domain,WF).
2069
2070 :- block not_in_id2(-,?,?,?).
2071 not_in_id2(pred_true,X,Domain,WF) :- not_element_of_wf(X,Domain,WF).
2072 not_in_id2(pred_false,_,_,_).
2073
2074
2075 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], [(int(6),int(5)),(int(2),int(1)),(int(4),int(3))],WF),WF)).
2076 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([(int(1),int(2))], [(int(2),int(1))],WF),WF)).
2077 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([], [],WF),WF)).
2078 :- assert_must_succeed((bsets_clp:invert_relation_wf(X,X,_),X = [])).
2079 :- assert_must_succeed((bsets_clp:invert_relation_wf(X,X,_),X = [(int(2),int(2))])).
2080 :- assert_must_succeed((bsets_clp:invert_relation_wf(X,[(int(1),int(2)),(int(7),int(6))],_WF),
2081 X = [(int(2),int(1)),(int(6),int(7))])).
2082 :- assert_must_succeed((bsets_clp:invert_relation_wf([(int(1),int(2)),(int(7),int(6))],X,_WF),
2083 X = [(int(2),int(1)),(int(6),int(7))])).
2084 :- assert_must_succeed((bsets_clp:invert_relation_wf([(int(1),int(2)),(int(7),int(6))],
2085 [(int(6),int(7)),(int(2),int(1))],_WF))).
2086 :- assert_must_succeed((bsets_clp:invert_relation_wf(closure([a,b],[string,boolean],b(truth,pred,[])),
2087 closure([b,a],[boolean,string],b(truth,pred,[])),_WF))).
2088
2089 :- block invert_relation_wf(-,-,?).
2090 invert_relation_wf(R,IR,WF) :-
2091 % (nonvar(R) -> invert_relation2(R,IR) ; invert_relation2(IR,R)).
2092 invert_relation2(R,IR,WF). % , print_term_summary(invert_relation(R,IR)).
2093 /* Optimization for some types of closures: Instead of expanding the closures, we just
2094 swap the parameters. This does not work with closures wich have only one parameter
2095 wich is a pair */
2096 invert_relation2(CS,R,WF) :- nonvar(CS),is_custom_explicit_set_nonvar(CS),!,
2097 invert_explicit_set(CS,ICS), equal_object_wf(R,ICS,invert_relation2_1,WF).
2098 invert_relation2(R,CS,WF) :- nonvar(CS),is_custom_explicit_set_nonvar(CS),!,
2099 invert_explicit_set(CS,ICS), equal_object_wf(R,ICS,invert_relation2_2,WF).
2100 %invert_relation2(closure([P1,P2],[T1,T2],Clo),closure([P2,P1],[T2,T1],Clo)) :- !.
2101 invert_relation2(R,IR,WF) :- %try_expand_custom_set_wf(R,ER,invert,WF),
2102 % (nonvar(R) -> invert_relation3(R,IR)
2103 % ; invert_relation3(IR,R),(ground(IR)-> true ; invert_relation3(R,IR))).
2104 invert_relation3(R,IR,WF,1), invert_relation3(IR,R,WF,1).
2105
2106 :- block invert_relation3(-,?,?,?).
2107 invert_relation3(closure(P,T,B),Res,WF,_) :- invert_explicit_set(closure(P,T,B),ICS),
2108 equal_object_wf(Res,ICS,invert_relation3_1,WF).
2109 invert_relation3(avl_set(S),Res,WF,_) :- invert_explicit_set(avl_set(S),ICS),
2110 equal_object_wf(Res,ICS,invert_relation3_2,WF).
2111 ?invert_relation3([],Res,WF,_) :- empty_set_wf(Res,WF).
2112 invert_relation3([(X,Y)|T],Res,WF,Depth) :-
2113 D1 is Depth+1, get_wait_flag(D1,invert_relation3,WF,LWF),
2114 equal_cons_lwf(Res,(Y,X),IT,LWF,WF),
2115 invert_relation3(T,IT,WF,D1).
2116
2117
2118
2119
2120 tuple_of(X,Y,R) :- check_element_of((X,Y),R).
2121 %tuple_of_wf(X,Y,R,WF) :- check_element_of_wf((X,Y),R,WF).
2122
2123
2124 % RELATIONAL COMPOSITION (;)
2125
2126 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)),
2127 [(int(11),int(33))],[(int(33),int(22))],WF),WF)).
2128 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)),
2129 [(int(11),int(12)),(int(11),int(33))],
2130 [(int(33),int(12)),(int(33),int(22))],WF),WF)).
2131 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(12)),
2132 [(int(11),int(12)),(int(11),int(33))],
2133 [(int(33),int(12)),(int(33),int(22))],WF),WF)).
2134 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)),
2135 [(int(11),[int(33),int(32)])],
2136 [([int(32),int(33)],int(22))],WF),WF)).
2137 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:in_composition_wf((int(11),int(33)),
2138 [(int(11),int(12)),(int(11),int(33))],
2139 [(int(33),int(12)),(int(33),int(22))],WF),WF)).
2140 % check if (X,Y) element of (F ; G)
2141 in_composition_wf((X,Y),F,G,WF) :-
2142 check_element_of_wf((X,Z1),F,WF), % no need to enumerate Z (TODO: check)
2143 equal_object_wf(Z1,Z2,check_element_of_wf,WF),
2144 check_element_of_wf((Z2,Y),G,WF).
2145
2146 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_composition_wf((int(11),int(33)),
2147 [(int(11),int(33))],[(int(33),int(22))],WF),WF)).
2148 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_composition_wf((int(33),int(22)),
2149 [(int(11),int(33))],[(int(33),int(22))],WF),WF)).
2150
2151 % just evaluates arguments; TODO: improve or at least pass Type (for symbolic composition)
2152 not_in_composition_wf(Couple,F,G,WF) :-
2153 rel_composition_wf(F,G,Comp,_UnknownType,WF),
2154 not_element_of_wf(Couple,Comp,WF).
2155
2156 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], [(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],
2157 [(int(1),int(1)),(int(5),int(7)),(int(3),int(33))]))).
2158 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([], [(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],[]))).
2159 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],[],[]))).
2160 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([],[],[]))).
2161 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))],
2162 [(int(1),int(11))],X),X = [])).
2163 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))],[],X),X = [])).
2164 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))],
2165 [(int(2),int(11))],X),
2166 kernel_objects:equal_object(X,[(int(1),int(11))]))).
2167 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(2))],[(int(2),int(11))],X),
2168 ground(X), bsets_clp:equal_object(X,[(int(1),int(11)),(int(7),int(11))]))).
2169 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(5))],
2170 [(int(2),int(11)),(int(2),int(4))],X),
2171 kernel_objects:equal_object(X,[(int(1),int(11)),(int(1),int(4))]))).
2172 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(1),int(5))],
2173 [(int(2),int(11)),(int(5),int(11))],X),
2174 kernel_objects:equal_object(X,[(int(1),int(11))]))).
2175 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),[int(1)]),(int(1),[int(2),int(5)])],
2176 [([int(1),int(2)],int(13)),([int(5),int(2)],int(12))],X),
2177 kernel_objects:equal_object(X,[(int(1),int(12))]))).
2178
2179 rel_composition(Rel1,Rel2,Comp) :- % only used in unit_tests above
2180 init_wait_flags(WF,[rel_composition]),
2181 rel_composition_wf(Rel1,Rel2,Comp,_UnknownType,WF),
2182 ground_wait_flags(WF).
2183
2184 :- block rel_composition_wf(-,-,?,?,?).
2185 rel_composition_wf(Rel1,Rel2,Comp,_,WF) :-
2186 (Rel1==[] ; Rel2==[]),
2187 !,
2188 empty_set_wf(Comp,WF).
2189 rel_composition_wf(Rel1,Rel2,Comp,Type,WF) :- rel_composition1(Rel1,Rel2,Comp,Type,WF).
2190
2191 :- block rel_composition1(-,?,?,?,?),rel_composition1(?,-,?,?,?).
2192 rel_composition1(Rel1,Rel2,Comp,_,WF) :-
2193 (Rel1==[] ; Rel2==[]),!, empty_set_wf(Comp,WF).
2194 ?rel_composition1(Rel1,Rel2,Comp,Type,WF) :- keep_symbolic(Rel1),
2195 (Rel2 = avl_set(_) -> SYMBOLIC=false ; SYMBOLIC=symbolic),
2196 symbolic_composition(Rel1,Rel2,SYMBOLIC,Type,Rel3),
2197 !,
2198 equal_object_wf(Comp,Rel3,rel_composition1_0,WF).
2199 rel_composition1(Rel1,Rel2,Comp,_,WF) :-
2200 rel_composition_for_explicit_set(Rel1,Rel2,Res),!, % treats finite Rel1 and avl_set for Rel2
2201 equal_object_wf(Res,Comp,rel_composition1_1,WF).
2202 rel_composition1(Rel1,Rel2,Comp,Type,WF) :- Rel2=closure(_,_,_),
2203 ? keep_symbolic(Rel2),
2204 (dom_for_specific_closure(Rel2,Domain,function(_),WF) % TO DO: also deal with relations; in SYMBOLIC mode this may be counter productive; see function_composition ast cleanup rule
2205 -> !,
2206 expand_custom_set_to_list_wf(Rel1,Relation1,_,rel_composition1,WF),
2207 rel_compose_with_inf_fun(Relation1,Domain,Rel2,Comp,WF) % this is like map Rel2 over Rel1 in functional programmming
2208 ; symbolic_composition(Rel1,Rel2,false,Type,Rel3),
2209 !,
2210 expand_custom_set_wf(Rel3,CRes,rel_composition,WF),% do we need to expand ?
2211 equal_object_optimized(CRes,Comp,rel_composition1_3)
2212 ).
2213 rel_composition1(Rel1,Rel2,Comp,_,WF) :-
2214 expand_custom_set_to_list_wf(Rel1,Relation1,_,rel_composition1_2,WF),
2215 expand_custom_set_to_list_wf(Rel2,Relation2,_,rel_composition1_3,WF),
2216 rel_compose2(Relation1,Relation2,Comp,WF).
2217
2218 :- use_module(btypechecker, [l_unify_types_strict/2]).
2219 symbolic_composition(Rel1,Rel2,SYMBOLIC,Type,Rel3) :-
2220 get_set_type(Type,couple(TX,TZ)),
2221 get_relation_types(Rel1,TX1,TY1),
2222 get_relation_types(Rel2,TY2,TZ2),
2223 (l_unify_types_strict([TX1,TY1,TZ],[TX,TY2,TZ2]) -> true
2224 ; add_internal_error('Could not unify range/domain types: ',l_unify_types_strict([TX1,TY1,TZ],[TX,TY2,TZ2])),
2225 fail
2226 ),
2227 ground((TX1,TY1,TZ)), % avoid creating a closure with non-ground type list
2228 rel_comp_closure(Rel1,Rel2,TX1,TY1,TZ,SYMBOLIC,Rel3).
2229 % generate a closure for {xx,zz | #(yy).(xx|->yy : Rel1 & yy|->zz : Rel2)}
2230 % TO DO: maybe detect special cases: Rel1 is a function/cartesian product, e.g., (((0 .. 76) * (0 .. 76)) * {FALSE}) ; {(FALSE|->0),(TRUE|->1)}
2231 :- use_module(bsyntaxtree, [safe_create_texpr/4]).
2232 rel_comp_closure(Rel1,Rel2,TX,TY,TZ,SYMBOLIC,closure(Args,Types,CBody)) :-
2233 Args = ['_rel_comp1','_rel_comp2'], Types = [TX,TZ],
2234 couple_member_pred('_rel_comp1',TX,'_zzzz_unary',TY,Rel1, Pred1),
2235 couple_member_pred('_zzzz_unary',TY,'_rel_comp2',TZ,Rel2, Pred2),
2236 UsedIds = ['_rel_comp1','_rel_comp2','_zzzz_unary'], % avoid having to call find_identifier_uses
2237 %conjunct_predicates([Pred1,Pred2],P12a), bsyntaxtree:check_computed_used_ids(P12a,UsedIds),
2238 safe_create_texpr(conjunct(Pred1,Pred2),pred,[used_ids(UsedIds)],P12),
2239 %b_interpreter_components:create_unsimplified_exists([b(identifier('_zzzz_unary'),TY,[])],P12,Body),
2240 bsyntaxtree:create_exists_opt_liftable([b(identifier('_zzzz_unary'),TY,[])],P12,Body), % cf Thales_All/rule_zcpa2 test 2287
2241 (SYMBOLIC==symbolic
2242 -> mark_bexpr_as_symbolic(Body,CBody)
2243 ; CBody=Body).
2244
2245 % generate predicate for X|->Y : Rel
2246 couple_member_pred(X,TX,Y,TY,Rel, Pred) :-
2247 Pred = b(member(b(couple(b(identifier(X),TX,[]),
2248 b(identifier(Y),TY,[])),couple(TX,TY),[]),
2249 b(value(Rel),set(couple(TX,TY)),[])),pred,[]).
2250
2251
2252
2253 :- block rel_compose2(-,?,?,?).
2254 rel_compose2([],_,Out,WF) :- empty_set_wf(Out,WF).
2255 rel_compose2([(X,Y)|T],Rel2,Out,WF) :-
2256 rel_extract(Rel2,X,Y,OutXY,[],WF),
2257 % rel_extract(Rel2,X,Y,Out,OutRem),
2258 rel_compose2(T,Rel2,OutRem,WF),
2259 union_wf(OutRem,OutXY,Out,WF). % used to call union wihout wf; makes test 1394 fail
2260
2261 :- block rel_extract(-,?,?,?,?,?).
2262 rel_extract([],_,_,Rem,Rem,_WF). % should we use equal_object here ?????
2263 rel_extract([(Y1,Z)|T],X,Y,Res,Rem,WF) :-
2264 rel_extract(T,X,Y,CT,Rem,WF),
2265 equality_objects_wf(Y1,Y,EqRes,WF),
2266 rel_extract2(EqRes,Z,X,CT,Res).
2267
2268 :- block rel_extract2(-,?,?,?,?).
2269 rel_extract2(pred_true, Z, X,CT,Res) :- add_element((X,Z),CT,Res).
2270 rel_extract2(pred_false,_Z,_X,CT,Res) :- Res = CT.
2271
2272
2273 % relational composition of a finite relation with an infinite or symbolic function
2274 rel_compose_with_inf_fun(R,Dom,Fun,CompRes,WF) :- !,
2275 rel_compose_with_inf_fun_acc(R,Dom,Fun,[],CompRes,WF).
2276 :- block rel_compose_with_inf_fun_acc(-,?,?,?,?,?).
2277 rel_compose_with_inf_fun_acc([],_Dom,_Rel2,Acc,Comp,WF) :-
2278 equal_object_wf(Comp,Acc,rel_compose_with_inf_fun_acc,WF).
2279 rel_compose_with_inf_fun_acc([(X,Y)|T],Dom,Fun,Acc,CompRes,WF) :-
2280 membership_test_wf(Dom,Y,MemRes,WF), % check if Y is in the domain of the symbolic relation
2281 rel_compose_with_inf_fun_acc_aux(MemRes,X,Y,T,Dom,Fun,Acc,CompRes,WF).
2282
2283 :- block rel_compose_with_inf_fun_acc_aux(-,?,?,?, ?,?,?,?, ?).
2284 rel_compose_with_inf_fun_acc_aux(pred_true,X,Y,T,Dom,Fun,Acc,CompRes,WF) :-
2285 apply_to(Fun,Y,FY,WF), % TO DO: generalize to image so that we can apply it also to infinite relations ?
2286 add_element_wf((X,FY),Acc,NewAcc,WF),
2287 rel_compose_with_inf_fun_acc(T,Dom,Fun,NewAcc,CompRes,WF).
2288 rel_compose_with_inf_fun_acc_aux(pred_false,_X,_Y,T,Dom,Fun,Acc,Comp,WF) :-
2289 rel_compose_with_inf_fun_acc(T,Dom,Fun,Acc,Comp,WF).
2290
2291 % TO DO: if we obtain a list such as [(int(1),X),...] in Acc rather than an avl_set,
2292 % we may still be able to sort and avoid quadratic comparisons if e.g.
2293 % first component is a data-type where equality can be decided by unification (integer, bool, global(GS), ...)
2294 % we could put the optimisation into add_element_wf ?
2295 % TO DO: special version for avl_set as relation?
2296
2297 /*
2298 Note: old version; has performance problem, 2021/02_Feb/CDS
2299 the add_element_wf calls below can only construct/instantiate result when empty_set_wf reached
2300 and a lot of pending co-routines pile up for long relation lists
2301
2302 :- block rel_compose_with_inf_fun(-,?,?,?,?).
2303 rel_compose_with_inf_fun([],_Dom,_Rel2,Comp,WF) :- empty_set_wf(Comp,WF).
2304 rel_compose_with_inf_fun([(X,Y)|T],Dom,Fun,CompRes,WF) :-
2305 membership_test_wf(Dom,Y,MemRes,WF), rel_compose_with_inf_fun_aux(MemRes,X,Y,T,Dom,Fun,CompRes,WF).
2306
2307 :- block rel_compose_with_inf_fun_aux(-,?,?,?, ?,?,?,?).
2308 rel_compose_with_inf_fun_aux(pred_true,X,Y,T,Dom,Fun,CompRes,WF) :-
2309 apply_to(Fun,Y,FY,WF),
2310 add_element_wf((X,FY),CT,CompRes,WF),
2311 rel_compose_with_inf_fun(T,Dom,Fun,CT,WF).
2312 rel_compose_with_inf_fun_aux(pred_false,_X,_Y,T,Dom,Fun,Comp,WF) :-
2313 rel_compose_with_inf_fun(T,Dom,Fun,Comp,WF).
2314 */
2315
2316 :- assert_must_abort_wf(bsets_clp:rel_iterate_wf([],int(-1),_R,set(couple(integer,integer)),WF),WF).
2317 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([], int(2),[],set(couple(integer,integer)),_WF))).
2318 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], int(1),[(int(1),int(2)),(int(3),int(4)),(int(5),int(6))],set(couple(integer,integer)),_WF))).
2319 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([(pred_true,pred_true)], int(0),
2320 [(pred_true,pred_true),(pred_false,pred_false)],set(couple(boolean,boolean)),_WF))).
2321 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:rel_iterate_wf([(int(1),int(2)),
2322 (int(2),int(4)),(int(4),int(6))], int(2),[(int(1),int(4)),(int(2),int(6))],
2323 set(couple(integer,integer)),WF),WF)).
2324 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(1),X,set(couple(integer,integer)),_WF), R=[],
2325 bsets_clp:equal_object(X,R))).
2326 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(1),X,set(couple(integer,integer)),_WF),
2327 R=[(int(1),int(2)),(int(2),int(3))],
2328 bsets_clp:equal_object(X,R))).
2329 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(2),X,set(couple(integer,integer)),_WF),
2330 R=[(int(1),int(2)),(int(2),int(3))],
2331 bsets_clp:equal_object(X,[(int(1),int(3))]))).
2332 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(3),X,set(couple(integer,integer)),_WF),
2333 R=[(int(1),int(2)),(int(2),int(3))],
2334 bsets_clp:equal_object(X,[]))).
2335 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(3),X,set(couple(integer,integer)),_WF),
2336 R=[(int(1),int(2)),(int(2),int(3)),(int(1),int(1))],
2337 bsets_clp:equal_object(X,[(int(1),int(1)),(int(1),int(2)),(int(1),int(3))]))).
2338
2339 rel_iterate_wf(Rel,int(Nr),Res,Type,WF) :-
2340 opt_push_wait_flag_call_stack_info(WF,b_operator_call(iterate,
2341 [Nr,Rel],unknown),WF2),
2342 rel_iterate1(Nr,Rel,Res,Type,WF2).
2343
2344 :- block rel_iterate1(-,?,?,?,?).
2345 rel_iterate1(X,Rel,Res,Type,WF) :-
2346 %kernel_tools:value_variables(Rel,GrV),
2347 rel_iterate2(X,Rel,Res,Type,WF).
2348
2349 rel_iterate2(X,Rel,Res,Type,WF) :-
2350 ( X=1 -> equal_object_wf(Res,Rel,rel_iterate2,WF)
2351 ; X>1 -> X1 is X-1,
2352 rel_iterate2(X1,Rel,R1,Type,WF),
2353 rel_composition_wf(Rel,R1,Res,Type,WF)
2354 ; X=0 -> rel_iterate0(Rel,Type,Res,WF)
2355 ; add_wd_error('negative index in iterate',X,WF)
2356 ).
2357
2358 :- use_module(bsyntaxtree,[get_set_type/2]).
2359 :- block rel_iterate0(?,-,?,?).
2360 rel_iterate0(_Rel,EType,Res,WF) :-
2361 get_set_type(EType,couple(Type,Type)),
2362 event_b_identity_for_type(Type,Res,WF).
2363
2364 :- use_module(typing_tools,[is_infinite_type/1]).
2365 event_b_identity_for_type(Type,Res,WF) :-
2366 create_texpr(identifier('_zzzz_unary'),Type,[],TIdentifier1), % was [generated]
2367 create_texpr(identifier('_zzzz_binary'),Type,[],TIdentifier2), % was [generated]
2368 (is_infinite_type(Type) -> Info = [prob_annotation('SYMBOLIC')] ; Info =[]),
2369 create_texpr(equal(TIdentifier1,TIdentifier2),pred,Info,TPred),
2370 construct_closure(['_zzzz_unary','_zzzz_binary'],[Type,Type],TPred,CRes),
2371 % for small types we could do: all_objects_of_type(Type,All), identity_relation_over_wf(All,CRes,WF)
2372 %, print(constructed_eventb_identity(Res)),nl
2373 equal_object_wf(Res,CRes,WF).
2374
2375
2376 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([],[(int(1),int(11))],[],_WF))).
2377 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2378 [(int(1),int(11))],[(int(1),(int(2),int(11)))],_WF))).
2379 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2380 [(int(2),int(11))],[],_WF))).
2381 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2382 [(int(2),int(11))],X,_WF),
2383 X = [])).
2384 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2385 [(int(1),int(11))],X,_WF),
2386 kernel_objects:equal_object(X,[(int(1),(int(2),int(11)))]))).
2387 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(1),int(6))],
2388 [(int(1),int(11))],X,_WF),
2389 kernel_objects:equal_object(X,[(int(1),(int(2),int(11))),(int(1),(int(6),int(11)))]))).
2390 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(2),int(6))],
2391 [(int(1),int(11)),(int(1),int(12))],X,_WF),
2392 kernel_objects:equal_object(X,[(int(1),(int(2),int(11))),(int(1),(int(2),int(12)))]))).
2393 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(2),int(6))],
2394 [(int(1),int(11)),(int(1),int(12))],
2395 [(int(1),(int(2),int(11))),(int(1),(int(2),int(12)))],_WF))).
2396 :- assert_must_succeed((bsets_clp:direct_product_wf(avl_set(node((fd(1,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name')),true,0,empty,empty))),
2397 avl_set(node((fd(1,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name')),true,0,empty,empty))),
2398 avl_set(node((fd(1,'Name'),fd(2,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name'),fd(3,'Name')),true,0,empty,empty)))
2399 ,_WF))).
2400
2401 :- block direct_product_wf(-,?,?,?),direct_product_wf(?,-,?,?).
2402 direct_product_wf(Rel1,Rel2,Prod,WF) :-
2403 try_expand_and_convert_to_avl_with_check(Rel1,E1,direct_product), % to do: try_expand_and_convert_to_avl_unless_large_wf(Rel1,E1,WF),
2404 try_expand_and_convert_to_avl_with_check(Rel2,E2,direct_product),
2405 direct_product_wf1(E1,E2,Prod,WF).
2406
2407 direct_product_wf1(Rel1,Rel2,Prod,WF) :-
2408 direct_product_explicit_set(Rel1,Rel2,Res),!,
2409 equal_object_wf(Prod,Res,direct_product_wf1,WF).
2410 direct_product_wf1(Rel1,Rel2,Prod,WF) :-
2411 expand_custom_set_to_list_wf(Rel1,Relation1,_,direct_product_wf1_1,WF),
2412 expand_custom_set_to_list_wf(Rel2,Relation2,_,direct_product_wf1_2,WF),
2413 direct_product2(Relation1,Relation2,Prod,WF),
2414 direct_product_backwards(Relation1,Relation2,Prod,WF).
2415
2416 :- block direct_product2(-,?,?,?).
2417 direct_product2([],_,Out,WF) :- equal_object_wf(Out,[],direct_product2,WF).
2418 direct_product2([(X,Y)|T],Rel2,Out,WF) :-
2419 direct_product_tuple(Rel2,X,Y,Out,OutRem,WF),
2420 direct_product2(T,Rel2,OutRem,WF).
2421
2422 :- block direct_product_tuple(-,?,?,?,?,?).
2423 direct_product_tuple([],_,_,Res,Rem,WF) :- equal_object_optimized_wf(Res,Rem,direct_product_tuple,WF).
2424 direct_product_tuple([(X2,Z)|T],X,Y,Res,Rem,WF) :-
2425 direct_product_tuple(T,X,Y,CT,Rem,WF),
2426 equality_objects_wf(X2,X,EqRes,WF),
2427 direct_product_tuple3(EqRes,X,Y,Z,CT,Res,WF).
2428
2429 :- block direct_product_tuple3(-,?,?,?,?,?,?).
2430 direct_product_tuple3(pred_true,X,Y,Z,CT,Res,WF) :-
2431 equal_cons_wf(Res,(X,(Y,Z)),CT,WF). /* no need for add_element as output uniquely determines X,Y,Z !?*/
2432 direct_product_tuple3(pred_false,_X,_Y,_Z,CT,Res,WF) :- equal_object_optimized_wf(Res,CT,direct_product_tuple3,WF).
2433
2434 :- block direct_product_backwards(?,?,-,?).
2435 % Propagate information backwards from result to arguments
2436 direct_product_backwards(R1,R2,Prod,WF) :-
2437 ((kernel_tools:ground_value(R1);kernel_tools:ground_value(R2)) -> true
2438 ; expand_custom_set_to_list_wf(Prod,ProdList,_,direct_product_backwards,WF),
2439 direct_product_propagate_back(ProdList,R1,R2,WF)
2440 ).
2441
2442 :- block direct_product_propagate_back(-,?,?,?).
2443 direct_product_propagate_back([],_,_,_WF).
2444 direct_product_propagate_back([(X,(Y,Z))|T],R1,R2,WF) :-
2445 check_element_of_wf((X,Y),R1,WF), check_element_of_wf((X,Z),R2,WF),
2446 direct_product_propagate_back(T,R1,R2,WF).
2447
2448 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:parallel_product([],[(int(3),int(4))],[]))).
2449 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:parallel_product([(int(1),int(2))],
2450 [(int(3),int(4))],[((int(1),int(3)),(int(2),int(4)))]))).
2451 :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))],
2452 [(int(3),int(4))],X), ground(X),
2453 equal_object(X,[((int(1),int(3)),(int(2),int(4)))]))).
2454 :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))],
2455 [(int(3),int(4))],[((int(1),int(3)),(int(2),int(4)))]))).
2456 :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))], [],X),X == [])).
2457 :- assert_must_succeed((bsets_clp:parallel_product([], [(int(3),int(4))],X),X == [])).
2458
2459 parallel_product(Rel1,Rel2,Prod) :- parallel_product_wf(Rel1,Rel2,Prod,no_wf_available).
2460
2461 :- block parallel_product_wf(-,?,?,?),parallel_product_wf(?,-,?,?).
2462 % NOTE: we now have in_parallel_product; as such parallel products are kept symbolic
2463 %parallel_product_wf(Rel1,Rel2,Prod,WF) :- (keep_symbolic(Rel1) -> true ; keep_symbolic(Rel2)),
2464 % print_term_summary(parallel_product(Rel1,Rel2,Prod)),nl,
2465 %% % TO DO: generate closure
2466 % %{xy,mn|#(x,y,m,n).(xy=(x,y) & mn=(m,n) & (x,m):S & (y,n):R)}
2467 % fail.
2468 parallel_product_wf(Rel1,Rel2,Prod,WF) :-
2469 expand_custom_set_to_list_wf(Rel1,Relation1,_,parallel_product_1,WF),
2470 expand_custom_set_to_list_wf(Rel2,Relation2,_,parallel_product_2,WF),
2471 parallel_product2(Relation1,Relation2,ProdRes,WF),
2472 equal_object_optimized_wf(ProdRes,Prod,parallel_product,WF).
2473
2474 :- use_module(kernel_equality,[conjoin_test/4]).
2475 %(Rel1||Rel2) = {(x,y),(m,n)| (x,m):Rel1 & (y,n):Rel2}
2476
2477 % TO DO: use this in b_interpreter_check:
2478 in_parallel_product_test(((X,Y),(M,N)),Rel1,Rel2,Result,WF) :-
2479 conjoin_test(MemRes1,MemRes2,Result,WF),
2480 membership_test_wf(Rel1,(X,M),MemRes1,WF),
2481 membership_test_wf(Rel2,(Y,N),MemRes2,WF).
2482
2483 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_parallel_product_wf(((int(1),int(2)),(int(11),int(22))),[(int(1),int(11))],[(int(2),int(22))],WF),WF)).
2484
2485 in_parallel_product_wf(El,Rel1,Rel2,WF) :-
2486 in_parallel_product_test(El,Rel1,Rel2,pred_true,WF).
2487
2488
2489 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_in_parallel_product_wf(((int(1),int(11)),(int(2),int(22))),[(int(1),int(11))],[(int(2),int(22))],_WF))).
2490
2491 not_in_parallel_product_wf(El,Rel1,Rel2,WF) :-
2492 in_parallel_product_test(El,Rel1,Rel2,pred_false,WF).
2493
2494
2495 :- block parallel_product2(-,?,?,?).
2496 parallel_product2([],_,Out,WF) :- empty_set_wf(Out,WF).
2497 parallel_product2([(X,Y)|T],Rel2,Out,WF) :-
2498 parallel_product_tuple(Rel2,X,Y,Out,Tail,WF),
2499 parallel_product2(T,Rel2,Tail,WF).
2500
2501 :- block parallel_product_tuple(-,?,?,?,?,?).
2502 parallel_product_tuple([],_,_,Tail1,Tail2,WF) :- equal_object_wf(Tail1,Tail2,parallel_product_tuple,WF).
2503 parallel_product_tuple([(X2,Y2)|T],X,Y,Rel2,Tail,WF) :-
2504 equal_object_wf(Rel2,[((X,X2),(Y,Y2))|RT],parallel_product_tuple,WF),
2505 parallel_product_tuple(T,X,Y,RT,Tail,WF).
2506
2507
2508 % -------------------------------------------------
2509
2510 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1)],[int(7),int(6)],WF),WF)). %% with wf_det leads to residue custom_explicit_sets:b_not_test_closure_enum
2511 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)).
2512 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2513 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(1),int(7))],[int(1)],[int(7),int(6)],WF),WF)).
2514 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2515 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2516 :- assert_must_fail((bsets_clp:not_partial_function([],[int(1)],[int(7)],_WF))).
2517 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1)],[int(7)],_WF),
2518 X = [(int(1),int(7))])).
2519 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7)],_WF),
2520 X = [(int(2),int(7)),(int(1),int(7))])).
2521 :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2522 [int(7),int(6)],_WF),
2523 X = [([(int(1),int(2))],int(7)),
2524 ([(int(2),int(3)),(int(1),int(3))],int(6))])).
2525 :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2526 [int(7),int(6)],_WF),
2527 X = [([(int(2),int(3)),(int(1),int(3))],int(6))])).
2528 :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2529 [int(7),int(6)],_WF),
2530 X = [([(int(1),int(2))],int(7)),
2531 ([(int(2),int(3)),(int(1),int(3))],int(6))])).
2532 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1)],[[int(7),int(6)]],_WF),
2533 X = [(int(1),[int(6),int(7)])])).
2534 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2535 X = [(int(2),int(7)),(int(1),int(7))])).
2536 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2537 X = [(int(2),int(7)),(int(2),int(6))])).
2538 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2539 X = [(int(2),int(7)),(int(1),int(2))])).
2540 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2541 X = [(int(2),int(7)),(int(3),int(6))])).
2542 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2543 X = [(int(2),int(7)),(int(2),int(5))])).
2544 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2545 X = [(int(1),int(7)),(int(2),int(6)),(int(2),int(7))])).
2546 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2547 X = [(int(1),int(7)),(int(5),int(75))])).
2548 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2549 X = [(int(1),int(7)),(int(0),int(7))])).
2550 :- assert_must_succeed((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2551 X = [(int(1),int(7)),(int(-1),int(7))])).
2552 :- assert_must_succeed((bsets_clp:not_partial_function(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2553 X = [(int(1),int(7)),(int(0),int(7))])).
2554 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('Name'),global_set('Code'),_WF),
2555 X = [(fd(1,'Name'),fd(1,'Code'))])).
2556 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('Code'),_WF),
2557 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(88),fd(2,'Code'))])).
2558 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('Code'),_WF),
2559 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(2),fd(2,'Code'))])).
2560 :- assert_must_succeed((bsets_clp:not_partial_function([(fd(1,'Code'),int(1)),(fd(1,'Code'),int(2))],
2561 global_set('Code'),global_set('NAT1'),_WF) )).
2562
2563 :- block not_partial_function(-,?,?,?).
2564 not_partial_function([],_Domain,_Range,_WF) :- !,fail.
2565 not_partial_function(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
2566 % we do not need the Range; this means we can match more closures (e.g., lambda)
2567 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
2568 not_subset_of_wf(FFDomain,Domain,WF).
2569 not_partial_function(FF,Domain,Range,WF) :- nonvar(FF),
2570 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
2571 not_both_subset_of(FFDomain,FFRange,Domain,Range,WF).
2572 not_partial_function(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred),
2573 % example: f = %t.(t : NATURAL|t + 100) & f /: NATURAL +-> NATURAL
2574 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
2575 get_range_id_expression(P,T,TRangeID),!,
2576 subset_test(FFDomain,Domain,SubRes,WF),
2577 when(nonvar(SubRes),
2578 (SubRes=pred_false -> true % not a subset -> it is not a partial function over the domain
2579 ; check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF))).
2580 not_partial_function(R,Domain,Range,WF) :-
2581 expand_and_convert_to_avl_set_warn(R,AER,not_partial_function,'ARG /: ? +-> ?',WF),!,
2582 % TO DO: expand_and_convert_to_avl_set_catch and provide symbolic treatment similar to partial_function
2583 % e.g., to support f = NATURAL1 * {22,33} & not(f: NATURAL1 +-> NATURAL)
2584 is_not_avl_partial_function(AER,Domain,Range,WF).
2585 not_partial_function(R,Domain,Range,WF) :-
2586 expand_custom_set_to_list_wf(R,ER,_,not_partial_function,WF),
2587 not_pf(ER,[],Domain,Range,WF).
2588
2589 is_not_avl_partial_function(AER,Domain,Range,WF) :-
2590 (is_avl_partial_function(AER)
2591 -> is_not_avl_relation_over_domain_range(AER,Domain,Range,WF)
2592 ; true
2593 ).
2594
2595 :- block not_pf(-,?,?,?,?).
2596 not_pf([],_,_,_,_) :- fail.
2597 not_pf([(X,Y)|T],SoFar,Dom,Ran,WF) :-
2598 membership_test_wf_with_force(SoFar,X,MemRes,WF),
2599 not_pf2(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
2600
2601 :- block not_pf2(-,?,?,?,?,?,?,?).
2602 not_pf2(pred_true,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF). /* then not a function */
2603 not_pf2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :-
2604 membership_test_wf_with_force(Dom,X,MemRes,WF), % creates a choice point in SMT mode
2605 not_pf2a(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
2606
2607 :- block not_pf2a(-,?,?,?,?,?,?,?).
2608 not_pf2a(pred_false,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF). /* function, but domain wrong */
2609 not_pf2a(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :-
2610 remove_element_wf_if_not_infinite_or_closure(X,Dom,Dom2,WF,_LWF,Done), %% provide _LWF ??
2611 not_pf2b(Done,X,Y,T,SoFar,Dom2,Ran,WF).
2612
2613 :- block not_pf2b(-, ?,?,?, ?,?,?, ?).
2614 not_pf2b(_Done, X,Y,T, SoFar,Dom2,Ran, WF) :-
2615 add_element_wf(X,SoFar,SoFar2,WF),
2616 (T==[] -> not_element_of_wf(Y,Ran,WF)
2617 ; membership_test_wf_with_force(Ran,Y,MemRes,WF),
2618 prop_empty_pred_false(T,MemRes), % if T=[] -> Y must not be in Ran
2619 not_pf3(MemRes,T,SoFar2,Dom2,Ran,WF)).
2620
2621 :- block prop_empty_pred_false(-,?).
2622 prop_empty_pred_false([],R) :- !, R=pred_false.
2623 prop_empty_pred_false(_,_).
2624
2625 :- block not_pf3(-,?,?,?,?,?).
2626 not_pf3(pred_false,_T,_SoFar,_Dom2,_Ran,_WF). /* illegal range */
2627 not_pf3(pred_true,T,SoFar,Dom2,Ran,WF) :-
2628 not_pf(T,SoFar,Dom2,Ran,WF).
2629
2630 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2631 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(1),int(1)),(int(2),int(1))],global_set('NATURAL'),global_set('NATURAL'),WF),WF)).
2632 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2633 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_function_wf([(int(2),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2634 :- assert_must_succeed((bsets_clp:partial_function([],[int(1)],[int(7)]))).
2635 :- assert_must_succeed((bsets_clp:partial_function(X,[int(1)],[int(7)]),
2636 X = [(int(1),int(7))])).
2637 :- assert_must_succeed((bsets_clp:partial_function(X,[int(1),int(2)],[int(7)]),
2638 equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
2639 :- assert_must_succeed((findall(X,bsets_clp:partial_function(X,[int(1),int(2)],[int(7)]),L),
2640 length(L,Len), Len >= 4,
2641 (preferences:get_preference(convert_comprehension_sets_into_closures,true) -> true ; Len=4) )).
2642 :- assert_must_succeed((bsets_clp:partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2643 [int(7),int(6)]),
2644 equal_object(X,[([(int(1),int(2))],int(7)),
2645 ([(int(2),int(3)),(int(1),int(3))],int(6))]))).
2646 :- assert_must_succeed((bsets_clp:partial_function_wf(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2647 [int(7),int(6)],_WF),
2648 X = [([(int(2),int(3)),(int(1),int(3))],int(6))])).
2649 :- assert_must_succeed((bsets_clp:partial_function_wf(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2650 [int(7),int(6)],_WF),
2651 X = [([(int(1),int(2))],int(7)),
2652 ([(int(2),int(3)),(int(1),int(3))],int(6))])).
2653 :- assert_must_succeed((bsets_clp:partial_function_wf(X,[int(1)],[[int(7),int(6)]],_WF),
2654 X = [(int(1),[int(6),int(7)])])).
2655 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2656 X = [(int(1),int(7)),(int(5),int(75))])).
2657 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2658 X = [(int(1),int(7)),(int(0),int(7))])).
2659 :- assert_must_fail((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2660 X = [(int(1),int(7)),(int(-1),int(7))])).
2661 :- assert_must_fail((bsets_clp:partial_function_wf(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2662 X = [(int(1),int(7)),(int(0),int(7))])).
2663 :- assert_must_fail((bsets_clp:partial_function_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
2664 X = [(int(2),int(7)),(int(2),int(6))])).
2665 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('Name'),global_set('Code'),_WF),
2666 X = [(fd(1,'Name'),fd(1,'Code'))])).
2667 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('Code'),_WF),
2668 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(88),fd(2,'Code'))])).
2669 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('Code'),_WF),
2670 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(2),fd(2,'Code'))])).
2671
2672 partial_function(R,Domain,Range) :- init_wait_flags(WF,[partial_function]),
2673 partial_function_wf(R,Domain,Range,WF),
2674 ground_wait_flags(WF).
2675
2676 :- use_module(kernel_equality,[get_cardinality_powset_wait_flag/5]).
2677 :- use_module(closures,[is_lambda_value_domain_closure/5]).
2678 :- block partial_function_wf(-,-,?,?).
2679 partial_function_wf(R,_Domain,_Range,_WF) :- R==[], !.
2680 partial_function_wf(R,Domain,Range,WF) :- (Domain==[] ; Range==[]), !, empty_set_wf(R,WF).
2681 partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF),
2682 custom_explicit_sets:is_definitely_maximal_set(Range),
2683 % we do not need the Range; this means we can match more closures (e.g., lambda)
2684 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
2685 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF).
2686 partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF),
2687 % TODO: this will fail if is_definitely_maximal_set was true above !
2688 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
2689 % same as for total_function_wf check
2690 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
2691 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
2692 partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred),
2693 % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 +-> NATURAL
2694 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
2695 get_range_id_expression(P,T,TRangeID),
2696 !,
2697 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
2698 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2699 [b_operator(range,[FF]),Range],unknown),WF3),
2700 check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF3). % we could use symbolic_range_subset_check
2701 partial_function_wf(R,Domain,Range,WF) :-
2702 expand_and_convert_to_avl_set_catch(R,AER,partial_function_wf,'ARG : ? +-> ?',ResultStatus,WF),!,
2703 (ResultStatus=avl_set
2704 -> is_avl_partial_function_over(AER,Domain,Range,WF)
2705 ; % keep symbolic
2706 (debug_mode(off) -> true ; print('SYMBOLIC +-> check : '),translate:print_bvalue(R),nl),
2707 % can deal with, e.g., f = %x.(x:NATURAL|x+1) & g = f <+ {0|->0} & g : INTEGER +-> INTEGER
2708 symbolic_domain_subset_check(R,Domain,WF),
2709 symbolic_range_subset_check(R,Range,WF),
2710 symbolic_functionality_check(R,WF)
2711 ).
2712 partial_function_wf(R,Domain,Range,WF) :-
2713 get_cardinality_powset_wait_flag(Domain,partial_function_wf,WF,Card,CWF),
2714 % probably we should compute real cardinality of set of partial functions over Domain +-> Range ?
2715 % the powset waitflag uses 2^Card as priority; is the number of partial functions when Range contains just a single element
2716 % slows down test 1088: TO DO investigate
2717 % get_cardinality_partial_function_wait_flag(Domain,Range,partial_function_wf,WF,Card,_,CWF),
2718 %% Maybe we should only enumerate partial functions for domain variables ; e.g., not f <+ {x |-> y} : T +-> S
2719 %% print_bt_message(pf_dom_card(Card)),nl, %%%
2720 % probably we should use a special version when R is var
2721 propagate_empty_set_wf(Domain,dom_pf,R,WF),
2722 propagate_empty_set_wf(Range,ran_pf,R,WF),
2723 (var(R) -> pf_var_r(R,var,Domain,Range,Card,WF,CWF) ; pf_var_r(R,nonvar,Domain,Range,Card,WF,CWF)).
2724
2725 % symbolic dom(R) <: Domain check for closures
2726 symbolic_domain_subset_check(R,Domain,WF) :-
2727 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2728 [b_operator(domain,[R]),Domain],unknown),WF2),
2729 domain_subtraction_wf(Domain,R,Res,WF2), % works symbolically
2730 (debug_mode(off) -> true ; print('Domain Violations: '),translate:print_bvalue(Res),nl),
2731 empty_set_wf(Res,WF2). % empty_set does a symbolic treatment calling gen_typed_ids and b_not_test_exists:
2732 % symbolic ran(R) <: Range check for closures
2733 symbolic_range_subset_check(R,Range,WF) :-
2734 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2735 [b_operator(range,[R]),Range],unknown),WF2),
2736 range_subtraction_wf(R,Range,Res,WF2), % works symbolically
2737 (debug_mode(off) -> true ; print('Range Violations: '),translate:print_bvalue(Res),nl),
2738 empty_set_wf(Res,WF2). % works symbolically
2739 symbolic_functionality_check(Closure,WF) :-
2740 custom_explicit_sets:symbolic_functionality_check_closure(Closure,ViolationsClosure),!,
2741 (debug_mode(off) -> true ; print('FUNCTIONALITY Violations: '),translate:print_bvalue(ViolationsClosure),nl),
2742 empty_set_wf(ViolationsClosure,WF). % works symbolically
2743 symbolic_functionality_check(R,WF) :-
2744 add_error_wf(symbolic_functionality_check,'Could not check functionality of:',R,R,WF).
2745
2746 symbolic_injectivity_check(Closure,WF) :-
2747 custom_explicit_sets:symbolic_injectivity_check_closure(Closure,ViolationsClosure),!,
2748 (debug_mode(off) -> true ; print('INJECTIVITY Violations: '),translate:print_bvalue(ViolationsClosure),nl),
2749 empty_set_wf(ViolationsClosure,WF). % works symbolically
2750 symbolic_injectivity_check(R,WF) :-
2751 add_error_wf(symbolic_functionality_check,'Could not check injectivity of:',R,R,WF).
2752
2753
2754 is_avl_partial_function_over(AER,Domain,Range,WF) :-
2755 is_avl_partial_function(AER),
2756 is_avl_relation_over_domain(AER,Domain,WF),
2757 is_avl_relation_over_range(AER,Range,WF).
2758
2759 % symbolically check that the range of lambda closure is a subset of a given Range
2760 % TRangeID is obtained by calling get_range_id_expression(P,T,TRangeID)
2761 check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF) :-
2762 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2763 [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2),
2764 % CHECK not(#P.(Pred & TRangeID /: Range))
2765 get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2),
2766 is_empty_closure_wf(P,T,Pred2,WF2). % do we need to rename _lambda_result_ using rename_lambda_result_id ?
2767 % now the negation thereof:
2768 check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF) :-
2769 opt_push_wait_flag_call_stack_info(WF,b_operator_call(not_subset,
2770 [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2),
2771 % CHECK (#P.(Pred & TRangeID /: Range))
2772 get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2),
2773 is_non_empty_closure_wf(P,T,Pred2,WF2).
2774 test_lambda_closure_range(P,T,Pred,TRangeID,Range,Res,WF) :-
2775 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, % it is actually a reify check
2776 [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2),
2777 % reify not(#P.(Pred & TRangeID /: Range))
2778 get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2),
2779 test_empty_closure_wf(P,T,Pred2,Res,WF2).
2780
2781 get_not_in_range_pred_aux(Pred,TRangeID,Range,NewPred) :- % construct (Pred & TRangeID /: Range)
2782 ExpectedRange = b(value(Range),set(RanT),[]),
2783 get_texpr_type(TRangeID,RanT),
2784 safe_create_texpr(not_member(TRangeID,ExpectedRange),pred,NotMemCheck),
2785 conjunct_predicates([Pred,NotMemCheck],NewPred).
2786
2787
2788 % if first argument is empty, second argument must also be empty
2789 :- block propagate_empty_set_wf(-,?,?,?).
2790 propagate_empty_set_wf([],_PP,A,WF) :- !, %print(prop_empty(_PP,A)),nl,
2791 kernel_objects:empty_set_wf(A,WF). % TO DO: add WF
2792 propagate_empty_set_wf(_,_,_,_).
2793
2794 :- block pf_var_r(-,?,?,?,?,?,-).
2795 pf_var_r(R,var,Domain,Range,_Card,WF,_CWF) :- % if R was var: see if it is now an AVL set; otherwise we have already checked it
2796 expand_and_convert_to_avl_set_warn(R,AER,pf_var_r,'ARG : ? +-> ?',WF),!,
2797 is_avl_partial_function_over(AER,Domain,Range,WF).
2798 pf_var_r(R,_,Domain,Range,Card,WF,CWF) :-
2799 expand_custom_set_to_list_wf(R,ER,_,partial_function_wf,WF),
2800 %get_last_wait_flag(partial_fun(Domain),WF,LWF),
2801 ? pf_w(ER,[],Domain,Range,Card,_Large,WF,CWF).
2802
2803 pf_w(T,SoFar,Dom,Ran,Card,Large,WF,LWF) :-
2804 (Card==0 -> T=[]
2805 ? ; pf(T,SoFar,Dom,Ran,Card,Large,WF,LWF)).
2806
2807 :- block pf(-,?,?,?,?,?,?,-).
2808 pf(LIST,_,_,_,_,_WF,_,_LWF) :- LIST==[],!. % avoid leaving choicepoint
2809 pf(AVL,SoFar,Dom,Ran,Card,Large,WF,LWF) :- nonvar(AVL),AVL=avl_set(_A),
2810 add_internal_error('AVL arg: ',pf(AVL,SoFar,Dom,Ran,Card,Large,WF,LWF)),fail.
2811 pf([],_,_,_,_,_WF,_,_LWF).
2812 pf(LIST,SoFar,Dom,Ran,Card,Large,WF,LWF) :-
2813 (var(LIST) -> ListWasVar = true ; ListWasVar = false), % is ListWasVar = true we are doing the enumeration driven by LWF being ground
2814 LIST = [(X,Y)|T],
2815 ? dec_card(Card,NC),/* Card ensures we do not build too big lists */
2816 Dom \== [],
2817 ? remove_domain_element(ListWasVar,X,Y,Dom,Dom2,Large,WF,LWF,Done),
2818 ? check_element_of_wf(Y,Ran,WF),
2819 ? pf1(Done, X,Y,T,SoFar,Dom2,Ran,NC,Large,WF,LWF).
2820
2821 :- block dec_card(-,?).
2822 dec_card(inf,NewC) :- !, NewC=inf.
2823 dec_card(C,NewC) :- C>0, NewC is C-1.
2824
2825 :- block pf1(-, ?,?,?,?,?,?,?,?,?,?).
2826 pf1(_Done, X,_Y,T,SoFar,Dom2,Ran,Card,Large,WF,LWF) :-
2827 not_element_of_wf(X,SoFar,WF), /* check that it is a function */
2828 %% check_element_of_wf(Y,Ran,WF), % this check is now done above in pf
2829 add_new_element_wf(X,SoFar,SoFar2,WF),
2830 ? pf_w(T,SoFar2,Dom2,Ran,Card,Large,WF,LWF).
2831
2832 remove_domain_element(ListWasVar,X,Y,Dom,Dom2,Large,WF,LWF,Done) :- compute_large(Dom,Large),
2833 ((ListWasVar==true,var(X),var(Y),Large==false,
2834 preference(convert_comprehension_sets_into_closures,false), % not in symbolic mode
2835 kernel_tools:ground_value(Dom))
2836 -> %% (X, Y are free and we drive the enumeration: we can influence which element is taken from Dom
2837 remove_a_minimal_element(X,Dom,Dom2,WF,Done) %%%%%%%%%% added Jul 15 2008
2838 ? ; remove_element_wf_if_not_infinite_or_closure(X,Dom,Dom2,WF,LWF,Done)
2839 ).
2840 compute_large(Dom,Large) :- % check if the domain is large; ensure that we compute this only once
2841 (nonvar(Large) -> true
2842 ; var(Dom) -> true
2843 ; dont_expand_this_explicit_set(Dom) -> Large=large
2844 ; Large=false).
2845
2846 :- assert_must_succeed(( bsets_clp:remove_a_minimal_element(X,[int(1)],R,_WF,Done),
2847 X==int(1), Done==true, R=[] )).
2848 :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF),
2849 X==int(2), Done==true, R=[int(3)] )).
2850 :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF),
2851 X==int(1), R=[int(2),int(3)], Done==true )).
2852 :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF),
2853 X==int(3), R=[], Done==true )).
2854 :- assert_must_succeed(( init_wait_flags(WF), CL=closure(['_zzzz_binary'],[integer],b(member( b(identifier('_zzzz_binary'),integer,[]),
2855 b(interval(b(value(int(1)),integer,[]),b(value(int(10)),integer,[])),set(integer),[])),pred,[])),
2856 bsets_clp:remove_a_minimal_element(X,CL,R,WF,Done), ground_wait_flags(WF),
2857 X=int(9), Done==true, kernel_objects:equal_object(R,[int(10)]) )).
2858
2859 /* usage: restrict number of possible choices if element to remove is free */
2860 /* select one element; and disallow all elements appearing before it in the list */
2861 remove_a_minimal_element(X,Set,Res,WF,Done) :-
2862 expand_custom_set_to_list_wf(Set,ESet,EDone,remove_a_minimal_element,WF),
2863 remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done).
2864
2865 :- use_module(kernel_equality,[get_cardinality_wait_flag/4]).
2866 :- block remove_a_minimal_element2(?,?,-,?,?,?).
2867 remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done) :- var(ESet),
2868 % should not happen as we wait for EDone
2869 add_internal_error('Illegal call: ',remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done)),
2870 fail.
2871 remove_a_minimal_element2(X,ESet,_EDone,Res,WF,Done) :-
2872 ESet \= [],
2873 (ESet = [El]
2874 -> X=El, empty_set_wf(Res,WF), Done=true % only one choice
2875 ; get_cardinality_wait_flag(ESet,remove_a_minimal_element2,WF,CWF),
2876 remove_a_minimal_element3(X,ESet,Res,WF,Done,CWF)
2877 ).
2878
2879 :- block remove_a_minimal_element3(?,?,?,?,?,-).
2880 remove_a_minimal_element3(X,ESet,Res,WF,Done,_) :- var(Res), !,
2881 append(_,[X|TRes],ESet), % WHAT IF Res has been instantiated in the meantime ???
2882 equal_object_wf(Res,TRes,remove_a_minimal_element2_2,WF),Done=true.
2883 remove_a_minimal_element3(X,ESet,Res,WF,Done,_) :- %print(remove_min_nonvar_res(Res)),nl,
2884 equal_cons_wf(ESet,X,Res,WF), Done=true.
2885
2886
2887 % reified version of partial function test partial_function_wf:
2888 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
2889 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
2890 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
2891 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(2),int(8))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
2892 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
2893 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(1),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
2894
2895 :- use_module(kernel_equality,[subset_test/4]).
2896 :- block partial_function_test_wf(-,?,?,-,?), partial_function_test_wf(?,-,-,-,?).
2897 partial_function_test_wf(FF,Domain,Range,Res,WF) :- Res==pred_true,!,
2898 partial_function_wf(FF,Domain,Range,WF).
2899 partial_function_test_wf(FF,Domain,Range,Res,WF) :- Res==pred_false,!,
2900 not_partial_function(FF,Domain,Range,WF). % TO DO: remove not_partial_function to use check_is_partial_function?
2901 partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF),
2902 custom_explicit_sets:is_definitely_maximal_set(Range),
2903 % we do not need the Range; this means we can match more closures (e.g., lambda)
2904 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
2905 subset_test(FFDomain,Domain,Res,WF).
2906 partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF),
2907 % TODO: this will fail if is_definitely_maximal_set was true above !
2908 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
2909 % same as for total_function_wf check
2910 subset_test(FFDomain,Domain,DomainOk,WF),
2911 (DomainOk==pred_false -> Res = pred_false
2912 ; conjoin_test(DomainOk,RangeOk,Res,WF),
2913 subset_test(FFRange,Range,RangeOk,WF)).
2914 partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF), FF=closure(P,T,Pred),
2915 % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 +-> NATURAL
2916 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
2917 get_range_id_expression(P,T,TRangeID),
2918 !,
2919 subset_test(FFDomain,Domain,DomainOk,WF),
2920 (DomainOk == pred_false -> Res=pred_false
2921 ; conjoin_test(DomainOk,RangeOk,Res,WF),
2922 test_lambda_closure_range(P,T,Pred,TRangeID,Range,RangeOk,WF)
2923 ).
2924 partial_function_test_wf(R,Domain,Range,Res,WF) :-
2925 expand_and_convert_to_avl_set_warn(R,AER,partial_function_test_wf,'ARG : ? +-> ?',WF),!,
2926 % TO DO: use expand_and_convert_to_avl_set_catch
2927 (is_avl_partial_function(AER)
2928 -> % TO DO: we could do something similar to this instead: is_not_avl_relation_over_domain_range
2929 domain_of_explicit_set_wf(avl_set(AER),FFDomain,WF),
2930 subset_test(FFDomain,Domain,DomainOk,WF),
2931 (DomainOk == pred_false -> Res=pred_false
2932 ; range_of_explicit_set_wf(avl_set(AER),FFRange,WF),
2933 conjoin_test(DomainOk,RangeOk,Res,WF),
2934 subset_test(FFRange,Range,RangeOk,WF)
2935 )
2936 ; Res=pred_false).
2937 partial_function_test_wf(R,Domain,Range,Res,WF) :-
2938 expand_custom_set_to_list_wf(R,ER,_,partial_function_test_wf,WF),
2939 check_is_partial_function_acc_wf(ER,[],Domain,Range,Res,WF).
2940
2941 :- block check_is_partial_function_acc_wf(-,?,?,?,?,?).
2942 check_is_partial_function_acc_wf([],_,_,_,Res,_WF) :- !, Res=pred_true.
2943 check_is_partial_function_acc_wf([(A,FA)|T],Acc,Dom,Ran,Res,WF) :- !,
2944 check_pair_in_domain_range(A,FA,Dom,Ran,MemResDomRan,WF),
2945 (MemResDomRan==pred_false
2946 -> Res = pred_false
2947 ; membership_test_wf(Acc,A,MemResNotFunc,WF),
2948 negate(MemResNotFunc,MemResFunctionality),
2949 conjoin_test(MemResDomRan,MemResFunctionality,PF_Head,WF),
2950 (PF_Head == pred_false -> Res = pred_false
2951 ; T==[] -> Res=PF_Head
2952 ; add_element_wf(A,Acc,NewAcc,WF),
2953 ? conjoin_test(PF_Head,PF_Tail,Res,WF),
2954 check_is_partial_function_acc_wf(T,NewAcc,Dom,Ran,PF_Tail,WF))
2955 ).
2956
2957 check_pair_in_domain_range(A,FA,Dom,Ran,MemResDomRan,WF) :-
2958 membership_test_wf(Dom, A,MemResDom,WF), % use membership_test_wf_with_force for SMT mode ??
2959 (MemResDom == pred_false -> MemResDomRan = pred_false
2960 ; membership_test_wf(Ran,FA,MemResRan,WF),
2961 conjoin_test(MemResDom,MemResRan,MemResDomRan,WF)).
2962
2963 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_function_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2964 :- assert_must_succeed((bsets_clp:total_function(X,[int(1)],[int(7)]),
2965 X = [(int(1),int(7))])).
2966 :- assert_must_succeed((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
2967 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
2968 :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3))]],[int(7),int(6)]),
2969 kernel_objects:equal_object(X,[([(int(1),int(3))],int(7)),([(int(1),int(2))],int(7))]))).
2970 :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2971 [int(7),int(6)]),
2972 kernel_objects:equal_object(X,[([(int(1),int(2))],int(7)),
2973 ([(int(2),int(3)),(int(1),int(3))],int(6))]))).
2974 :- assert_must_succeed((bsets_clp:total_function(X,[int(1)],[[int(7),int(6)]]),
2975 kernel_objects:equal_object(X,[(int(1),[int(6),int(7)])]))).
2976 :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2977 [[int(7),int(6)]]),
2978 kernel_objects:equal_object(X,[([(int(1),int(2))],[int(6),int(7)]),
2979 ([(int(2),int(3)),(int(1),int(3))],[int(6),int(7)])]))).
2980 :- assert_must_succeed((bsets_clp:total_function(X,[ [(int(1),int(3)),(int(2),int(3))]],
2981 [int(6)]),
2982 kernel_objects:equal_object(X,[ ([(int(2),int(3)),(int(1),int(3))], int(6)) ]))).
2983 :- assert_must_succeed((bsets_clp:total_function(X,global_set('Name'),
2984 [[],[fd(1,'Code'),fd(2,'Code')],[fd(1,'Code')],[fd(2,'Code')]]),
2985 kernel_objects:enumerate_basic_type(X,set(couple(global('Name'),set(global('Code'))))),
2986 kernel_objects:equal_object(X,[(fd(3,'Name'),[fd(2,'Code')]),(fd(1,'Name'),[fd(2,'Code')]),(fd(2,'Name'),[])]))).
2987
2988 %:- assert_must_succeed(( kernel_waitflags:init_wait_flags(WF),bsets_clp:total_function_wf(TF,global_set('Code'),
2989 % closure([zzzz],[set(set(couple(integer,boolean)))],
2990 % member(identifier(zzzz),
2991 % pow_subset(value(closure([zzzz],[set(couple(integer,boolean))],
2992 % member('ListExpression'(['Identifier'(zzzz)]),
2993 % 'Seq'(value([pred_true /* bool_true */,pred_false /* bool_false */])))))))),WF),
2994 % kernel_objects:equal_object(TF,[ (fd(1,'Code'), [[],[(int(1),pred_true /* bool_true */)],[(int(1),pred_true /* bool_true */),(int(2),pred_true /* bool_true */)]]),
2995 % (fd(2,'Code'), [[],[(int(1),pred_true /* bool_true */)],[(int(1),pred_true /* bool_true */),(int(2),pred_true /* bool_true */)]]) ]),
2996 % kernel_waitflags:ground_wait_flags(WF) )).
2997
2998 :- assert_must_succeed((bsets_clp:total_function([],[],[int(7)]))).
2999
3000 :- assert_must_fail((bsets_clp:total_function([],[int(1)],[int(7)]))).
3001 :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
3002 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
3003 :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
3004 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(5))]))).
3005 :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
3006 kernel_objects:equal_object(X,[(int(2),int(7))]))).
3007 :- assert_must_fail((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
3008 [int(7),int(6)]),
3009 kernel_objects:equal_object(X,[([(int(1),int(2))],int(7)),
3010 ([(int(1),int(3)),(int(1),int(3))],int(6))]))).
3011 :- assert_must_fail((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
3012 [int(7),int(6)]),
3013 kernel_objects:equal_object(X,[([(int(1),int(3)),(int(1),int(3))],int(6))]))).
3014
3015 total_function(R,Domain,Range) :- init_wait_flags(WF,[total_function]),
3016 total_function_wf(R,Domain,Range,WF),
3017 ground_wait_flags(WF).
3018
3019
3020 :- assert_must_succeed((bsets_clp:total_function_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
3021 nonvar(X),X=[(A,B),(C,D)],A==int(1),C==int(2),\+ ground(B),\+ ground(D), B=int(7),D=int(7) )).
3022
3023 :- block total_function_wf(-,-,-,?).
3024 total_function_wf(FF,Domain,_Range,WF) :- FF == [],!,
3025 empty_set_wf(Domain,WF).
3026 total_function_wf(FF,Domain,Range,WF) :-
3027 Range == [],!,
3028 empty_set_wf(FF,WF), empty_set_wf(Domain,WF).
3029 total_function_wf(FF,Domain,Range,WF) :-
3030 % TO DO: if FF or Domain nonvar but \= [] -> check if other variable becomes []
3031 ? total_function_wf1(FF,Domain,Range,WF).
3032
3033 :- block total_function_wf1(?,-,?,?).
3034 total_function_wf1(FF,Domain,_Range,WF) :-
3035 FF==[],!,
3036 empty_set_wf(Domain,WF).
3037 total_function_wf1(FF,Domain,Range,WF) :-
3038 custom_explicit_sets:is_definitely_maximal_set(Range),
3039 % we do not need the Range; this means we can match more closures (e.g., lambda)
3040 (nonvar(FF),
3041 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF)
3042 -> !,
3043 equal_object_wf(FFDomain,Domain,total_function_wf1_1,WF)
3044 ; var(FF),
3045 get_wait_flag1(WF,WF1), var(WF1),
3046 \+ (custom_explicit_sets:get_card_for_specific_custom_set(Domain,Card), number(Card)),
3047 % we have a total_function over a possibly infinite domain,
3048 % better wait: maybe a recursive of other closure will be produced for FF
3049 !,
3050 when( (nonvar(FF) ; nonvar(WF1)), total_function_wf1(FF,Domain,Range,WF))
3051 ).
3052 total_function_wf1(FF,Domain,Range,WF) :- nonvar(FF),
3053 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
3054 equal_object_wf(FFDomain,Domain,total_function_wf1_2,WF),
3055 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
3056 total_function_wf1(R,Domain,Range,WF) :- nonvar(R), R=avl_set(AEF), !,
3057 total_function_avl_set(AEF,Domain,Range,WF).
3058 total_function_wf1(FF,Domain,Range,WF) :-
3059 % want to replace FF by closure: needs to be a variable!
3060 var(FF),
3061 % if the total function can not be build up explicitly (i.e. infinite domain)
3062 % TODO: can / should this be relaxed?
3063 custom_explicit_sets:is_infinite_explicit_set(Domain), % get_card_for_specific_custom_set or is_infinite_or_symbolic_closure
3064 % TO DO: delay if Domain infinite or closure and not yet known and range is type
3065 kernel_objects:infer_value_type(Domain,set(DomT)),
3066 kernel_objects:infer_value_type(Range,set(RanT)),
3067 !,
3068 % IDEA : TF = %x.(x:Domain|DEFAULT) <+ SFF, where SFF is partial function and DEFAULT is some default value
3069 % build up a partial function instead (fulfilling all constraints)
3070 % better? : %x.(x:Domain|IF x:dom(SFF) THEN SFF(x) ELSE DEFAULT)?
3071 partial_function_wf(SFF,Domain,Range,WF),
3072 % next, build up a total function mapping everything to a default value
3073 % this function will be overriden by the partial function to fulfilling
3074 % given constraints
3075 % 1. identifiers for closure
3076 create_texpr(identifier('__domid__'),DomT,[],TDomId),
3077 create_texpr(identifier('__ranid__'),RanT,[],TRanId),
3078 % 2. domain identifier might take all values of the domain
3079 create_texpr(member(TDomId,b(value(Domain),set(DomT),[])),pred,[],DomMember),
3080 % 3. pick a single value for the range identifier
3081 check_element_of_wf(RangeElement,Range,WF),
3082 %% external_functions:observe_value(RangeElement,"range"),external_functions:observe_value(SFF,"pf"),
3083 create_texpr(equal(TRanId,b(value(RangeElement),RanT,[])),pred,[],RanMember),
3084 % 4. conjunct and form closure (should be treated symbolically)
3085 conjunct_predicates([RanMember,DomMember],Pred),
3086 Default = closure(['__domid__','__ranid__'],[DomT,RanT],Pred),
3087 % 5. override default values where needed
3088 override_relation(Default,SFF,FF,WF),
3089 get_last_wait_flag(enum_symb_tf,WF,LastWF),
3090 when(nonvar(LastWF), % if we enum too early test 1619 fails; see also test 2022
3091 % as partial_function_wf does not fully enumerate the new variable SFF we may have to enumerate SFF; see test 2328
3092 (enumerate_basic_type_wf(RangeElement,RanT,WF),
3093 enumerate_basic_type_wf(SFF,set(couple(DomT,RanT)),WF)
3094 )).
3095 total_function_wf1(R,Domain,Range,WF) :-
3096 try_expand_and_convert_to_avl_with_check(Domain,EDomain,keep_intervals(1000),total_function), % avoid multiple expansions, but useless when dom_for_lambda_closure case triggers below ! TO DO: fix
3097 % TO DO: maybe avoid converting intervals which are not fully instantiated ?
3098 % TODO: done by clause above? % TO DO ?: if Range singleton set {R} and Domain infinite: return %x.(x:Domain|R); if Range not empty choose one element
3099 try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF),
3100 propagate_empty_set_wf(Range,tf_range,ER,WF), % if the range of a total function is empty then the function must be empty
3101 ? total_function_wf2(ER,EDomain,Range,WF).
3102
3103 :- block total_function_wf2(?,-,?,?).
3104 total_function_wf2(R,Domain,Range,WF) :- nonvar(R), R=avl_set(AEF), !,
3105 total_function_avl_set(AEF,Domain,Range,WF).
3106 total_function_wf2(R,Domain,Range,WF) :-
3107 cardinality_as_int_wf(Domain,int(Card),WF),
3108 ? total_function_wf3(R,Card,Domain,Range,WF).
3109
3110 total_function_wf3(FF,Card,Domain,Range,WF) :-
3111 nonvar(FF),
3112 (number(Card) -> (Card >= 1000 -> true ; is_symbolic_closure(FF)) ; true),
3113 % note: we can have symbolic closures with a finite domain: /*@symbolic */ %p.(p:BOOL|(%t.(t:NATURAL|t+100)))
3114 custom_explicit_sets:dom_for_lambda_closure(FF,FFDomain),
3115 % we have a lambda closure where we cannot determine the range, otherwise dom_range_for_specific_closure would have succeeded
3116 % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 --> NATURAL
3117 FF = closure(P,T,Pred),
3118 get_range_id_expression(P,T,TRangeID),
3119 !,
3120 equal_object_wf(FFDomain,Domain,total_function1_closure,WF),
3121 % CHECK not(#P.(Pred & P /: Range))
3122 check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF).
3123 % custom_explicit_sets:ran_symbolic(closure(P,T,Pred),RanSymbolic), check_subset_of_wf(RanSymbolic,Range,WF).
3124 total_function_wf3(R,Card,Domain,Range,WF) :- Card==inf,!,
3125 when(nonvar(R), total_function_symbolic(R,Domain,Range,WF)).
3126 total_function_wf3(R,Card,Domain,Range,WF) :-
3127 card_convert_int_to_peano(Card,PeanoCard),
3128 ((nonvar(R);ground(PeanoCard))
3129 -> true
3130 ; get_last_wait_flag(total_fun(Domain),WF,WF1)),
3131 ? when((nonvar(R);ground(PeanoCard);
3132 (nonvar(PeanoCard),nonvar(WF1))), /* mal 12/5/04: changed , into ; 17/3/2008: added WF1 */
3133 /* reason for delaying nonvar(Card): Card grounded bit by bit by cardinality; avoid
3134 triggering too early and missing tf_var */
3135 total_function1(R,Card,PeanoCard,Domain,Range,WF
3136 )).
3137
3138 :- use_module(bsyntaxtree,[safe_create_texpr/3]).
3139 :- use_module(library(lists),[last/2]).
3140 % for a closure get the identifier or proj expression that represents range values
3141 get_range_id_expression([PairID],[Type],Res) :- !,
3142 Type = couple(_,TX),
3143 TP = b(identifier(PairID),Type,[]),
3144 safe_create_texpr(second_of_pair(TP),TX,Res). % prj2(PairID) ,
3145 %TO DO: test this e.g. with f = /*@symbolic*/ {x|x:NATURAL1*INTEGER & prj2(INTEGER,INTEGER)(x)=prj1(INTEGER,INTEGER)(x)+1} & f: NATURAL1 --> NATURAL
3146 % but currently lambda closure detection in dom_for_lambda_closure cannot handle such closures anyway
3147 get_range_id_expression(P,T,b(identifier(ID),Type,[])) :- last(P,ID), last(T,Type).
3148
3149 total_function_avl_set(AEF,Domain,Range,WF) :-
3150 (Domain = avl_set(Dom) -> is_avl_total_function_over_domain(AEF,Dom)
3151 ; is_avl_partial_function(AEF),
3152 domain_of_explicit_set_wf(avl_set(AEF),AEF_Domain,WF),
3153 equal_object_wf(AEF_Domain,Domain,total_function_avl_set,WF)
3154 ),
3155 is_avl_relation_over_range(AEF,Range,WF).
3156
3157 total_function_symbolic(FF,Domain,Range,WF) :-
3158 (debug_mode(off) -> true ; print('SYMBOLIC --> check : '),translate:print_bvalue(FF),nl),
3159 % can deal with, e.g., f = %x.(x:NATURAL|x+1) & g = f <+ {0|->0} & g : INTEGER +-> INTEGER
3160 domain_wf(FF,Domain,WF),
3161 symbolic_range_subset_check(FF,Range,WF),
3162 symbolic_functionality_check(FF,WF).
3163
3164 total_function1(FF,Card,PeanoCard,Domain,Range,WF) :- Card==inf,PeanoCard=inf,!,
3165 total_function_symbolic(FF,Domain,Range,WF).
3166 total_function1(FF,_,_,Domain,Range,WF) :-
3167 expand_and_convert_to_avl_set_catch(FF,AEF,total_function1,'ARG : ? --> ?',ResultStatus,WF),!,
3168 (ResultStatus=avl_set -> total_function_avl_set(AEF,Domain,Range,WF)
3169 ; % keep symbolic
3170 % TO DO: ensure no pending co-routine infinite_peano in card_convert_int_to_peano
3171 total_function_symbolic(FF,Domain,Range,WF)
3172 ).
3173 total_function1(R,_,Card,Domain,Range,WF) :-
3174 try_expand_custom_set_wf(R,ER,total_function1,WF),
3175 ? total_function2(ER,Card,Domain,Range,WF).
3176
3177 total_function2(ER,Card,Domain,Range,WF) :-
3178 var(ER),ground(Card),!,
3179 tf_var(TotalFunction,[],Card,Domain,Range,WF),
3180 ER=TotalFunction.
3181 total_function2(ER,Card,Domain,Range,WF) :-
3182 (ground(Card)
3183 -> get_wait_flag(0,tot_fun,WF,LWF) % we seem to know the domain exactly now; see e.g. test 1316
3184 ; get_wait_flag(2,total_function2,WF,LWF)), % ensure we don't start binding function as soon as Card is bound; important for test 1393; should we use another priority ?
3185 ? tf(ER,[],Card,Domain,Range,WF,LWF).
3186
3187 :- block tf(-,?,-,?,?,?,?),tf(-,?,?,?,?,?,-).
3188 tf([],_,0,Dom,_,WF,_) :- empty_set_wf(Dom,WF).
3189 tf(FUN,SoFar,s(Card),Dom,Ran,WF,LWF) :- var(FUN),nonvar(Dom), % try setting up skeleton for total fun
3190 remove_exact_first_element(X,Dom,Dom2),not_element_of_wf(X,SoFar,WF),var(FUN),!,
3191 FUN = [(X,Y)|T], tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF).
3192 tf([(X,Y)|T],SoFar,s(Card),Dom,Ran,WF,LWF) :-
3193 not_element_of_wf(X,SoFar,WF),
3194 remove_element_wf(X,Dom,Dom2,WF), %mal: 17/3/08 changed to _wf version
3195 ? tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF).
3196 tf(CS,SoFar,Card,Dom,Ran,WF,LWF) :- nonvar(CS), is_custom_explicit_set(CS),
3197 expand_custom_set_to_list_wf(CS,ER,_,tf,WF),
3198 tf(ER,SoFar,Card,Dom,Ran,WF,LWF).
3199 tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF) :-
3200 check_element_of_wf(Y,Ran,WF),
3201 %when((nonvar(T);nonvar(Card)), /* mal 12/5/04: changed , into ; */
3202 add_new_element_wf(X,SoFar,SoFar2,WF), %%% try_expand_and_convert_to_avl
3203 ? tf(T,SoFar2,Card,Dom2,Ran,WF,LWF).
3204
3205 :- block tf_var(-,?,-,?,?,?).
3206 tf_var(F,_,Card,Dom,_,WF) :- Card==0,!,F=[],empty_set_wf(Dom,WF). % avoid choice point
3207 tf_var([],_,0,Dom,_,WF) :- empty_set_wf(Dom,WF).
3208 tf_var([(X,Y)|T],SoFar,s(Card),Dom,Ran,WF) :-
3209 /* supposes that X + Y are unbound */
3210 /* TO DO: rewrite like enumerate <-------------------------- */
3211 ((var(X),var(Y)) -> true ; (print_message(warning,'Nonvar in tf_var: '),
3212 print_message(warning,((X,Y))))),
3213 remove_exact_first_element(X,Dom,Dom2),
3214 not_element_of_wf(X,SoFar,WF),
3215 check_element_of_wf(Y,Ran,WF),
3216 add_new_element_wf(X,SoFar,SoFar2,WF),
3217 tf_var(T,SoFar2,Card,Dom2,Ran,WF).
3218
3219
3220
3221 :- assert_must_succeed((bsets_clp:total_bijection(X,[int(1)],[int(7)]),
3222 X = [(int(1),int(7))])).
3223 :- assert_must_succeed((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]),
3224 kernel_objects:equal_object(X,[(int(2),int(8)),(int(1),int(7))]))).
3225 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1)],[int(7),int(3)]),
3226 X = [(int(1),int(7))])).
3227 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(3)]),
3228 X = [(int(1),int(3)),(int(2),int(3))])).
3229 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]),
3230 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
3231 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]),
3232 X = [(int(1),int(7)),(int(1),int(8))])).
3233
3234
3235
3236 total_bijection(R,Domain,Range) :- init_wait_flags(WF,[total_bijection]),
3237 total_bijection_wf(R,Domain,Range,WF),
3238 ground_wait_flags(WF).
3239
3240 :- block total_bijection_wf(?,-,?,?).
3241 total_bijection_wf(FF,Domain,Range,WF) :- nonvar(FF),
3242 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!,
3243 equal_object_wf(FFDomain,Domain,total_bijection_wf_1,WF),
3244 equal_object_wf(FFRange,Range,total_bijection_wf_2,WF).
3245 %(R,Domain,Range,WF) :- Domain==Range,!, print(eq_domain_range),nl, total_injection_wf(R,Domain,Range,WF).
3246 total_bijection_wf(R,Domain,Range,WF) :-
3247 same_cardinality_wf(Domain,Range,WF),
3248 total_injection_wf2(R,Domain,Range,WF). % TO DO: use cardinality_as_int_wf ? makes test 1194 fail
3249
3250 %Note: we used to call custom code: total_bijection_wf2(R,Domain,Card,Range,WF).
3251 % total_injection_wf2 gives a considerable performance boost, e.g., for test 1222 ClearSy/alloc_large.mch or NQueens with >->>
3252
3253 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
3254 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)).
3255 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
3256 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(1),int(7))],[int(1)],[int(7),int(6)],WF),WF)).
3257 :- assert_must_fail((bsets_clp:not_total_function(X,[int(1)],[int(7)],_WF),
3258 X = [(int(1),int(7))])).
3259 :- assert_must_fail((bsets_clp:not_total_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
3260 X = [(int(2),int(7)),(int(1),int(7))])).
3261 :- assert_must_succeed((bsets_clp:not_total_function([],[int(1)],[int(7)],_WF))).
3262 :- assert_must_succeed((bsets_clp:not_total_function([],[global_set('NAT1')],[global_set('Name')],_WF))).
3263 :- assert_must_succeed((bsets_clp:not_total_function([(int(7),int(7))],[int(1)],[int(7)],_WF))).
3264 :- assert_must_succeed((bsets_clp:not_total_function([(int(1),int(7)), (int(2),int(1))],
3265 [int(1),int(2)],[int(7)],_WF))).
3266 :- assert_must_succeed((bsets_clp:not_total_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
3267 X = [(int(2),int(7)),(int(2),int(6))])).
3268
3269 :- block not_total_function(-,?,?,?), not_total_function(?,-,?,?).
3270 not_total_function(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
3271 % we do not need the Range; this means we can match more closures (e.g., lambda)
3272 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
3273 not_equal_object_wf(FFDomain,Domain,WF).
3274 not_total_function(FF,Domain,Range,WF) :- nonvar(FF),
3275 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
3276 equality_objects_wf(FFDomain,Domain,Result,WF), % not yet implemented ! % TODO ! -> sub_set,equal,super_set
3277 when(nonvar(Result),(Result=pred_false -> true ; not_subset_of_wf(FFRange,Range,WF))).
3278 % this clause is unsound: it prevents finite partial functions as solutions to not_total_function over an infinite domain
3279 %not_total_function(FF,Domain,Range,WF) :-
3280 % custom_explicit_sets:get_card_for_specific_custom_set(Domain,Card),
3281 % Card == inf, !, % cardinality is too large for avl expansion to be viable
3282 % not_partial_function(FF,Domain,Range,WF). % so search for something that is not even a partial function
3283 not_total_function(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred),
3284 % example: f = %t.(t : NATURAL|t + 100) & f /: NATURAL +-> NATURAL
3285 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
3286 get_range_id_expression(P,T,TRangeID),!,
3287 equality_objects_wf(FFDomain,Domain,SubRes,WF), % compare: subset_test for not_partial_function
3288 when(nonvar(SubRes),
3289 (SubRes=pred_false -> true % not equal -> it is not a total function over the domain
3290 ; check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF))).
3291 not_total_function(R,Domain,Range,WF) :-
3292 try_expand_and_convert_to_avl_with_check(R,ER,not_total_function_range),
3293 try_expand_and_convert_to_avl_unless_large_wf(Range,ERange,WF),
3294 not_total_function2(ER,Domain,ERange,WF).
3295
3296 % repeat block, in case Domain or R is a closure
3297 :- block not_total_function2(-,?,?,?), not_total_function2(?,-,?,?).
3298 not_total_function2(R,Domain,Range,WF) :-
3299 expand_and_convert_to_avl_set_warn(R,AER,not_total_function2,'ARG /: ? --> ?',WF),
3300 !,
3301 not_total_function_avl(AER,Domain,Range,WF).
3302 not_total_function2(R,Domain,ERange,WF) :-
3303 expand_custom_set_to_list_wf(R,ER,_,not_total_function2,WF),
3304 try_expand_and_convert_to_avl_with_check(Domain,EDomain,keep_intervals(1000),not_total_function_domain),
3305 not_tf(ER,[],EDomain,ERange,WF).
3306
3307 not_total_function_avl(_AER,Domain,_Range,_WF) :- is_infinite_explicit_set(Domain),!,
3308 true. % a finite AVL set cannot be a total function over an infinite domain
3309 not_total_function_avl(AER,Domain,Range,WF) :-
3310 expand_and_convert_to_avl_set_warn(Domain,ADom,not_total_function2,'? /: ARG --> ?',WF),
3311 !,
3312 (is_avl_total_function_over_domain(AER,ADom)
3313 ->
3314 is_not_avl_relation_over_range(AER,Range,WF)
3315 ; true
3316 ).
3317 not_total_function_avl(AER,EDomain,ERange,WF) :-
3318 expand_custom_set_to_list_wf(avl_set(AER),ER,_,not_total_function_avl,WF),
3319 not_tf(ER,[],EDomain,ERange,WF).
3320
3321
3322 :- use_module(kernel_equality,[membership_test_wf_with_force/4]).
3323
3324 :- block not_tf(-,?,?,?,?).
3325 not_tf([],_,Domain,_,WF) :- not_empty_set_wf(Domain,WF).
3326 not_tf([(X,Y)|T],SoFar,Dom,Ran,WF) :- membership_test_wf_with_force(SoFar,X,MemRes,WF),
3327 not_tf2(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3328
3329 :- block not_tf2(-,?,?,?, ?,?,?,?). %, not_tf2(?,?,?,?, -,?,?), not_tf2(?,?,?,?, ?,-,?).
3330 not_tf2(pred_true,_X,_,_T,_SoFar,_Dom,_Ran,_WF).% :- check_element_of_lazy(X,SoFar,WF).
3331 not_tf2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :-
3332 %not_element_of_wf(X,SoFar,WF),
3333 membership_test_wf_with_force(Dom,X,MemRes,WF),
3334 not_tf3(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3335
3336 :- block not_tf3(-, ?,?,?,?, ?,?,?).
3337 not_tf3(pred_false,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF).
3338 not_tf3(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :-
3339 remove_element_wf(X,Dom,Dom2,WF),
3340 membership_test_wf_with_force(Ran,Y,MemRes,WF),
3341 not_tf4(MemRes,X,Y,T,SoFar,Dom2,Ran,WF).
3342
3343 :- block not_tf4(-, ?,?,?,?, ?,?,?).
3344 not_tf4(pred_false,_X,_Y,_T,_SoFar,_Dom2,_Ran,_WF).
3345 not_tf4(pred_true,X,_Y,T,SoFar,Dom2,Ran,WF) :-
3346 %check_element_of_wf(Y,Ran,WF), %DO WE NEED THIS ????
3347 add_new_element_wf(X,SoFar,SoFar2,WF),
3348 not_tf(T,SoFar2,Dom2,Ran,WF).
3349
3350
3351
3352 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
3353 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)).
3354 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
3355 :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1)],[int(7)],_WF),
3356 X = [(int(1),int(7))])).
3357 :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3358 X = [(int(2),int(7)),(int(1),int(6))])).
3359 :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3360 X = [(int(1),int(7)),(int(2),int(6))])).
3361 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(3)],_WF),
3362 X = [(int(1),int(3)),(int(2),int(3))])).
3363 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3364 X = [(int(2),int(7)),(int(1),int(7))])).
3365 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1)],[int(7),int(8)],_WF),
3366 X = [(int(1),int(7))])).
3367 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7)],_WF),
3368 X = [(int(2),int(7))])).
3369 :- assert_must_succeed((bsets_clp:not_total_bijection([],[int(1)],[int(7)],_WF))).
3370 :- assert_must_succeed((bsets_clp:not_total_bijection([(int(7),int(7))],[int(1)],[int(7)],_WF))).
3371 :- assert_must_succeed((bsets_clp:not_total_bijection([(int(1),int(7)), (int(2),int(1))],
3372 [int(1),int(2)],[int(7)],_WF))).
3373 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3374 X = [(int(2),int(7)),(int(2),int(6))])).
3375
3376 :- block not_total_bijection(-,?,?,?), not_total_bijection(?,-,?,?).
3377 not_total_bijection(FF,Domain,Range,WF) :-
3378 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!,
3379 not_equal_object_wf((FFDomain,FFRange),(Domain,Range),WF).
3380 not_total_bijection(avl_set(_),Domain,_Range,_WF) :-
3381 ? is_infinite_explicit_set(Domain),!.
3382 % a finite set cannot be a total bijection over an infinite domain, see test 1641
3383 not_total_bijection(R,Domain,Range,WF) :-
3384 try_expand_custom_set_wf(R,ER,not_total_bijection,WF),
3385 not_tot_bij(ER,[],Domain,Range,WF).
3386
3387 :- block not_tot_bij(-,?,?,?,?).
3388 not_tot_bij([],_,Domain,Range,WF) :- empty_not_tot_bij(Domain,Range,WF).
3389 not_tot_bij([(X,Y)|T],SoFar,Dom,Ran,WF) :- membership_test_wf(SoFar,X,MemRes,WF),
3390 not_tot_bij2(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3391
3392 :- use_module(kernel_equality,[empty_set_test_wf/3]).
3393 :- block empty_not_tot_bij(-,?,?).
3394 empty_not_tot_bij(Domain,Range,WF) :-
3395 empty_set_test_wf(Domain,EqRes,WF),
3396 empty_not_tot_bij2(EqRes,Range,WF).
3397 :- block empty_not_tot_bij2(-,?,?).
3398 empty_not_tot_bij2(pred_false,_,_).
3399 empty_not_tot_bij2(pred_true,Range,WF) :- not_empty_set_wf(Range,WF).
3400
3401 :- block not_tot_bij2(-,?,?,?,?,?,?,?).
3402 not_tot_bij2(pred_true,_X,_,_T,_SoFar,_Dom,_Ran,_WF).
3403 not_tot_bij2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :-
3404 membership_test_wf(Dom,X,MemRes,WF),
3405 not_tot_bij3(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3406
3407 :- block not_tot_bij3(-,?,?,?,?,?,?,?).
3408 not_tot_bij3(pred_false,_X,_,_T,_SoFar,_Dom,_Ran,_WF). % X not a member of domain
3409 not_tot_bij3(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :-
3410 remove_element_wf(X,Dom,Dom2,WF),
3411 membership_test_wf(Ran,Y,MemRes,WF),
3412 not_tot_bij4(MemRes,X,Y,T,SoFar,Dom2,Ran,WF).
3413
3414 :- block not_tot_bij4(-,?,?,?,?,?,?,?).
3415 not_tot_bij4(pred_false,_X,_,_T,_SoFar,_Dom2,_Ran,_WF). % Y not a member of range
3416 not_tot_bij4(pred_true,X,Y,T,SoFar,Dom2,Ran,WF) :-
3417 remove_element_wf(Y,Ran,Ran2,WF),
3418 add_element_wf(X,SoFar,SoFar2,WF),
3419 not_tot_bij(T,SoFar2,Dom2,Ran2,WF).
3420
3421
3422
3423 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([(int(1),int(2)),(int(2),int(3))],[int(3)],[(int(2),int(3))],WF),WF)).
3424 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([(int(1),int(2)),(int(2),int(3))],[int(2),int(3)],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3425 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([],[int(2),int(3)],[],WF),WF)).
3426 :- assert_must_succeed((bsets_clp:range_restriction_wf([],[int(1)],[],_WF))).
3427 :- assert_must_succeed((bsets_clp:range_restriction_wf([],[],[],_WF))).
3428 :- assert_must_succeed((bsets_clp:range_restriction_wf([(int(1),int(2))],[int(1)],[],_WF))).
3429 :- assert_must_succeed((bsets_clp:range_restriction_wf([(int(1),int(2))],[int(2)],[(int(1),int(2))],_WF))).
3430 :- assert_must_succeed((bsets_clp:range_restriction_wf(X,[fd(3,'Name')],R,_WF),
3431 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],
3432 kernel_objects:equal_object(X,R))).
3433 :- assert_must_succeed((bsets_clp:range_restriction_wf(X,Y,R,_WF),
3434 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],Y=global_set('Name'),
3435 kernel_objects:equal_object(X,R))).
3436 :- assert_must_fail((bsets_clp:range_restriction_wf(X,[fd(3,'Name')],R,_WF),
3437 X = [(int(1),fd(3,'Name')),(int(2),fd(1,'Name'))],
3438 kernel_objects:equal_object(X,R))).
3439
3440 :- block range_restriction_wf(-,?,?,?),range_restriction_wf(?,-,-,?).
3441
3442 range_restriction_wf(R,S,Res,WF) :- /* R |> S */
3443 ok_to_try_restriction_explicit_set(S,R,Res),
3444 range_restriction_explicit_set_wf(R,S,SR,WF),!,
3445 equal_object_wf(SR,Res,range_restriction,WF).
3446 range_restriction_wf(R,S,Res,WF) :- /* R |> S */
3447 expand_custom_set_to_list_wf(R,ER,_,range_restriction,WF),
3448 relation_restriction_wf(ER,S,Res,pred_true,range,WF).
3449
3450 % heuristic: should we try restriction_explicit_set or
3451 % is relation_restriction with its stronger constraint propagation better
3452 ok_to_try_restriction_explicit_set(S,R,Res) :-
3453 nonvar(S),
3454 (var(Res) -> true
3455 ; S=avl_set(_),
3456 nonvar(R), R=avl_set(_) % otherwise constraint propagation from normal relation_restriction better
3457 ).
3458
3459 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([],[int(2)],[],WF),WF)).
3460 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[int(2)],[(int(2),int(3))],WF),WF)).
3461 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3462 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[int(1)],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3463
3464 :- block range_subtraction_wf(-,?,?,?),range_subtraction_wf(?,-,-,?).
3465 range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */
3466 S==[],!,
3467 equal_object_wf(R,Res,range_subtraction1,WF).
3468 range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */
3469 ok_to_try_restriction_explicit_set(S,R,Res),
3470 range_subtraction_explicit_set_wf(R,S,SR,WF),!,
3471 equal_object_wf(SR,Res,range_subtraction2,WF).
3472 range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */
3473 expand_custom_set_to_list_wf(R,ER,_,range_subtraction,WF),
3474 relation_restriction_wf(ER,S,Res,pred_false,range,WF).
3475
3476 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_restriction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(3)],WF),WF)).
3477 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_restriction_wf((int(1),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(3)],WF),WF)).
3478
3479 :- block in_range_restriction_wf(-,-,-,?).
3480 in_range_restriction_wf(Pair,Rel,Set,WF) :-
3481 (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3482 ; preference(convert_comprehension_sets_into_closures,true)),
3483 !,
3484 Rel \== [], % avoid setting up check_element_of for X then
3485 % x |-> y : Rel |>> Set <=> x|->y : Rel & y: Set
3486 check_element_of_wf(Pair,Rel,WF),
3487 Pair = (_,P2),
3488 check_element_of_wf(P2,Set,WF).
3489 in_range_restriction_wf(Pair,Rel,Set,WF) :-
3490 range_restriction_wf(Rel,Set,Res,WF),
3491 check_element_of_wf(Pair,Res,WF).
3492
3493 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_restriction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(1),int(2)],WF),WF)).
3494 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_restriction_wf((int(11),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(2)],WF),WF)).
3495
3496 :- block not_in_range_restriction_wf(-,-,-,?).
3497 not_in_range_restriction_wf(Pair,Rel,Set,WF) :-
3498 range_restriction_wf(Rel,Set,Res,WF),
3499 not_element_of_wf(Pair,Res,WF).
3500
3501 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_subtraction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(1)],WF),WF)).
3502 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_subtraction_wf((int(1),int(3)),[(int(2),int(3)),(int(1),int(3))],[],WF),WF)).
3503
3504 :- block in_range_subtraction_wf(-,-,-,?).
3505 in_range_subtraction_wf(Pair,Rel,Set,WF) :-
3506 (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3507 ; preference(convert_comprehension_sets_into_closures,true)),
3508 !,
3509 Rel \== [], % avoid setting up check_element_of for X then
3510 % x |-> y : Rel |>> Set <=> x|->y : Rel & y/: Set
3511 check_element_of_wf(Pair,Rel,WF),
3512 Pair = (_,P2),
3513 not_element_of_wf(P2,Set,WF).
3514 in_range_subtraction_wf(Pair,Rel,Set,WF) :-
3515 range_subtraction_wf(Rel,Set,Res,WF),
3516 check_element_of_wf(Pair,Res,WF).
3517
3518 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_subtraction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(3),int(2)],WF),WF)).
3519 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_subtraction_wf((int(11),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(2)],WF),WF)).
3520
3521 :- block not_in_range_subtraction_wf(-,-,-,?).
3522 not_in_range_subtraction_wf(Pair,Rel,Set,WF) :-
3523 range_subtraction_wf(Rel,Set,Res,WF),
3524 not_element_of_wf(Pair,Res,WF).
3525
3526
3527
3528 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_restriction_wf((int(2),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3529 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_restriction_wf((int(1),int(3)),[int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3530
3531 :- block in_domain_restriction_wf(-,-,-,?).
3532 in_domain_restriction_wf(Pair,Set,Rel,WF) :-
3533 (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3534 ; preference(convert_comprehension_sets_into_closures,true)),
3535 !,
3536 Rel \== [], % avoid setting up check_element_of for X then
3537 % x |-> y : Set <| Rel <=> x|->y : Rel & x: Set
3538 check_element_of_wf(Pair,Rel,WF),
3539 Pair = (P1,_),
3540 check_element_of_wf(P1,Set,WF).
3541 in_domain_restriction_wf(Pair,Set,Rel,WF) :-
3542 domain_restriction_wf(Set,Rel,Res,WF),
3543 check_element_of_wf(Pair,Res,WF).
3544
3545 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_restriction_wf((int(2),int(3)),[int(33),int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3546 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_restriction_wf((int(11),int(3)),[int(11),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3547
3548 :- block not_in_domain_restriction_wf(-,-,-,?).
3549 not_in_domain_restriction_wf(Pair,Set,Rel,WF) :-
3550 domain_restriction_wf(Set,Rel,Res,WF),
3551 not_element_of_wf(Pair,Res,WF).
3552
3553 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(2),int(4)],[(int(1),int(4)),(int(2),int(3))],[(int(2),int(3))],WF),WF)).
3554 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(1),int(2)],[(int(1),int(2)),(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3555 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(2),int(3)],[],[],WF),WF)).
3556 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[],[],_WF))).
3557 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[],R,_WF), R==[])).
3558 :- assert_must_fail((bsets_clp:domain_restriction_wf(_,[],R,_WF), R=[int(_)|_])).
3559 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(2)],[(int(1),int(2))],[],_WF))).
3560 :- assert_must_succeed((bsets_clp:domain_restriction_wf([],[(int(1),int(2))],[],_WF))).
3561 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[(int(1),int(2))],[(int(1),int(2))],_WF))).
3562 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[(int(1),int(2)),(int(2),_)],_,_WF))).
3563 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(2),int(1)],X,R,_WF),
3564 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],
3565 kernel_objects:equal_object(X,R))).
3566
3567
3568 :- block domain_restriction_wf(?,-,?,?),domain_restriction_wf(-,?,-,?).
3569 domain_restriction_wf(S,R,Res,WF) :- /* S <| R */
3570 ok_to_try_restriction_explicit_set(S,R,Res),
3571 domain_restriction_explicit_set_wf(S,R,SR,WF),!,
3572 equal_object_wf(SR,Res,domain_restriction,WF).
3573 domain_restriction_wf(S,R,Res,WF) :- /* S <| R */
3574 expand_custom_set_to_list_wf(R,ER,_,domain_restriction,WF),
3575 relation_restriction_wf(ER,S,Res,pred_true,domain,WF).
3576
3577 % a predicate to compute domain/range restriction/subtraction
3578 :- block relation_restriction_wf(?,-,- ,?,?,?),
3579 relation_restriction_wf(-,?,? ,?,?,?).
3580 relation_restriction_wf([],_S,Res,_AddWhen,_DomOrRange,WF) :-
3581 empty_set_wf(Res,WF).
3582 relation_restriction_wf([(X,Y)|T],S,Res,AddWhen,DomOrRange,WF) :-
3583 (DomOrRange=domain
3584 -> membership_test_wf(S,X,MemRes,WF) % TO DO: pass WF !
3585 ; membership_test_wf(S,Y,MemRes,WF)),
3586 (nonvar(MemRes)
3587 %MemRes==AddWhen % MemRes already set; we will ensure that (X,Y) in Res below; this slows down Alstom Compilation Regle !
3588 % doing the membership_test on the result Res if MemRes\==AddWhen only makes sense if we cannot fully compute the restriction ?? i.e. if T is not a closed list ?
3589 -> true %,(MemRes==AddWhen -> true ; print_term_summary(relation_restriction([(X,Y)|T],S,Res,AddWhen,DomOrRange)),nl)
3590 ; (AddWhen=pred_true -> InResult=MemRes
3591 ; negate(InResult,MemRes)), % from bool_pred
3592 membership_test_wf(Res,(X,Y),InResult,WF)
3593 % TO DO: same for explicit version; gets called e.g. if S = 1..n (1..n <| [1,2,3] = [1,2])
3594 % can now solve e.g. {x|x <| [1,2,3] = [1,2] & card(x)=2} = {{1,2}}
3595 % or x <| s = [1,2,3] \/ {29|->29} & x <: 1..100 & s = %i.(i:1..50|i)
3596 ),
3597 relation_restriction_aux(MemRes,X,Y,T,S,Res,AddWhen,DomOrRange,WF).
3598 :- block relation_restriction_aux(-,?,?,?,?,?, ?,?,?).
3599 relation_restriction_aux(MemRes,X,Y,T,S,Res,AddWhen,DomOrRange,WF) :-
3600 MemRes==AddWhen,!, % (X,Y) should be added to result
3601 % TO DO: collect result until we delay ? and then do equal_object ?
3602 equal_cons(Res,(X,Y),RT), % was : equal_object([(X,Y)|RT],Res),
3603 %equal_cons_wf(Res,(X,Y),RT,WF), % makes tests 982, 1302, 1303 fail; TO DO: investigate
3604 %when(nonvar(RT), % causes problem for test 982
3605 relation_restriction_wf(T,S,RT,AddWhen,DomOrRange,WF).
3606 relation_restriction_aux(_MemRes,_X,_,T,S,RT,AddWhen,DomOrRange,WF) :-
3607 % the couple is filtered out
3608 relation_restriction_wf(T,S,RT,AddWhen,DomOrRange,WF).
3609
3610
3611 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(1),int(3)],[(int(1),int(4)),(int(2),int(3))],[(int(2),int(3))],WF),WF)).
3612 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(3),int(4)],[(int(1),int(2)),(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3613 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(1)],[],[],WF),WF)).
3614 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([],[(int(11),int(21))],[(int(11),int(21))],WF),WF)).
3615 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(1)],[(int(1),int(2))],[],_WF))).
3616 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(3)],[(int(1),int(2))],[(int(1),int(2))],_WF))).
3617 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(1)],[(int(1),int(2)),(int(2),int(X))],R,_WF),
3618 R=[(int(2),int(YY))], YY==X)).
3619 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(5),int(3)],X,R,_WF),
3620 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],
3621 kernel_objects:equal_object(X,R))).
3622 :- block domain_subtraction_wf(?,-,?,?),domain_subtraction_wf(-,?,-,?).
3623 domain_subtraction_wf(S,R,Res,WF) :- S==[],!,
3624 equal_object_wf(R,Res,domain_subtraction1,WF).
3625 domain_subtraction_wf(S,R,Res,WF) :- /* S <<| R */
3626 ok_to_try_restriction_explicit_set(S,R,Res),
3627 domain_subtraction_explicit_set_wf(S,R,SR,WF),!,
3628 equal_object_wf(SR,Res,domain_subtraction2,WF).
3629 domain_subtraction_wf(S,R,Res,WF) :- /* S <<| R */
3630 expand_custom_set_to_list_wf(R,ER,_,domain_subtraction,WF),
3631 try_expand_and_convert_to_avl_with_check(S,AS,keep_intervals(500),domain_subtraction),
3632 % (ground(ER) -> domain_subtraction_acc(ER,AS,[],Res) ;
3633 relation_restriction_wf(ER,AS,Res,pred_false,domain,WF)
3634 % )
3635 .
3636
3637
3638
3639 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_subtraction_wf((int(2),int(3)),[int(33),int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3640 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_subtraction_wf((int(2),int(3)),[],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3641
3642 :- block in_domain_subtraction_wf(-,-,-,?).
3643
3644 in_domain_subtraction_wf(Pair,Set,Rel,WF) :-
3645 (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3646 ; preference(convert_comprehension_sets_into_closures,true)),
3647 !,
3648 Rel \== [], % avoid setting up check_element_of for X then
3649 % x |-> y : Set <<| Rel <=> x|->y : Rel & x/: Set
3650 check_element_of_wf(Pair,Rel,WF),
3651 Pair = (P1,_),
3652 not_element_of_wf(P1,Set,WF).
3653 in_domain_subtraction_wf(Pair,Set,Rel,WF) :-
3654 domain_subtraction_wf(Set,Rel,Res,WF),
3655 check_element_of_wf(Pair,Res,WF).
3656
3657
3658 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_subtraction_wf((int(2),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3659 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_subtraction_wf((int(11),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3660
3661 :- block not_in_domain_subtraction_wf(-,-,-,?).
3662 not_in_domain_subtraction_wf(Pair,Set,Rel,WF) :-
3663 domain_subtraction_wf(Set,Rel,Res,WF),
3664 not_element_of_wf(Pair,Res,WF).
3665
3666 % similar to kernel_objects, but adds case for [_|_]
3667 treat_arg_symbolically(X) :- var(X),!.
3668 treat_arg_symbolically([H|T]) :- \+ ground(H) ; treat_arg_symbolically(T).
3669 treat_arg_symbolically(global_set(_)).
3670 treat_arg_symbolically(freetype(_)).
3671 treat_arg_symbolically(closure(P,T,B)) :- \+ kernel_objects:small_interval(P,T,B).
3672
3673 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override_relation([(int(1),int(2))],[(int(1),int(3))],[(int(1),int(3))],WF),WF)).
3674 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override_relation([(int(1),int(2))],[(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3675 :- assert_must_succeed((bsets_clp:override_relation([(int(1),int(2)),(int(2),int(4))],[(int(1),int(3))],X,_WF),
3676 kernel_objects:equal_object(X,[(int(2),int(4)),(int(1),int(3))]))).
3677 :- assert_must_succeed((bsets_clp:override_relation([(int(1),int(2)),(int(2),int(4))],[(int(3),int(6))],X,_WF),
3678 kernel_objects:equal_object(X,[(int(2),int(4)),(int(1),int(2)),(int(3),int(6))]))).
3679
3680 :- block override_relation(-,-,?,?). % overwrite AST node
3681 override_relation(R,S,Res,WF) :- R==[],!, equal_object_wf(S,Res,override_relation1,WF).
3682 override_relation(R,S,Res,WF) :- S==[],!, equal_object_wf(R,Res,override_relation2,WF).
3683 override_relation(R,S,Res,WF) :- Res==[],!, empty_set_wf(S,WF), empty_set_wf(R,WF).
3684 override_relation(R,S,Res,WF) :- /* R <+ S */
3685 override_custom_explicit_set_wf(R,S,ORes,WF),!,
3686 equal_object_wf(ORes,Res,override_relation3,WF).
3687 override_relation(R,S,Res,WF) :- /* R <+ S */
3688 domain_wf(S,DS,WF),
3689 domain_subtraction_wf(DS,R,DSR,WF),
3690 union_wf(DSR,S,Res,WF). % in principle we could call disjoint_union_wf, but fails 1112, 1751
3691
3692 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(1),int(2)),[(int(1),int(2))],[(int(2),int(3))],WF),WF)).
3693 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(2),int(3)),[(int(1),int(2))],[(int(2),int(3))],WF),WF)).
3694 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(2),int(3)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3695 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:in_override_relation_wf((int(2),int(4)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3696
3697 :- block in_override_relation_wf(-,-,-,?).
3698 in_override_relation_wf(Pair,Rel1,S,WF) :- S==[],!, % Pair: Rel1 <+ S
3699 check_element_of_wf(Pair,Rel1,WF).
3700 in_override_relation_wf(Pair,Rel1,S,WF) :- Rel1==[],!,
3701 check_element_of_wf(Pair,S,WF).
3702 in_override_relation_wf((X,Y),Rel1,S,WF) :-
3703 (treat_arg_symbolically(S) ; treat_arg_symbolically(Rel1)
3704 ; preference(convert_comprehension_sets_into_closures,true)),
3705 !,
3706 domain_wf(S,DS,WF),
3707 membership_test_wf(DS,X,MemRes,WF),
3708 in_override_aux(MemRes,X,Y,Rel1,S,WF).
3709 in_override_relation_wf(Pair,Rel1,S,WF) :-
3710 override_relation(Rel1,S,Res,WF),
3711 check_element_of_wf(Pair,Res,WF).
3712
3713 :- block in_override_aux(-,?,?,?,?,?).
3714 in_override_aux(pred_true,X,Y,_R,S,WF) :-
3715 check_element_of_wf((X,Y),S,WF).
3716 in_override_aux(pred_false,X,Y,R,_S,WF) :-
3717 check_element_of_wf((X,Y),R,WF).
3718
3719 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_in_override_relation_wf((int(2),int(3)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3720 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_override_relation_wf((int(2),int(4)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3721
3722 :- block not_in_override_relation_wf(-,-,-,?).
3723 not_in_override_relation_wf(Pair,Rel1,S,WF) :- S==[],!, % Pair: Rel1 <+ S
3724 not_element_of_wf(Pair,Rel1,WF).
3725 not_in_override_relation_wf(Pair,Rel1,S,WF) :- Rel1==[],!,
3726 not_element_of_wf(Pair,S,WF).
3727 not_in_override_relation_wf((X,Y),Rel1,S,WF) :-
3728 (treat_arg_symbolically(S) ; treat_arg_symbolically(Rel1)
3729 ; preference(convert_comprehension_sets_into_closures,true)),
3730 !,
3731 domain_wf(S,DS,WF),
3732 membership_test_wf(DS,X,MemRes,WF),
3733 not_in_override_aux(MemRes,X,Y,Rel1,S,WF).
3734 not_in_override_relation_wf(Pair,Rel1,S,WF) :-
3735 override_relation(Rel1,S,Res,WF),
3736 not_element_of_wf(Pair,Res,WF).
3737
3738 :- block not_in_override_aux(-,?,?,?,?,?).
3739 not_in_override_aux(pred_true,X,Y,_R,S,WF) :-
3740 not_element_of_wf((X,Y),S,WF).
3741 not_in_override_aux(pred_false,X,Y,R,_S,WF) :-
3742 not_element_of_wf((X,Y),R,WF).
3743
3744 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([],int(1),int(3),[(int(1),int(3))],WF),WF)).
3745 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([(int(1),int(2)),(int(2),int(6))],int(1),int(3),[(int(1),int(3)),(int(2),int(6))],WF),WF)).
3746 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([(int(1),int(2)),(int(2),int(6))],int(2),int(3),[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3747
3748 % override for a single pair
3749 :- block override(-,?,?,?,?), override(?,-,?,?,?),
3750 override(?,?,-,?,?). % also wait on Y; try to generate avl if possible; can only be used in substitution anyway
3751 /* R <+ {X |-> Y} as used by substitution R(X) := Y */
3752 override(R,X,Y,Res,WF) :-
3753 override_pair_explicit_set(R,X,Y,ORes),!,
3754 equal_object_wf(ORes,Res,override1,WF).
3755 override(R,X,Y,Res,WF) :-
3756 if(try_expand_custom_set_to_list(R,ER,_,override),
3757 (
3758 override2(ER,X,Y,[(X,Y)],ORes,WF),
3759 equal_object_wf(ORes,Res,override2,WF)),
3760 ( %print_term_summary(exception(R)), % Virtual Timeout exception occured
3761 override_relation(R,[(X,Y)],Res,WF)
3762 )).
3763
3764 :- block override2(-,?,?,?,?,?).
3765 override2([],_X,_Y,Remainder,Res,WF) :- equal_object_optimized_wf(Remainder,Res,override2,WF). %equal_object(Remainder,Res).
3766 override2([(V,W)|T],X,Y,Remainder,Res,WF) :-
3767 equality_objects_wf(V,X,EqRes,WF),
3768 override2c(EqRes,V,W,T,X,Y,Remainder,Res,WF).
3769
3770 :- block override2c(-, ?,?,?, ?,?,?,?,?).
3771 override2c(pred_true,_V,_W,T,X,Y,_Remainder,Res,WF) :-
3772 equal_cons_wf(Res,(X,Y),T2,WF),
3773 override2(T,X,Y,[],T2,WF). /* set remainder to [], we have already added (X,Y) */
3774 override2c(pred_false,V,W,T,X,Y,Remainder,Res,WF) :-
3775 equal_cons_wf(Res,(V,W),T2,WF),
3776 override2(T,X,Y,Remainder,T2,WF).
3777
3778
3779
3780 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(2)],WF),WF)).
3781 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(3),int(3))],[int(1),int(2)],[int(2)],WF),WF)).
3782 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(1),int(3)),(int(4),int(4))],[int(1),int(2)],[int(2),int(3)],WF),WF)).
3783 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(1),int(3)),(int(4),int(4))],[int(2)],[int(2),int(3)],WF),WF)).
3784 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(2)],_WF)).
3785 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(2)],[],_WF)).
3786 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(3)],[],_WF)).
3787 :- assert_must_succeed((bsets_clp:image_wf([(int(1),int(2)),(int(1),int(3))],
3788 [int(X)],R,_WF), X=1, kernel_objects:equal_object(R,[int(2),int(3)]))).
3789 :- assert_must_succeed((bsets_clp:image_wf([([int(1),int(2)],int(6)),
3790 ([int(1),int(2),int(3)],int(7)),
3791 ([int(2),int(1)],int(8))],
3792 [[int(X),int(1)]],R,_WF), X=2,
3793 kernel_objects:equal_object(R,[int(6),int(8)]))).
3794 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2))],[int(1),int(2)],[int(2)],_WF)).
3795 :- assert_must_fail(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(1)],_WF)).
3796 :- assert_must_fail(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[],_WF)).
3797
3798
3799 :- block image_wf(-,?,?,?).
3800 image_wf(Rel,_,Res,WF) :- Rel==[],!,empty_set_wf(Res,WF).
3801 image_wf(Rel,S,Res,WF) :-
3802 image_for_id_closure(Rel,S,Img),!, % we don't require S to be known here
3803 equal_object_wf(Img,Res,image_wf_id_closure,WF).
3804 image_wf(Rel,S,Res,WF) :-
3805 image_wf0(Rel,S,Res,WF).
3806
3807 :- block image_wf0(?,-,?,?).
3808 image_wf0(Rel,S,Res,WF) :- /* Res = Rel[S] */
3809 (S==[] -> empty_set_wf(Res,WF)
3810 ; opt_push_wait_flag_call_stack_info(WF,b_operator_call(image,[Rel,S],unknown),WF2),
3811 image1(Rel,S,Res,WF2) ).
3812
3813 keep_symbolic(R) :- var(R),!,fail.
3814 keep_symbolic(closure(_,_,_)) :- preferences:get_preference(convert_comprehension_sets_into_closures,true),!.
3815 ?keep_symbolic(R) :- dont_expand_this_explicit_set(R).
3816
3817 :- block image1(-,?,?,?).
3818 image1(Rel,S,Res,WF) :-
3819 image_for_explicit_set(Rel,S,Img,WF),!,
3820 equal_object_wf(Img,Res,image1_1,WF),
3821 quick_propagate_subset_range(Res,Rel,WF).
3822 %image1(Rel,S,Res,WF) :- expand_custom_set_to_list(S,ES),!, image_of_set(ES,Rel,Res,WF).
3823 image1(Rel,Set,Res,WF) :-
3824 ? keep_symbolic(Rel),
3825 (preferences:get_preference(convert_comprehension_sets_into_closures,true), % in this case keep_symbolic is always true
3826 nonvar(Set),is_infinite_explicit_set(Set) % in this case we have to expand Rel below; what if Rel also infinite ?? --> TO DO : symbolic treatment
3827 -> debug_println(9,infinite_for_image1(Set)),
3828 fail
3829 ; true),
3830 ( dom_for_specific_closure(Rel,Domain,function(_),WF)
3831 -> !, expand_custom_set_to_list_wf(Set,ESet,_,image1,WF), % TO DO: what if keep_symbolic(Set)
3832 image_for_inf_fun(ESet,Domain,Rel,[],Res,WF)
3833 ; get_relation_types(Rel,DomType,RangeType),!,
3834 expand_custom_set_to_list_wf(Set,ESet,_,image1_2,WF),
3835 kernel_tools:ground_value_check(Rel,GRel),
3836 when(nonvar(GRel), image_for_large_relation(ESet,Rel,DomType,RangeType,[],Res,WF))
3837 /* ; get_relation_types(Rel,DomType,RangeType),!,
3838 % Rel should not be expanded, compute closure by calculating {yy|#(xx).(xx:Set & xx|->yy:Rel)}
3839 print_term_summary(image_for_large_relation(DomType,RangeType,Set,Rel)),nl,
3840 image_closure(Set,Rel,DomType,RangeType,Closure ),
3841 translate:print_bvalue(Closure),nl,
3842 expand_custom_set(Closure,CRes), print(expanded),nl,
3843 equal_object(CRes,Res,image1_2) */
3844 ).
3845 image1(Rel,S,Res,WF) :-
3846 expand_custom_set_to_list_wf(Rel,Relation,_,image1_2,WF), % bad if Rel is a big closure !
3847 % image_for_list_relation(Relation,S,Res).
3848 propagate_singleton_image(Relation,S,Res,WF),
3849 % TO DO: we could propagate cardinality constraints about Relation,S and Res
3850 % we could also try to infer all_different constraints in case card(S)=card(Res) and f is a function
3851 image_for_list_relation(Relation,S,[],Res,WF). %,print_term_summary(image2_res(Relation,S,Res)).
3852
3853 % propagate that f[{x}] = {r1,...,rk} => x|->ri : f (or {x}*{r1,...,rk} <: f); see test 1532
3854 propagate_singleton_image(R,S,Res,_) :-
3855 (var(S) ; var(Res) ; nonvar(R), is_custom_explicit_set(R,psi)), !.
3856 propagate_singleton_image(Relation,S,avl_set(Res),WF) :-
3857 custom_explicit_sets:singleton_set(S,El), % we have the image by a singleton set {El}
3858 expand_custom_set_to_list_wf(avl_set(Res),LR,_,prop_singleton,WF),
3859 !,
3860 l_check_element_of(LR, El, Relation, WF). % propagate x|->ri : f (will force membership)
3861 propagate_singleton_image(_,_,_,_).
3862
3863 l_check_element_of([],_,_,_).
3864 l_check_element_of([H|T],El,Relation,WF) :-
3865 check_element_of_wf((El,H),Relation,WF),
3866 l_check_element_of(T,El,Relation,WF).
3867
3868 % quick_propagate_in_range(Set, Relation,WF) : propagate that Set <: ran(Relation)
3869 :- block quick_propagate_subset_range(-,?,?).
3870 quick_propagate_subset_range(avl_set(_),_,_) :- !.
3871 quick_propagate_subset_range([],_,_) :- !.
3872 quick_propagate_subset_range([H|T],Relation,WF) :- is_custom_explicit_set(Relation,range_wf1),
3873 range_of_explicit_set_wf(Relation,Range,WF), !,
3874 quick_propagation_element_information(Range,H,WF,NewRange),
3875 quick_propagate_subset_range2(T,NewRange,WF).
3876 quick_propagate_subset_range(_,_,_).
3877
3878 :- block quick_propagate_subset_range2(-,?,?).
3879 quick_propagate_subset_range2([H|T],NewRange,WF) :- !,
3880 quick_propagation_element_information(NewRange,H,WF,NewRange1),
3881 quick_propagate_subset_range2(T,NewRange1,WF).
3882 quick_propagate_subset_range2(_,_,_).
3883
3884 :- use_module(btypechecker, [unify_types_strict/2]).
3885 get_relation_types(Value,Domain,Range) :-
3886 kernel_objects:infer_value_type(Value,VT),
3887 unify_types_strict(VT,set(couple(Domain,Range))). % deal also with seq types
3888 % VT=set(couple(Domain,Range)).
3889
3890 :- block image_for_large_relation(-,?,?,?,?,?,?), image_for_large_relation(?,?,?,?,-,?,?).
3891 image_for_large_relation([],_,_,_,Acc,Res,WF) :- equal_object_wf(Acc,Res,WF).
3892 image_for_large_relation([XX|T],Rel,DomType,RangeType,Acc,Res,WF) :-
3893 Body = b(member(b(couple(b(value(XX),DomType,[]),
3894 b(identifier(yy),RangeType,[])),couple(DomType,RangeType),[]),
3895 b(value(Rel),set(couple(DomType,RangeType)),[])),pred,[]),
3896 % TO DO: simplify above if we have Rel = closure(P,T,B); which we usually will
3897 custom_explicit_sets:expand_normal_closure_direct([yy],[RangeType],Body,HRes,_Done,WF), % do not memoize this (many different values)
3898 union_wf(Acc,HRes,NewAcc,WF),
3899 (T == [] -> equal_object_wf(NewAcc,Res,WF)
3900 ; image_for_large_relation(T,Rel,DomType,RangeType,NewAcc,Res,WF)).
3901
3902 /* no longer used
3903 % construct a closure for {yy|#(xx).(xx:Set & xx|->yy:Rel)}
3904 image_closure(Set,Rel,DomType,RangeType,Closure ) :- custom_explicit_sets:singleton_set(Set,XX),!,
3905 % do not set up existential quantifier if Set is singleton set
3906 Closure = closure([yy],[RangeType],Body),
3907 Body = b(member(b(couple(b(value(XX),DomType,[]),
3908 b(identifier(yy),RangeType,[])),couple(DomType,RangeType),[]),
3909 b(value(Rel),set(couple(DomType,RangeType)),[])),pred,[]).
3910 image_closure(Set,Rel,DomType,RangeType,Closure ) :-
3911 Closure = closure([yy],[RangeType],Body),
3912 couple_member_pred(xx,DomType,yy,RangeType,Rel, Predxxyy),
3913 Body = b(exists([b(identifier(xx),DomType,[])],
3914 b(conjunct(
3915 b(member(b(identifier(xx),DomType,[]),b(value(Set),set(DomType),[])),pred,[]), % TO DO : force evaluation !
3916 Predxxyy),
3917 pred,[])),pred,[used_ids([yy])]).
3918 */
3919
3920 % very similar to rel_compose_with_inf_fun, indeed f[S] = ran((id(S);f))
3921 :- block image_for_inf_fun(-,?,?,?,?,?).
3922 image_for_inf_fun([],_Dom,_Rel2,Acc,Comp,WF) :- equal_object_wf(Acc,Comp,WF).
3923 image_for_inf_fun([X|T],Dom,Fun,Acc,CompRes,WF) :-
3924 membership_test_wf(Dom,X,MemRes,WF),
3925 image_for_inf_fun_aux(MemRes,X,T,Dom,Fun,Acc,CompRes,WF).
3926
3927 :- block image_for_inf_fun_aux(-,?,?, ?,?,?,?,?).
3928 image_for_inf_fun_aux(pred_true,X,T,Dom,Fun,Acc,CompRes,WF) :-
3929 apply_to(Fun,X,FX,WF), % TO DO: generalize to image so that we can apply it also to infinite relations ?
3930 add_element_wf(FX,Acc,NewAcc,WF), % will block until Acc Known !!
3931 % TO DO USE: equal_cons_wf(CompRes,FX,CT,WF) + accumulator !,
3932 image_for_inf_fun(T,Dom,Fun,NewAcc,CompRes,WF).
3933 image_for_inf_fun_aux(pred_false,_X,T,Dom,Fun,Acc,Comp,WF) :-
3934 image_for_inf_fun(T,Dom,Fun,Acc,Comp,WF).
3935
3936
3937 /*
3938 :- block image_of_set(-,?,?,?,?), image_of_set(?,?,-,?,?).
3939 image_of_set([],Rel,ImageSoFar,Res,WF) :- equal_object(ImageSoFar,Res).
3940 image_of_set([H|T],Rel,ImageSoFar,Res,WF) :-
3941 image_of_element(Rel,H,ImageSoFar,SF2,WF),
3942 image_of_set(T,Rel,SF2,Res,WF).
3943
3944 image_of_element([],_,Acc,Res,WF) :- equal_object(Acc,Res).
3945 image_of_element([(A,B)|T],H,Acc,Res,WF) :- equality....
3946 image_of_element(avl_set(),H,Acc,Res,WF) :- ....
3947 image_of_element(closure(),....
3948 */
3949
3950 % Computing the image of a relation which is stored as a list: traverse the relation
3951 :- block image_for_list_relation(-,?,?,?,?).
3952 ?image_for_list_relation([],_,_,Res,WF) :- empty_set_wf(Res,WF).
3953 image_for_list_relation([(X,Y)|T],S,ImageSoFar,Res,WF) :-
3954 ((T==[], definitely_not_empty(Res))
3955 -> MemRes=pred_true, % we need at least one more element for Res
3956 check_element_of_wf(X,S,WF)
3957 ; (Res==[],ImageSoFar==[]) -> MemRes=pred_false, not_element_of_wf(X,S,WF) % Result empty: X cannot be in S
3958 ; membership_test_wf(S,X,MemRes,WF)
3959 ),
3960 ? image4(MemRes,Y,T,S,ImageSoFar,Res,WF).
3961
3962 definitely_not_empty(Set) :- nonvar(Set), Set \== [], \+ functor(Set,closure,3). % Set \= closure(_,_,_).
3963
3964 :- block image4(-, ?,?,?, ?,?,?).
3965 image4(pred_true, Y,T,S, ImageSoFar,Res,WF) :-
3966 (Res==[]
3967 -> MemRes=pred_true, check_element_of_wf(Y,ImageSoFar,WF)
3968 ; membership_test_wf(ImageSoFar,Y,MemRes,WF)
3969 ),
3970 ? image5(MemRes,Y,T,S,ImageSoFar,Res,WF).
3971 image4(pred_false, _Y,T,S, ImageSoFar,Res,WF) :-
3972 ? image_for_list_relation(T,S,ImageSoFar,Res,WF).
3973
3974 :- block image5(-, ?,?,? ,?,?,?).
3975 image5(pred_true,_Y,T,S,ImageSoFar,Res,WF) :- /* we have already added Y to the image */
3976 ? image_for_list_relation(T,S,ImageSoFar,Res,WF).
3977 image5(pred_false,Y,T,S,ImageSoFar,Res,WF) :-
3978 add_element_wf(Y,ImageSoFar,ImageSoFar2,WF),
3979 kernel_objects:mark_as_non_free(Y,image), % Y has been added to image, no longer freely choosable
3980 equal_cons_wf(Res,Y,Res2,WF),
3981 ? image_for_list_relation(T,S,ImageSoFar2,Res2,WF).
3982
3983
3984
3985 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[int(2)],[int(1),int(2)],WF),WF)).
3986 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[],[],WF),WF)).
3987 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[int(3)],[int(3)],WF),WF)).
3988 % version for computing closure1(Rel)[S]
3989 :- block image_for_closure1_wf(-,?,?,?),image_for_closure1_wf(?,-,?,?).
3990 image_for_closure1_wf(Rel,S,Res,WF) :- (Rel==[] ; S==[]),!,empty_set_wf(Res,WF).
3991 image_for_closure1_wf(Rel,Set,Res,WF) :-
3992 try_expand_and_convert_to_avl_unless_large_wf(Set,ESet,WF),
3993 ? image_for_closure1_wf_aux(Rel,ESet,Res,WF).
3994
3995 :- use_module(library(avl),[avl_height/2]).
3996 image_for_closure1_wf_aux(Rel,S,Res,WF) :-
3997 ((nonvar(S),S=avl_set(_))
3998 -> closure1_for_explicit_set_from(Rel,S,Closure1Rel),!,
3999 % if S is known: start from S (currently only deals with Rel=avl_set(_)
4000 range_wf(Closure1Rel,Res,WF)
4001 ; Rel=avl_set(AR), avl_height(AR,AR_Height),
4002 ((set_smaller_than(S,4),AR_Height>4)
4003 -> !, % TO DO: we could do the same for small S if Rel is large
4004 when(ground(S), (expand_and_convert_to_avl_set(S,ES,image_for_closure1_wf_aux,'closure1(ARG)[?]') ->
4005 closure1_for_explicit_set_from(Rel,avl_set(ES),Closure1Rel),
4006 range_wf(Closure1Rel,Res,WF)
4007 ; image_for_closure1_iterate(Rel,S,[],Res,WF,first_iteration(S))
4008 ))
4009 ; % Don't do this if avl_height too large; then it is probably better to compute the image for S only
4010 AR_Height < 13, % how big should we make this magic constant; or should we time-out ? 2^14=16384
4011 closure1_for_explicit_set(Rel,Closure1Rel),!, % we can compute it effiently; don't use code below
4012 image_wf(Closure1Rel,S,Res,WF)
4013 )
4014 ).
4015 image_for_closure1_wf_aux(Rel,S,Res,WF) :-
4016 propagate_result_in_range(Rel,S,Res,WF),
4017 ? image_for_closure1_iterate(Rel,S,[],Res,WF,first_iteration(S)).
4018
4019 % no need to treat avl_sets; already covered as special case above
4020 set_smaller_than([],_).
4021 set_smaller_than([_|T],N) :- N>1, nonvar(T), N1 is N-1, set_smaller_than(T,N1).
4022
4023 image_for_closure1_iterate(Rel,S,Acc,Res,WF,FIRST) :-
4024 image_wf0(Rel,S,Res1,WF),
4025 ground_value_check(Res1,RV),
4026 ? image_for_closure1_check_fix(RV,Rel,Acc,Res1,Res,WF,FIRST).
4027
4028 :- block image_for_closure1_check_fix(-,?,?,?,?,?,?).
4029 image_for_closure1_check_fix(_,Rel,Acc,Res1,Res,WF,FIRST) :-
4030 %try_expand_and_convert_to_avl_unless_large_wf(Res1,ERes1,WF),
4031 difference_set(Res1,Acc,New),
4032 try_expand_and_convert_to_avl(New,ENew), % we compute difference_set below; we most definitely will need an explicit finite representation
4033 (not_empty_set_wf(ENew,WF),
4034 union(ENew,Acc,Acc1), % Note: we do not call union_wf - should we do this
4035 % upon first iteration remove also S from New -> New2 and pass New2 to image_for_closure1_iterate
4036 % TO DO: investigate whether this also makes sense for further iterations; always remove S
4037 (FIRST=first_iteration(S) -> difference_set(ENew,S,New2) ; New2=ENew),
4038 ? image_for_closure1_iterate(Rel,New2,Acc1,Res,WF,not_first)
4039 ;
4040 empty_set_wf(ENew,WF),equal_object_optimized_wf(Acc,Res,image_for_closure1_check_fix,WF)).
4041
4042 % propagate information that if closure1(Rel)[.] = Res => Res <: range(Rel)
4043 % x: 1..n --> 1..n & closure1(x)[{1}] = {} & n=100
4044 :- block propagate_result_in_range(?,?,-,?).
4045 propagate_result_in_range(Rel,_S,_Res,_WF) :-
4046 ground_value(Rel),!. % no propagation required
4047 propagate_result_in_range(Rel,S,[],WF) :- !,
4048 domain_wf(Rel,Domain,WF),
4049 not_subset_of_wf(S,Domain,WF).
4050 propagate_result_in_range(Rel,_,Res,WF) :-
4051 range_wf(Rel,Range,WF),
4052 check_subset_of_wf(Res,Range,WF).
4053
4054 :- use_module(probsrc(avl_tools),[avl_height_less_than/2]).
4055
4056 % version for computing iterate(K,Rel)[S]
4057 % iteration
4058 :- block image_for_iterate_wf(?,-,?,?,?,?), image_for_iterate_wf(?,?,-,?,?,?).
4059 image_for_iterate_wf(_Rel,_K,S,Res,_,WF) :- S==[],!,empty_set_wf(Res,WF).
4060 image_for_iterate_wf(Rel,int(K),S,Res,Type,WF) :-
4061 image_for_iterate_k(K,Rel,S,Res,Type,WF).
4062
4063 :- block image_for_iterate_k(-,?,?,?,?,?).
4064 image_for_iterate_k(K,Rel,S,Res,Type,WF) :-
4065 nonvar(Rel),
4066 Rel=avl_set(AVL),
4067 (var(S) -> avl_height_less_than(AVL,11) ; avl_height_less_than(AVL,3)),
4068 !, % compute the iteration once; possibly better constraint propagation and performance if S enumerated
4069 % e.g. x:{1,10,20} & iterate({1|->10,20|->1,10|->20},2)(x) = 20
4070 rel_iterate_wf(Rel,int(K),RelIterated,Type,WF),
4071 image_wf(RelIterated,S,Res,WF).
4072 image_for_iterate_k(K,Rel,S,Res,_,WF) :-
4073 image_for_iterate_k_loop(K,Rel,S,Res,WF).
4074
4075 :- block image_for_iterate_k_loop(?,?,-,?,?).
4076 image_for_iterate_k_loop(0,_Rel,Acc,Result,WF) :- !,
4077 equal_object_optimized_wf(Acc,Result,image_for_iterate_k,WF).
4078 image_for_iterate_k_loop(K,Rel,Acc,Result,WF) :-
4079 image_wf0(Rel,Acc,Acc1,WF), % we could try and detect fix point if K> some limit or time for iteration is measurable
4080 if((K>10, K mod 10 =:= 0, % check for fixpoint every 10 iterations
4081 nonvar(Acc1), Acc1=avl_set(_), quick_custom_explicit_set_approximate_size(Acc1,Size1),
4082 quick_custom_explicit_set_approximate_size(Acc,Size0),
4083 Size0=Size1, % only check for equality if approximate sizes match
4084 equal_explicit_sets_wf(Acc,Acc1,WF)),
4085 K1=0, % fixpoint found, no need to continue iterating
4086 K1 is K-1),
4087 image_for_iterate_k_loop(K1,Rel,Acc1,Result,WF).
4088
4089 special_operator_for_image(b(Rel,Type,_),Kind,Args) :- special_image_aux(Rel,Type,Kind,Args).
4090 special_image_aux(closure(Rel),_,closure,[Rel]). % we have closure1(Rel)[Set] -> avoid computing full closure
4091 special_image_aux(iteration(Rel,K),Type,iteration(Type),[Rel,K]).
4092 % TODO: reflexive closure, id_closure (this will probably be more natural as special case for a value)
4093
4094 ?image_for_special_operator(closure,[Rel],S,Res,WF) :- image_for_closure1_wf(Rel,S,Res,WF).
4095 image_for_special_operator(iteration(Type),[Rel,K],S,Res,WF) :-
4096 image_for_iterate_wf(Rel,K,S,Res,Type,WF).
4097
4098 :- use_module(kernel_objects,[singleton_set_element/4]).
4099 apply_fun_for_special_operator(Kind,EArgs,FunArg,Res,WF,Span) :-
4100 InitialSet = [FunArg], % TODO: try convert to AVL, note: closure1 not really useful in fun. application context
4101 image_for_special_operator(Kind,EArgs,InitialSet,SetRes,WF),
4102 singleton_set_element(SetRes,Res,Span,WF).
4103
4104 % iterate(%x.(x:NATURAL|x+2),2000)(20) much faster this way, 15 ms vs 4 seconds
4105 % iterate(%x.(x:NATURAL|x+2),2000)[{20}]: ditto
4106
4107
4108 % -----------------------------------
4109
4110 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:apply_to([(int(2),int(22))],int(2),int(22),WF),WF)).
4111 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:apply_to([(int(1),int(22)),(int(3),int(33)),(int(4),int(44))],int(3),int(33),WF),WF)). % used to be wfdet (see in_domain_wf above)
4112 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:apply_to([(int(1),[int(22)]),(int(3),[int(32),int(33)]),(int(4),[int(44)])],int(3),[int(32),int(33)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4113 :- assert_must_succeed(bsets_clp:apply_to([(int(1),int(2))],int(1),int(2),_WF)).
4114 :- assert_must_succeed((bsets_clp:apply_to(F,int(3),int(2),_WF),F=[(int(3),int(2)),(int(2),int(1))])).
4115 :- assert_must_succeed((bsets_clp:apply_to(F,X,int(1),_WF),F=[(int(3),int(2)),(int(2),int(1))],X=int(2))).
4116 :- assert_must_succeed((bsets_clp:apply_to(F,int(3),_,_WF),F=[(int(3),[int(2),int(3)]),(int(2),[])])).
4117
4118 :- assert_must_fail(bsets_clp:apply_to([(int(1),int(2)),(int(1),int(3))],int(1),int(3),_WF)).
4119 /* input not a function */
4120 apply_to(R,X,Y,WF) :- apply_to(R,X,Y,unknown,unknown,WF).
4121 apply_to(R,X,Y,Span,WF) :- apply_to(R,X,Y,unknown,Span,WF).
4122
4123 % comment in to perform profiling at function call level; can lead to big slowdowns
4124 %:- load_files(library(system), [when(compile_time), imports([environ/2])]).
4125 %:- use_module(source_profiler,[opt_add_source_location_hits/2]).
4126 %apply_to(_R,_X,_Y,_FunctionType,Span,_WF) :- opt_add_source_location_hits(Span,1),fail.
4127
4128 :- block apply_to(-,-,-,?,?,?).
4129 apply_to(R,X,Y,_FunctionType,Span,WF) :-
4130 % we could check if WD condition discharged in Span
4131 (\+ preferences:preference(find_abort_values,false) ; preference(data_validation_mode,true)),
4132 !,
4133 apply_to_var_block_abort(R,X,Y,R,Span,WF). % we have to know R before we can do anything
4134 apply_to(R,X,Y,FunctionType,Span,WF) :-
4135 (var(R),var(X) -> force_in_domain_wf(X,R,WF) ; true),
4136 apply_to1(R,X,Y,R,FunctionType,Span,WF).
4137
4138 :- use_module(kernel_non_empty_attr,[mark_var_set_as_non_empty/1]).
4139 force_in_domain_wf(El,S,WF) :-
4140 (preferences:preference(use_smt_mode,true) -> S=[(El,_)|_]
4141 ; % TO DO: non-empty flag
4142 mark_var_set_as_non_empty(S),
4143 get_enumeration_starting_wait_flag(not_empty_domain_wf,WF,LWF), in_domain_lwf(El,S,LWF,WF)).
4144
4145 :- use_module(preferences,[preference/2]).
4146 :- use_module(clpfd_tables,[can_translate_function_to_element_constraint/2,check_apply_with_element_constraint/5]).
4147 :- block apply_to1(-,-,?,?,?,?,?).
4148 apply_to1(R,X,Y,InitialRel,FunctionType,Span,WF) :-
4149 (var(R) -> apply_to_var(R,X,Y,InitialRel,Span,WF)
4150 ; R\=[], can_translate_function_to_element_constraint(R,FunctionType) ->
4151 check_apply_with_element_constraint(R,X,Y,FunctionType,WF)
4152 ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF),
4153 propagate_range_membership(R,Y)
4154 ).
4155 :- block apply_to2(-,-,?,?,?,?).
4156 apply_to2(R,X,Y,InitialRel,Span,WF) :-
4157 (var(R)
4158 -> apply_to_var(R,X,Y,InitialRel,Span,WF)
4159 ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF)
4160 ).
4161
4162 :- use_module(clpfd_lists,[get_finite_fdset_information/2,combine_fdset_information/3,
4163 assert_fdset_information/2,get_fdset_information/2]).
4164 % tested in test 1478; initially slows down NQueens
4165 %:- block propagate_range_membership(-,?). % not necessary
4166 propagate_range_membership([(_,RanEl)|T],X) :- nonvar(RanEl),
4167 preferences:preference(use_clpfd_solver,true),
4168 preferences:preference(find_abort_values,false),
4169 get_finite_fdset_information(RanEl,Info), % TO DO: try and detect if we can apply element/3 from clpfd
4170 \+ ground(X),
4171 get_fdset_information(X,InfoX),
4172 Info \= InfoX, % avoids NQueens slowdown; TO DO: check if more precise than InfoX; otherwise no use in collecting info
4173 !,
4174 propagate_range_membership(T,Info,X).
4175 propagate_range_membership(_,_).
4176 :- block propagate_range_membership(-,?,?).
4177 propagate_range_membership([],Info,El) :- !,
4178 % note: the information for the first few elements might have become more precise; TO DO: wait until list known and then propagate ?+ keep on propagating ??
4179 assert_fdset_information(Info,El).
4180 propagate_range_membership([(_,RanEl)|T],Acc,X) :-
4181 nonvar(RanEl), % otherwise we have no info: we may just as well stop
4182 get_finite_fdset_information(RanEl,RInfo),
4183 combine_fdset_information(Acc,RInfo,NewAcc),
4184 NewAcc \= no_fdset_info,
4185 !,
4186 propagate_range_membership(T,NewAcc,X).
4187 propagate_range_membership(_,_,_).
4188
4189
4190 apply_to_var(R,X,Y,InitialRel,Span,WF) :-
4191 mark_var_set_as_non_empty(R),
4192 get_wait_flag(1.0,apply_to_var,WF,WF1), % see tests 1393, 1562??
4193 % was: get_wait_flag0(WF,WF1), but see test 1706 (in conjunction for improvement for test 2033)
4194 when(((nonvar(WF1),ground(X));nonvar(R)), % only instantiate R when X sufficiently instantiated (TO DO: maybe use some for of equality_objects with existing relation R set up so far ??)
4195 (var(R) ->
4196 R=[(X,Y)|Tail],
4197 optional_functionality_check(Tail,X,WF)
4198 ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF))).
4199
4200 :- block apply_to_var_block_abort(-,?,?,?,?,?).
4201 apply_to_var_block_abort(R,X,Y,InitialRel,Span,WF) :-
4202 apply_to_nonvar(R,X,Y,InitialRel,Span,WF).
4203
4204 optional_functionality_check(Tail,X,WF) :-
4205 preferences:preference(disprover_mode,true),!,
4206 not_in_domain_wf(X,Tail,WF). % we assert that R is a function ; when disproving we can assume well-definedness
4207 % Note: this can cut down the search space ; see e.g. test 1230 (but e.g. it will not find a problem with test 1169, RULE_r967_1)
4208 optional_functionality_check(_,_X,_WF). % TO DO: maybe lazily check if we have other elements with X as first arg if find_abort_values is true
4209
4210
4211 :- use_module(closures,[is_recursive_closure/3]).
4212 :- use_module(memoization,[is_memoization_closure/4,apply_to_memoize/8]).
4213 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
4214 :- if(\+ environ(no_wd_checking,true)).
4215 apply_to_nonvar([],X,_Y,InitialRel,Span,WF) :-
4216 \+ preferences:preference(find_abort_values,false),
4217 when(ground(X),add_wd_error_span('function applied outside of domain (#2): ', '@fun'(X,InitialRel),Span,WF)).
4218 :- endif.
4219 apply_to_nonvar([(X2,Y2)|T],X,Y,InitialRel,Span,WF) :-
4220 equality_objects_wf(X2,X,EqRes,WF),
4221 % this check on Y2 below is important if both Y and Y2 are instantiated but X,X2 not yet
4222 % example: aload_R07_cbc.mch (Savary) or cbc_sequence check for R08_ByteArray for aload_R07 event (test 1349)
4223 % however: slows down test 583 !
4224 (var(EqRes) -> equality_objects_wf(Y2,Y,EqResY,WF),
4225 prop_apply_eqxy(EqResY,EqRes) % propagate: if Y/=Y2 => X/=X2
4226 ; EqResY=not_called),
4227 apply_to4(EqRes,EqResY,Y2,T,X,Y,InitialRel,Span,WF).
4228 apply_to_nonvar(avl_set(A),X,Y,_InitialRel,Span,WF) :-
4229 apply_to_avl_set(A,X,Y,Span,WF).
4230 apply_to_nonvar(closure(P,T,B),X,Y,_InitialRel,Span,WF) :-
4231 %is_custom_explicit_set(Closure,apply), % should also work for avl_set,...
4232 ? (is_memoization_closure(P,T,B,MemoID)
4233 % Function application with memoization; currently enabled by add /*@desc memo */ pragma to abstract constant
4234 -> apply_to_memoize(MemoID,P,T,B,X,Y,Span,WF)
4235 ; is_recursive_closure(P,T,B) % TO DO: maybe we should do the same for functions marked as memoize symbolic/uni-directional/computed ? (although we have new rule for check_element_of_function_closure which makes this redundant ??)
4236 -> % print_term_summary(apply_recursive_closure(X,P,T,B)),
4237 %hit_profiler:add_profile_hit(rec_apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)),
4238 ground_value_check(X,XV), block_apply_closure_to_nonvar_groundx(XV,X,Y,P,T,B,Span,WF)
4239 ; %hit_profiler:add_profile_hit(apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)),
4240 apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)).
4241
4242
4243 :- block block_apply_closure_to_nonvar_groundx(-,?,?, ?,?,?, ?,?).
4244 block_apply_closure_to_nonvar_groundx(_,X,Y, P,T,B, Span,WF) :- apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF).
4245
4246 apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF) :-
4247 kernel_tools:ground_bexpr(B),
4248 !, % then if the element of function succeeds there is no need to check WD
4249 if(check_element_of_function_closure(X,Y,P,T,B,WF),
4250 true, % No need to check for well-definedness; no pending choice points
4251 apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF) % here we need to check; it could be that the result Y was instantiated
4252 ).
4253 apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF) :-
4254 apply_closure_to_nonvar(X,Y,P,T,B,Span,WF).
4255
4256 % if we first check preferences:preference(find_abort_values,false) to avoid a choice
4257 % point, we get a big slow-down on Alstom models; e.g., vesg_Mar12
4258 % WARNING: This choice point can be set up in WF0 !
4259 apply_closure_to_nonvar(X,Y,P,T,B,_,WF) :-
4260 (preferences:preference(find_abort_values,true) -> true ; !), % slow down ???!
4261 check_element_of_function_closure(X,Y,P,T,B,WF) .
4262 apply_closure_to_nonvar(X,_,P,T,B,Span,WF) :- % removing this clause doubles runtime of COMPUTE_GRADIENT_CHANGE
4263 apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF).
4264
4265 apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF) :-
4266 \+ preferences:preference(find_abort_values,false),
4267 not_in_domain_wf(X,closure(P,T,B),WF),
4268 when((ground(X),ground(closure(P,T,B))),
4269 add_wd_error_span('function applied outside of domain (#3): ', '@fun'(X,closure(P,T,B)),Span,WF)).
4270
4271
4272 % propagate equality_objects between range and domain elements for function application:
4273 :- block prop_apply_eqxy(-,-).
4274 prop_apply_eqxy(Eqy,Eqx) :- var(Eqy),!, (Eqx = pred_true -> Eqy = pred_true ; true).
4275 prop_apply_eqxy(pred_false,pred_false).
4276 prop_apply_eqxy(pred_true,_).
4277
4278 :- block apply_to4(-,?,?, -,?,?,?,?,?).
4279 apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) :-
4280 var(EqResX),!, % Tail bound
4281 (Tail == []
4282 -> (preferences:preference(find_abort_values,false)
4283 -> EqResX = pred_true,
4284 apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)
4285 ; apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)
4286 )
4287 ; Tail = avl_set(_) -> apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) % TO DO: improve ! (e.g., expand to list if small or check if X can be in domain,...)
4288 ; Tail = closure(_,_,_) -> apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)
4289 ; Tail \= [_|_] -> add_internal_error('Illegal Tail: ',apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)),fail
4290 ; Tail = [(X3,Y3)|T3], % setup equality check with X3, purpose: detect, e.g., when no other element in tail can match we can force EqResX to pred_true
4291 apply_to4_call5(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF, X3,Y3,T3)
4292 ).
4293 apply_to4(pred_true,EqResY,Y2, Tail,X,Y,_InitialRel,_,WF) :-
4294 (EqResY==not_called -> equal_object_wf(Y2,Y,apply_to4,WF) ; EqResY = pred_true),
4295 optional_functionality_check(Tail,X,WF).
4296 apply_to4(pred_false,_EqResY,_Y2,T,X,Y,InitialRel,Span,WF) :- apply_to2(T,X,Y,InitialRel,Span,WF).
4297
4298 % we delay setting up equality_objects until X3 is at least partially known, see test 1715 Alstom_essai2_boucle1
4299 % TO DO: we could check if X3==X above
4300 :- block apply_to4_call5(-,?,?, ?,?,?,?,?,?, -,?,?).
4301 apply_to4_call5(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF, _X3,_Y3,_T3) :- nonvar(EqResX),!,
4302 apply_to4(EqResX,EqResY,Y2,Tail,X,Y,InitialRel,Span,WF).
4303 apply_to4_call5(EqResX,EqResY,Y2, _Tail,X,Y,InitialRel,Span,WF, X3,Y3,T3) :- % X3 must now be bound
4304 equality_objects_wf(X3,X,EqRes3,WF),
4305 apply_to5(EqResX,EqResY,EqRes3, Y2,X3,Y3,T3, X,Y, InitialRel,Span,WF).
4306
4307 % version which wait suntil first argument known
4308 :- block apply_to4_block(-,?,?, ?,?,?,?,?,?).
4309 apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) :-
4310 apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF).
4311
4312
4313 % apply_to5: implements a watched-literal style treatment of function application
4314 % we watch whether X unifies with two elements of the function, if only one element left we can force equality
4315 % TEST:
4316 % f : 11..23 +-> 1..10 & f = {a|->2, b|->3, c|->4} & card({a,b,c})=3 & f(x)=r & a>b & b>c & x>b
4317 :- block apply_to5(-,?,-, ?,?,?,?, ?,?, ?,?,?),apply_to5(-,?,?, ?,?,?,-, ?,?, ?,?,?).
4318 apply_to5(EqRes,EqResY,EqRes3, Y2,_X3,Y3,T3, X,Y, InitialRel,Span,WF) :-
4319 var(EqRes),!,
4320 % EqRes3 and T3 must be known; TO DO: improve predicate so that we have to wait on T3 only when EqRes3=pred_false
4321 (EqRes3 = pred_false -> % we cannot match next element, move tail one forward
4322 (T3 = [] -> EqRes=pred_true ; true),
4323 apply_to4(EqRes,EqResY,Y2,T3,X,Y,InitialRel,Span,WF)
4324 ; /* EqRes3 = pred_true */
4325 % we match the next entry in the list; discard Y2 and jump to (X3,Y3) and return as solution
4326 equal_object_wf(Y3,Y,apply_to6,WF), optional_functionality_check(T3,X,WF),
4327 % TO DO: we could also do equality_objects if necessary between Y and Y3, as in apply_to4 for Y and Y2
4328 opt_force_false(EqRes)
4329 ).
4330 apply_to5(pred_true,EqResY,EqRes3, Y2,X3,Y3,T3, X,Y, _InitialRel,_Span,WF) :-
4331 (EqResY==not_called -> equal_object_wf(Y2,Y,apply_to5,WF) ; EqResY = pred_true),
4332 opt_force_false(EqRes3),
4333 optional_functionality_check([(X3,Y3)|T3],X,WF).
4334 apply_to5(pred_false,_EqResY,EqRes3, _Y2,_X3,Y3,T3, X,Y, InitialRel,Span,WF) :-
4335 (var(EqRes3) -> % it can be that EqRes3 is about to be triggered
4336 equality_objects_wf(Y3,Y,EqResY3,WF),
4337 prop_apply_eqxy(EqResY3,EqRes3) % propagate: if Y/=Y3 => X/=X3
4338 ; EqResY3=not_called),
4339 apply_to4(EqRes3,EqResY3,Y3, T3,X,Y,InitialRel,Span,WF).
4340
4341 opt_force_false(EqRes) :-
4342 (preference(find_abort_values,false) -> EqRes=pred_false
4343 ; true). % TO DO: if EqRes becomes pred_true: raise abort_error as the relation was not a function
4344
4345
4346
4347 /********************************************/
4348 /* surjection_relation(R,Domain,Range) */
4349 /* R : Domain <->> Range */
4350 /********************************************/
4351 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:surjection_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4352 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(6),int(7)],WF),WF)).
4353
4354 surjection_relation_wf(R,Domain,Range,WF) :-
4355 is_surjective(R,Range,WF),
4356 % TODO: is not optimal since ran(R)<:Range is already implied by is_surjective and
4357 % checked a second time by relation_over_wf/4
4358 ? relation_over_wf(R,Domain,Range,WF).
4359
4360 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(6),int(7)],WF),WF)).
4361
4362 not_surjection_relation_wf(R,Domain,Range,WF) :-
4363 expand_custom_set_to_list_wf(R,ER,Done,not_surjection_relation_wf,WF),
4364 not_tot_surj_rel(ER,Done,[],Domain,Range,Range,WF).
4365
4366 /*********************************************/
4367 /* total_surjection_relation(R,Domain,Range) */
4368 /* R : Domain <<->> Range */
4369 /*********************************************/
4370 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_surjection_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4371 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_surjection_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4372
4373
4374 :- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1)],[int(11),int(12)]),L),
4375 lists:maplist(sort,L,SL), sort(SL,SSL), % added May15th due to change in domain_wf (bsets_clp:propagate_result_to_input); TO DO: see if we can go back to just one solution
4376 length(SSL,1))).
4377 %:- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11),int(12)]),L), length(L,7))).
4378 % the new domain predicate also instantiates from result; meaning that duplicate solutions are now generated
4379 :- assert_must_succeed((findall(SR,(bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11),int(12)]),sort(R,SR)),L), sort(L,SL),length(SL,7))).
4380 :- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11)]),L),
4381 length(L,1))).
4382
4383 total_surjection_relation(R,Domain,Range) :- init_wait_flags(WF,[total_surjection_relation]),
4384 total_surjection_relation_wf(R,Domain,Range,WF), ground_wait_flags(WF).
4385
4386 total_surjection_relation_wf(R,Domain,Range,WF) :-
4387 relation_over_wf(R,Domain,Range,WF),
4388 check_relation_is_total(R,Domain,WF), % calls domain which now instantiates R if Domain known
4389 check_relation_is_surjective(R,Range,WF).
4390
4391
4392 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4393 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4394 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4395
4396 not_total_surjection_relation_wf(R,Domain,Range,WF) :-
4397 expand_custom_set_to_list_wf(R,ER,Done,not_total_surjection_relation_wf,WF),
4398 ? not_tot_surj_rel(ER,Done,Domain,Domain,Range,Range,WF).
4399
4400
4401 /********************************************/
4402 /* partial_surjection(R,DomType,RangeType) */
4403 /* R : DomType +->> RangeType */
4404 /********************************************/
4405
4406 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4407 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6),int(2)],WF),WF)).
4408 :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4409 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4410 :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],global_set('Name')),
4411 kernel_objects:equal_object(X,[(int(2),fd(1,'Name')),(int(1),fd(2,'Name')),(int(3),fd(3,'Name'))]))).
4412 :- assert_must_succeed((bsets_clp:partial_surjection_wf(X,[int(1),int(2),int(3)],global_set('Name'),_WF),
4413 kernel_objects:equal_object(X,[(int(2),fd(1,'Name')),(int(1),fd(2,'Name')),(int(3),fd(3,'Name'))]))).
4414 :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4415 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4416 :- assert_must_succeed_multiple((bsets_clp:partial_surjection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]),
4417 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(3),int(6))]))). /* mult. */
4418 :- assert_must_succeed((X=[(int(2),int(7)),(int(1),int(6)),(int(3),int(6))],
4419 bsets_clp:partial_surjection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]))).
4420 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4421 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])).
4422 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4423 X = [(int(2),int(7)),(int(1),int(7))])).
4424 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4425 X = [(int(2),int(7)),(int(1),int(6)),(int(3),int(8))])).
4426 :- assert_must_succeed_multiple((bsets_clp:partial_surjection(_X,
4427 [int(1),int(2),int(3),int(4),int(5),int(6),int(7)],[int(2),int(3),int(4)]) )).
4428 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4429 X = [(int(2),int(7)),(int(2),int(6))])).
4430
4431 partial_surjection(R,Domain,Range) :- init_wait_flags(WF,[partial_surjection]),
4432 partial_surjection_wf(R,Domain,Range,WF),
4433 ground_wait_flags(WF).
4434
4435 :- block partial_surjection_wf(-,-,?,?).
4436 partial_surjection_wf(R,Domain,Range,WF) :-
4437 check_card_greater_equal(Domain,geq,Range,CardDom,CardRange),
4438 (surjection_has_to_be_total_injection(CardDom,CardRange)
4439 % LAW: card(setX) = card(setY) => ff: setX +->> setY <=> ff: setX >-> setY
4440 -> total_function_wf(R,Domain,Range,WF),
4441 injective(R,WF)
4442 ; is_surjective(R,Range,WF),
4443 partial_function_wf(R,Domain,Range,WF)
4444 ).
4445
4446
4447 % check_card_greater_equal(A,B) : quick check that card(A) >= card(B); also works with infinite cardinality
4448 % TO DO: replace by a better constraint propagating predicate (also working for partially instantiated lists,...)
4449 % compared with computing card and setting up < constraint: will only compute card if it can be done efficiently + deals with inf
4450 % check_card_greater_equal(SetA,EQ,SetB) ; EQ=eq or geq
4451 :- block check_card_greater_equal(-,?,?,?,?).
4452 check_card_greater_equal([],_,R,0,0) :- !, empty_set(R).
4453 check_card_greater_equal(A,EQ,B,CA,CB) :- check_card_greater_equal2(A,EQ,B,CA,CB).
4454
4455 :- use_module(inf_arith,[block_inf_greater_equal/2]).
4456 :- block check_card_greater_equal2(?,?,-,?,?).
4457 check_card_greater_equal2(A,EQ,B,CardA,CardB) :-
4458 efficient_card_for_set(A,CardA,CodeA),
4459 efficient_card_for_set(B,CardB,CodeB),!,
4460 call(CodeA), call(CodeB),
4461 (EQ=eq -> CardA=CardB ; block_inf_greater_equal(CardA,CardB)).
4462 check_card_greater_equal2(_A,_,_B,'?','?').
4463
4464
4465 :- block is_surjective(-,-,?).
4466 is_surjective(R,Range,WF) :-
4467 (var(R) -> setup_surj_range(Range,R,WF)
4468 ; range_wf(R,Range,WF)).
4469
4470 setup_surj_range(Range,R,WF) :-
4471 setup_range(Range,Res,DONE,WF),
4472 equal_when_done(Res,R,DONE).
4473 :- block equal_when_done(?,?,-).
4474 ?equal_when_done(Res,R,_DONE) :- equal_object(Res,R).
4475
4476
4477 :- block setup_range(-,?,?,?).
4478 setup_range(global_set(G),Res,DONE,WF) :-
4479 expand_custom_set_wf(global_set(G),ES,setup_range,WF),
4480 setup_range(ES,Res,DONE,WF).
4481 setup_range(freetype(ID),Res,DONE,WF) :-
4482 expand_custom_set_wf(freetype(ID),ES,setup_range,WF), setup_range(ES,Res,DONE,WF).
4483 setup_range(avl_set(S),Res,DONE,WF) :-
4484 expand_custom_set_wf(avl_set(S),ES,setup_range,WF), setup_range(ES,Res,DONE,WF).
4485 setup_range(closure(P,T,B),Res,DONE,WF) :-
4486 expand_custom_set_wf(closure(P,T,B),ES,setup_range,WF), setup_range(ES,Res,DONE,WF).
4487 setup_range([],_,done,_WF).
4488 setup_range([H|T],[(_,H)|ST],DONE,WF) :- setup_range(T,ST,DONE,WF).
4489
4490
4491
4492 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],
4493 [int(1),int(2)],[int(7),int(6)],WF),WF)).
4494 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],
4495 [int(7),int(6),int(2)],WF),WF)).
4496 :- assert_must_fail((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4497 X = [(int(2),int(7)),(int(1),int(6))])).
4498 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4499 X = [(int(2),int(7)),(int(2),int(6))])).
4500 :- assert_must_fail((bsets_clp:not_partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4501 X = [(int(2),int(7)),(int(1),int(6))])).
4502 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4503 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])).
4504 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4505 X = [(int(2),int(7)),(int(1),int(7))])).
4506 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4507 X = [(int(2),int(7)),(int(1),int(6)),(int(3),int(8))])).
4508
4509
4510
4511 /* /: Domain +->> Range */
4512 not_partial_surjection(R,Domain,Range) :- init_wait_flags(WF,[not_partial_surjection]),
4513 not_partial_surjection_wf(R,Domain,Range,WF),
4514 ground_wait_flags(WF).
4515
4516 :- block not_partial_surjection_wf(-,?,?,?).
4517 not_partial_surjection_wf(R,DomType,RangeType,WF) :-
4518 ? partial_surjection_test_wf(R,DomType,RangeType,pred_false,WF).
4519
4520
4521 %not_surjective_relation_wf(R,DomType,RType,WF) :-
4522 % invert_relation_wf(R,IR,WF),
4523 % not_total_relation_wf(IR,RType,DomType,WF).
4524
4525
4526 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
4527 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6),int(2)],pred_false,WF),WF)).
4528
4529 partial_surjection_test_wf(R,DomType,RangeType,PredRes,WF) :-
4530 partial_function_test_wf(R,DomType,RangeType,IsPF,WF),
4531 (IsPF==pred_false -> PredRes=pred_false
4532 ; range_wf(R,RelRan,WF),
4533 ? conjoin_test(IsPF,IsSurjective,PredRes,WF),
4534 subset_test(RangeType,RelRan,IsSurjective,WF)
4535 ).
4536
4537
4538 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4539 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4540
4541 :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4542 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4543 :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4544 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4545 :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4546 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(1),int(7))]))).
4547 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4548 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4549 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4550 kernel_objects:equal_object(X,[(int(2),int(7))]))).
4551 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4552 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(1),int(8))]))).
4553 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4554 kernel_objects:equal_object(X,[(int(2),int(7)),(int(3),int(6)),(int(1),int(7))]))).
4555 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4556 kernel_objects:equal_object(X,[]))).
4557
4558 /****************************************/
4559 /* total_relation_wf(R,Domain,Range,WF) */
4560 /* R : Domain <<-> Range */
4561 /****************************************/
4562
4563 total_relation_wf(R,Domain,Range,WF) :- relation_over_wf(R,Domain,Range,WF),
4564 check_relation_is_total(R,Domain,WF).
4565
4566 % this predicates assume that the relation's range and domain have already been checked
4567 check_relation_is_total(Relation,Domain,WF) :- domain_wf(Relation,Domain,WF).
4568 check_relation_is_surjective(Relation,Range,WF) :-
4569 range_wf(Relation,Range,WF). % we could also call is_surjective (which does setup_surj_range) ?
4570
4571 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4572 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4573 :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4574 X = [(int(2),int(7)),(int(1),int(6))])).
4575 :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4576 X = [(int(2),int(7)),(int(1),int(7))])).
4577 :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4578 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])).
4579 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4580 X = [(int(2),int(7)),(int(2),int(6))])).
4581 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4582 X = [(int(2),int(7))])).
4583 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4584 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(8))])).
4585 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4586 X = [(int(2),int(7)),(int(3),int(6)),(int(1),int(7))])).
4587
4588 :- block not_total_relation_wf(-,?,?,?).
4589 not_total_relation_wf(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
4590 % we do not need the Range; this means we can match more closures (e.g., lambda)
4591 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
4592 not_equal_object_wf(FFDomain,Domain,WF).
4593 not_total_relation_wf(FF,Domain,Range,WF) :- nonvar(FF),
4594 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
4595 equality_objects_wf(FFDomain,Domain,Result,WF), % not yet implemented ! % TODO ! -> sub_set,equal,super_set
4596 when(nonvar(Result),(Result=pred_false -> true ; not_subset_of_wf(FFRange,Range,WF))).
4597 not_total_relation_wf(R,Domain,Range,WF) :-
4598 expand_custom_set_to_list_wf(R,ER,Done,not_total_relation_wf,WF),
4599 not_tot_surj_rel(ER,Done,Domain,Domain,[],Range,WF). % empty DelRange means we don't do surjective test
4600
4601 % can be used to check not total, not surj, not total surj relation
4602 :- block not_tot_surj_rel(-,?,?,?,?,?,?).
4603 not_tot_surj_rel([],_,DelDomain,_,DelRange,_,WF) :-
4604 ? at_least_one_set_not_empty(DelDomain,DelRange,WF).
4605 not_tot_surj_rel([_|_],Done,DelDom,Dom,_DelRan,_Ran,_WF) :- nonvar(Done),
4606 Done \= no_check_to_be_done,
4607 nonvar(DelDom),DelDom \= [],
4608 nonvar(Dom),is_infinite_explicit_set(Dom),
4609 !. % a finite expanded list can never be a total relation over an infinite domain
4610 not_tot_surj_rel([(X,Y)|T],_Done,DelDom,Dom,DelRan,Ran,WF) :-
4611 membership_test_wf(Dom,X,MemRes,WF),
4612 not_tr2(MemRes,X,Y,T,DelDom,Dom,DelRan,Ran,WF).
4613
4614 % check if one of the two sets is non-empty
4615 at_least_one_set_not_empty(Set1,Set2,_) :- (Set=Set1 ; Set=Set2),
4616 nonvar(Set),
4617 (Set=avl_set(_) ; Set=[_|_]), % we can avoid leaving choice point
4618 !.
4619 at_least_one_set_not_empty(Set1,_,WF) :- not_empty_set_wf(Set1,WF).
4620 at_least_one_set_not_empty(Set1,Set2,WF) :- empty_set_wf(Set1,WF),not_empty_set_wf(Set2,WF).
4621
4622 :- block not_tr2(-,?,?,?,?,?,?,?,?).
4623 not_tr2(pred_false,_X,_Y,_T,_DelDom,_Dom,_DelRan,_Ran,_WF).
4624 not_tr2(pred_true,X,Y,T,DelDom,Dom,DelRan,Ran,WF) :-
4625 delete_element_wf(X,DelDom,DelDom2,WF), % set DelDom initially to [] to avoid totality check
4626 membership_test_wf(Ran,Y,MemRes,WF),
4627 not_tr3(MemRes,Y,T,DelDom2,Dom,DelRan,Ran,WF).
4628
4629 :- block not_tr3(-,?,?,?,?,?,?,?).
4630 not_tr3(pred_false,_Y,_T,_DelDom2,_Dom,_DelRan,_Ran,_WF).
4631 not_tr3(pred_true,Y,T,DelDom2,Dom,DelRan,Ran,WF) :-
4632 delete_element_wf(Y,DelRan,DelRan2,WF), % set DelRan initially to [] to avoid surjection check
4633 not_tot_surj_rel(T,no_check_to_be_done,DelDom2,Dom,DelRan2,Ran,WF).
4634
4635 /******************************************/
4636 /* total_surjection(R,DomType,RangeType) */
4637 /* R : DomType -->> RangeType */
4638 /******************************************/
4639
4640 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4641 :- assert_must_succeed(exhaustive_kernel_succeed_check((bsets_clp:total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),kernel_waitflags:ground_det_wait_flag(WF)))). %% TO DO: get rid of multiple solutions
4642 :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1)],[int(7)]),
4643 kernel_objects:equal_object(X,[(int(1),int(7))]))).
4644 :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4645 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4646 :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7)]),
4647 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4648 :- assert_must_fail((bsets_clp:total_surjection([],[int(1)],[int(7)]))).
4649 :- assert_must_fail((bsets_clp:total_surjection([(int(7),int(7))],[int(1)],[int(7)]))).
4650 :- assert_must_fail((bsets_clp:total_surjection([(int(1),int(7)), (int(2),int(1))],
4651 [int(1),int(2)],[int(7)]))).
4652 :- assert_must_fail((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4653 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4654
4655
4656 total_surjection(R,Domain,Range) :- init_wait_flags(WF),
4657 total_surjection_wf(R,Domain,Range,WF),
4658 ground_wait_flags(WF).
4659
4660 :- block total_surjection_wf(-,-,?,?).
4661 total_surjection_wf(R,DomType,RangeType,WF) :-
4662 check_card_greater_equal(DomType,geq,RangeType,CardDom,CardRange),
4663 total_function_wf(R,DomType,RangeType,WF),
4664 % setup_surj_range(RangeType,R,WF).
4665 (surjection_has_to_be_total_injection(CardDom,CardRange)
4666 % LAW: card(setX) = card(setY) => ff: setX -->> setY <=> ff: setX >-> setY
4667 -> injective(R,WF) % if domain and range have same cardinality: injection ensures surjectivity, and is more efficient to check/propagate; example when using queens 1..n -->> 1..n for NQueens
4668 ; check_relation_is_surjective(R,RangeType,WF)).
4669 % invert_relation_wf(R,IR,WF), total_relation_wf(IR,RangeType,DomType,WF).
4670
4671 surjection_has_to_be_total_injection(CardDom,CardRange) :- number(CardDom), CardDom=CardRange.
4672 % TO DO: determine the difference in size between Dom and Range and count how many times a range element can occur multiple times (would give better incremental checking)
4673
4674 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
4675 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4676 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4677 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4678 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(8))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
4679 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4680
4681 :- block not_total_surjection_wf(-,?,?,?), not_total_surjection_wf(?,-,-,?).
4682 not_total_surjection_wf(R,DomType,RangeType,WF) :-
4683 total_function_test_wf(R,DomType,RangeType,PredRes,WF),
4684 not_total_surjection2(PredRes,R,DomType,RangeType,WF).
4685 :- block not_total_surjection2(-,?,?,?,?).
4686 not_total_surjection2(pred_false,_R,_DomType,_RangeType,_WF).
4687 not_total_surjection2(pred_true,R,_DomType,RangeType,WF) :-
4688 range_wf(R,RelRange,WF),
4689 opt_push_wait_flag_call_stack_info(WF,b_operator_call(not_subset,
4690 [RangeType,b_operator(range,[R])],unknown),WF2),
4691 not_subset_of_wf(RangeType,RelRange,WF2).
4692 %not_surjective_relation_wf(R,DomType,RangeType,WF).
4693
4694 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(8))],[int(1),int(2),int(3)],[int(7),int(6)],pred_false,WF),WF)).
4695 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(6))],[int(1),int(2),int(3)],[int(7),int(6)],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above)
4696 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
4697
4698 % reified total function check:
4699 total_function_test_wf(R,DomType,RangeType,PredRes,WF) :-
4700 partial_function_test_wf(R,DomType,RangeType,IsPF,WF),
4701 (IsPF==pred_false -> PredRes=pred_false
4702 ; domain_wf(R,RelDom,WF),
4703 conjoin_test(IsPF,IsTotal,PredRes,WF),
4704 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
4705 [DomType,b_operator(domain,[R])],unknown),WF2),
4706 subset_test(DomType,RelDom,IsTotal,WF2)
4707 ).
4708
4709 /*******************************************/
4710 /* partial_injection(R,DomType,RangeType) */
4711 /* R : DomType >+> RangeType */
4712 /*******************************************/
4713
4714 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4715 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(1),int(6)),(int(4),int(7)),(int(2),int(8))],[int(1),int(2),int(3),int(4)],[int(7),int(6),int(8),int(9)],WF),WF)).
4716 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4717 :- assert_must_succeed((bsets_clp:partial_injection(X,[int(1)],[int(7)]),
4718 kernel_objects:equal_object(X,[(int(1),int(7))]))).
4719 :- assert_must_succeed((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7),int(6)]),
4720 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4721 :- assert_must_fail((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7)]),
4722 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4723 :- assert_must_succeed((bsets_clp:partial_injection([],[int(1)],[int(7)]))).
4724 :- assert_must_fail((bsets_clp:partial_injection([(int(7),int(7))],[int(1)],[int(7)]))).
4725 :- assert_must_fail((bsets_clp:partial_injection([(int(1),int(7)), (int(2),int(1))],
4726 [int(1),int(2)],[int(7)]))).
4727 :- assert_must_fail((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7),int(6)]),
4728 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4729
4730
4731 partial_injection(R,Domain,Range) :- init_wait_flags(WF),
4732 partial_injection_wf(R,Domain,Range,WF),
4733 ground_wait_flags(WF).
4734
4735 :- block partial_injection_wf(-,-,?,?).
4736 partial_injection_wf(FF,Domain,Range,WF) :- nonvar(FF),
4737 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!,
4738 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
4739 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
4740 partial_injection_wf(R,DomType,RangeType,WF) :-
4741 try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF), % should we use very_large?
4742 partial_function_wf(ER,DomType,RangeType,WF),
4743 injective(ER,WF).
4744 % invert_relation_wf(R,IR,WF),
4745 % partial_function_wf(IR,RangeType,DomType,WF).
4746
4747 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective([(int(1),int(6)),(int(4),int(7)),(int(2),int(8))],WF),WF)).
4748 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective([(int(1),int(6)),(int(4),int(7)),(int(2),int(7))],WF),WF)).
4749
4750 :- block injective(-,?).
4751 injective(FF,WF) :-
4752 custom_explicit_sets:dom_range_for_specific_closure(FF,_FFDomain,_FFRange,function(bijection),WF),!.
4753 injective(avl_set(AVL),_WF) :- !,
4754 is_injective_avl_relation(AVL,_Range). % seems slightly faster than injective/3 code below
4755 injective(closure(P,T,B),WF) :- !,
4756 symbolic_injectivity_check(closure(P,T,B),WF).
4757 injective(Rel,WF) :- expand_custom_set_to_list_wf(Rel,ERel,_,injective,WF),
4758 injective(ERel,[],WF).
4759
4760 %:- use_module(library(lists),[maplist/3]).
4761 % for FD-sets we could setup all_different constraint
4762 :- block injective(-,?,?).
4763 injective([],_SoFar,_).
4764 % (maplist(get_fd_val,SoFar,FDL) -> clpfd:all_distinct(FDL) ; true). %clpfd_interface:clpfd_alldifferent(FDL) ; true).
4765 %get_fd_val(int(H),H).
4766 injective([(_From,To)|T],SoFar,WF) :-
4767 not_element_of_wf(To,SoFar,WF), /* check that it is injective */
4768 add_new_element_wf(To,SoFar,SoFar2,WF), %SoFar2=[To|SoFar], could also work and be faster ?
4769 injective(T,SoFar2,WF).
4770 % no case for global_set: it cannot be a relation; two cases below not required because of expand_custom_set_to_list
4771 %injective(avl_set(S),SoFar,WF) :- expand_custom_set_wf(avl_set(S),ES,inj,WF), injective(ES,SoFar,WF).
4772 %injective(closure(P,T,B),SoFar,WF) :- expand_custom_set_wf(closure(P,T,B),ES,inj,WF), injective(ES,SoFar,WF).
4773
4774
4775
4776 /* /: Dom >+> R */
4777
4778 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4779 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4780 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(2),int(8))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4781 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4782
4783 :- block not_partial_injection(-,?,?,?).
4784 not_partial_injection(R,DomType,RangeType,WF) :-
4785 partial_function_test_wf(R,DomType,RangeType,IsPF,WF),
4786 not_partial_injection2(IsPF,R,DomType,RangeType,WF).
4787
4788 :- block not_partial_injection2(-,?,?,?,?).
4789 not_partial_injection2(pred_false,_R,_DomType,_RType,_WF).
4790 not_partial_injection2(pred_true,R,DomType,RType,WF) :-
4791 not_injection_wf(R,DomType,RType,WF).
4792
4793 not_injection_wf(R,DomType,RType,WF) :-
4794 invert_relation_wf(R,IR,WF),
4795 not_partial_function(IR,RType,DomType,WF).
4796
4797 /*****************************************/
4798 /* total_injection(R,DomType,RangeType) */
4799 /* R : DomType >-> RangeType */
4800 /*****************************************/
4801
4802 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_injection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4803 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_injection_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4804 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_total_injection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4805 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_total_injection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4806 :- assert_must_succeed((bsets_clp:total_injection(X,[int(1)],[int(7)]),
4807 kernel_objects:equal_object(X,[(int(1),int(7))]))).
4808 :- assert_must_succeed((bsets_clp:total_injection(X,[int(1),int(2)],[int(7),int(6)]),
4809 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4810 :- assert_must_fail((bsets_clp:total_injection(X,[int(1),int(2)],[int(7)]),
4811 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4812 :- assert_must_fail((bsets_clp:total_injection([],[int(1)],[int(7)]))).
4813 :- assert_must_fail((bsets_clp:total_injection([(int(7),int(7))],[int(1)],[int(7)]))).
4814 :- assert_must_fail((bsets_clp:total_injection([(int(1),int(7)), (int(2),int(1))],
4815 [int(1),int(2)],[int(7)]))).
4816 :- assert_must_fail((bsets_clp:total_injection(X,[int(1),int(2)],[int(7),int(6)]),
4817 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4818
4819
4820 total_injection(R,Domain,Range) :- init_wait_flags(WF),
4821 total_injection_wf(R,Domain,Range,WF),
4822 ground_wait_flags(WF).
4823
4824 :- block total_injection_wf(-,-,?,?). % with just ?,-,?,? we may wait too long to start injective check
4825 % Note: no need to check: dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection)),
4826 total_injection_wf(R,DomType,RangeType,WF) :-
4827 check_card_greater_equal(RangeType,geq,DomType,_,_), % there must be more Range elements than domain elements; pigeonhole principle
4828 total_injection_wf2(R,DomType,RangeType,WF).
4829 total_injection_wf2(R,DomType,RangeType,WF) :-
4830 try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF),
4831 total_function_wf(ER,DomType,RangeType,WF),
4832 injective(ER,WF).
4833
4834
4835 :- block not_total_injection(-,?,?,?), not_total_injection(?,-,-,?).
4836 not_total_injection(R,DomType,RangeType,WF) :-
4837 total_function_test_wf(R,DomType,RangeType,PredRes,WF),
4838 not_total_injection2(PredRes,R,DomType,RangeType,WF).
4839
4840 :- block not_total_injection2(-,?,?,?,?).
4841 not_total_injection2(pred_false,_R,_Dom,_Ran,_WF).
4842 not_total_injection2(pred_true,R,DomType,RangeType,WF) :-
4843 % TO DO: replace DomType and RangeType by full Type
4844 not_injection_wf(R,DomType,RangeType,WF).
4845
4846 /***********************************/
4847 /* partial_bijection(R,DomType,RangeType) */
4848 /* R : DomType >+>> RangeType */
4849 /***********************************/
4850
4851 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_bijection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4852 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_bijection_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4853 :- assert_must_succeed((partial_bijection(X,[int(1),int(2)],[int(7),int(6)]),
4854 kernel_objects:equal_object(X,[(int(1),int(6)),(int(2),int(7))]))).
4855 :- assert_must_succeed((partial_bijection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]),
4856 X = [(int(2),int(7)),(int(3),int(6))])).
4857 :- assert_must_fail((partial_bijection(X,[int(1),int(2)],[int(7),int(6),int(5)]),
4858 X = [(int(2),int(7)),(int(1),int(6))])).
4859
4860 partial_bijection(R,Domain,Range) :- init_wait_flags(WF),
4861 partial_bijection_wf(R,Domain,Range,WF),
4862 ground_wait_flags(WF).
4863
4864 partial_bijection_wf(R,DomType,RangeType,WF) :-
4865 partial_injection_wf(R,DomType,RangeType,WF),
4866 partial_surjection_wf(R,DomType,RangeType,WF).
4867
4868 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4869 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_bijection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4870
4871 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4872
4873 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(3),int(6))],[int(1),int(2),int(3),int(4)],[int(7),int(6)],WF),WF)).
4874 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6),int(5)],WF),WF)).
4875
4876
4877 :- block not_partial_bijection(-,?,?,?), not_partial_bijection(?,-,-,?).
4878 not_partial_bijection(R,DomType,RangeType,WF) :-
4879 % >+>> = +->> + injective
4880 partial_surjection_test_wf(R,DomType,RangeType,PredRes,WF),
4881 not_partial_bijection2(PredRes,R,DomType,RangeType,WF).
4882
4883 :- block not_partial_bijection2(-,?,?,?,?).
4884 not_partial_bijection2(pred_false,_R,_DomType,_RangeType,_WF).
4885 not_partial_bijection2(pred_true,R,DomType,RangeType,WF) :-
4886 not_injection_wf(R,DomType,RangeType,WF).
4887
4888
4889
4890 /* The transitive (not reflexive) closure of a relation (closure1) */
4891
4892 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(1),int(2)),(int(2),int(6))],[(int(1),int(2)),(int(1),int(6)),(int(2),int(6))]))).
4893 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(1),int(2)),(int(2),int(6)),(int(1),int(3))],[(int(1),int(2)),(int(1),int(3)),(int(1),int(6)),(int(2),int(6))]))).
4894 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(6),int(7)),(int(1),int(2)),(int(2),int(6)),(int(1),int(3))],[(int(1),int(2)),(int(1),int(3)),(int(1),int(6)),(int(2),int(6)),(int(1),int(7)),(int(2),int(7)),(int(6),int(7))]))).
4895 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4))],X),
4896 kernel_objects:equal_object(X,[(int(1),int(4))]))).
4897 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4)),(int(4),int(2))],X),
4898 kernel_objects:equal_object(X,[(int(1),int(4)),(int(4),int(2)),
4899 (int(1),int(2))]))).
4900 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4)),(int(4),int(2)),(int(2),int(3))],X),
4901 kernel_objects:equal_object(X,[(int(1),int(4)),(int(4),int(2)),(int(2),int(3)),
4902 (int(4),int(3)),(int(1),int(2)),(int(1),int(3))]))).
4903 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(A),int(2)),(int(2),int(6))],
4904 [(int(1),int(2)),(int(1),int(6)),(int(2),int(6))]),A=1)).
4905
4906 relational_trans_closure(Rel,Res) :- relational_trans_closure_wf(Rel,Res,no_wf_available).
4907
4908 % transitive closure for relations (closure1)
4909 :- block relational_trans_closure_wf(-,?,?).
4910 relational_trans_closure_wf(Relation,Result,WF) :-
4911 try_expand_and_convert_to_avl_with_check(Relation,ARelation,relational_trans_closure_wf),
4912 ? relational_trans_closure2(ARelation,Result,WF).
4913 :- block relational_trans_closure2(-,?,?).
4914 relational_trans_closure2(ARelation,Result,WF) :-
4915 (closure1_for_explicit_set(ARelation,Res)
4916 -> kernel_objects:equal_object_wf(Res,Result,relational_trans_closure_wf,WF)
4917 ; expand_custom_set_to_list_wf(ARelation,ERelation,_,relational_trans_closure2,WF),
4918 is_full_relation(ERelation,WaitVar), % still required??
4919 % we could do a check_subset_of_wf(ERelation,Resul,WF) if Result is nonvar and ERelation not ground
4920 ? compute_trans_closure(ERelation,Result,WaitVar,WF)
4921 ).
4922
4923 :- block compute_trans_closure(?,?,-,?).
4924 compute_trans_closure(Relation,Result,_,WF) :-
4925 ? compute_trans_closure2(Relation,1,Result,WF).
4926
4927 compute_trans_closure2(Relation,Cnt,Result,WF) :-
4928 one_closure_iteration(Relation,Relation,Relation,Result1,Added,Done,WF),
4929 ? compute_trans_closure3(Relation,Cnt,Result1,Added,Done,Result,WF).
4930
4931 :- block compute_trans_closure3(?,?,?,?,-,?,?).
4932 compute_trans_closure3(Relation,Cnt,Result1,Added,_Done,Result,WF) :-
4933 ( equal_object_wf(Result1,Relation,relational_trans_closure_wf,WF), % should we do equality_objects here?
4934 equal_object_optimized_wf(Result,Result1,compute_trans_closure,WF)
4935 ;
4936 Added==possibly_added,
4937 not_equal_object_wf(Result1,Relation,WF), % not a fixpoint; continue
4938 IterCnt is Cnt+1,
4939 ? compute_trans_closure2(Result1,IterCnt,Result,WF)
4940 ).
4941
4942 :- block one_closure_iteration(?,?,-,?,?,?,?).
4943 one_closure_iteration([],_,IterRes,OutRel,Added,Done,WF) :-
4944 equal_object_wf(IterRes,OutRel,one_closure_iteration,WF),
4945 (var(Added) -> Added=not_added ; true),
4946 Done=done.
4947 one_closure_iteration([(X,Y)|T],ExpandedPreviousRel,PreviousRel,OutRel,Added,Done,WF) :-
4948 add_tuples(ExpandedPreviousRel,X,Y,PreviousRel,IntRel,Added,DoneTuples,WF),
4949 one_closure_iteration_block(DoneTuples,T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF).
4950
4951 :- block one_closure_iteration_block(-,?,?,?,?,?,?,?).
4952 one_closure_iteration_block(_,T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF) :-
4953 ? one_closure_iteration(T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF).
4954
4955 add_tuples([],_,_,OutRel,OutRel,_Added,done,_).
4956 add_tuples([(X,Y)|T],OX,OY,InRel,OutRel,Added,Done,WF) :-
4957 % add tuple (X,OY) if we have Y=OX
4958 equality_objects_wf(Y,OX,EqRes,WF),
4959 add_tuples_aux(EqRes,X,T,OX,OY,InRel,OutRel,Added,Done,WF).
4960
4961 :- block add_tuples_aux(-,?,?,?,?,?,?,?,?,?).
4962 add_tuples_aux(pred_true,X,T,OX,OY,InRel,OutRel,possibly_added,Done,WF) :-
4963 add_element_wf((X,OY),InRel,IntRel,WF), % add transitive couple X -> OY
4964 ? add_tuples(T,OX,OY,IntRel,OutRel,_,Done,WF).
4965 add_tuples_aux(pred_false,_X,T,OX,OY,InRel,OutRel,Added,Done,WF) :- % no transitive couple needed
4966 ? add_tuples(T,OX,OY,InRel,OutRel,Added,Done,WF).
4967
4968
4969 :- assert_must_succeed((is_full_relation(X,R),var(R),X=[],R==true)).
4970 :- assert_must_succeed((is_full_relation(X,R),var(R),X=[(A,B)|T],var(R),A=int(1),var(R),B=A,var(R),T=[],R==true)).
4971 :- block is_full_relation(-,?).
4972 is_full_relation([],R) :- !,R=true.
4973 is_full_relation([H|T],W) :- !, is_full_relation_aux(H,T,W).
4974 is_full_relation(X,R) :-
4975 add_internal_error('Illegal Set for is_full_relation: ',is_full_relation(X,R)),fail.
4976
4977 :- block is_full_relation_aux(-,?,?).
4978 is_full_relation_aux((X,Y),T,W) :- !, is_full_relation_aux2(X,Y,T,W).
4979 is_full_relation_aux(X,T,W) :-
4980 add_internal_error('Illegal Set for is_full_relation: ',is_full_relation_aux(X,T,W)),fail.
4981 :- block is_full_relation_aux2(-,?,?,?), is_full_relation_aux2(?,-,?,?).
4982 ?is_full_relation_aux2(_X,_Y,T,W) :- is_full_relation(T,W).
4983
4984 /* ------------------ */
4985
4986 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_wf((int(1),int(3)),[(int(1),int(2)),(int(2),int(1)),(int(2),int(3))],WF),WF)). % used to be wfdet (see in_domain_wf above)
4987
4988 in_closure1_wf(Pair,Relation,WF) :- %Pair = (_A,B),
4989 %in_domain_wf_lazy(A,Relation,WF), % done below
4990 %check_element_of_wf((_,B),Relation,WF), % multiple solutions for _, see test 634, 637
4991 in_closure1_membership_test_wf(Pair,Relation,pred_true,WF).
4992
4993
4994 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_closure1_wf((int(1),int(3)),[(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],WF),WF)).
4995
4996 not_in_closure1_wf(Pair,Relation,WF) :-
4997 in_closure1_membership_test_wf(Pair,Relation,pred_false,WF).
4998
4999 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[],Res,_WF),Res==pred_false)).
5000 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(2))],Res,_WF),Res==pred_true)).
5001 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3))],Res,_WF),Res==pred_false)).
5002 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3)),(int(3),int(2))],Res,_WF),Res==pred_true)).
5003 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3)),(int(3),int(2))],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above)
5004 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(3)),[(int(11),int(3))],pred_true,WF),WF)).
5005 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(3)),[(int(11),int(33))],pred_false,WF),WF)).
5006 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(1),int(3)),[(int(11),int(3))],pred_false,WF),WF)).
5007 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_membership_test_wf((int(11),int(22)),[(int(11),int(3)),(int(33),int(2)),(int(3),int(22)),(int(11),int(3))],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above)
5008 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(11)),[(int(11),int(3))],pred_false,WF),WF)).
5009
5010 :- block force_in_domain(-,?,?,?).
5011 force_in_domain(pred_false,_A,_Relation,_WF).
5012 force_in_domain(pred_true,A,Relation,WF) :- % force A to be in domain, avoid enumeration warnings,...
5013 % maybe only for non-ground A
5014 in_domain_wf_lazy(A,Relation,WF). % slowdown Loop.mch (tests 634, 637) if we use in_domain_wf ?
5015
5016 % (x,y) : closure1(Rel)
5017 :- block in_closure1_membership_test_wf(?,-,?,?).
5018 in_closure1_membership_test_wf((A,B),CSRelation,MemRes,WF) :-
5019 is_custom_explicit_set(CSRelation,in_closure1),
5020 !,
5021 image_for_closure1_wf(CSRelation,[A],Image,WF),
5022 force_in_domain(MemRes,A,CSRelation,WF),
5023 membership_test_wf(Image,B,MemRes,WF).
5024 in_closure1_membership_test_wf((X,Y),Relation,MemRes,WF) :-
5025 expand_custom_set_to_list_wf(Relation,ERelation,_,in_closure1_membership_test_wf,WF),
5026 Discarded = [], % pairs discarded in current iteration
5027 force_in_domain(MemRes,X,Relation,WF),
5028 in_closure1_membership_test_wf2(ERelation,X,Y,Discarded,MemRes,WF).
5029
5030 :- block in_closure1_membership_test_wf2(-,?,?,?,?,?).
5031 in_closure1_membership_test_wf2([],_X,_Y,_,MemRes,_WF) :- MemRes=pred_false.
5032 in_closure1_membership_test_wf2([(V,W)|Rest],X,Y,Discarded,MemRes,WF) :- % TO DO: Rest==[] -->
5033 equality_objects_wf(V,X,VXResult,WF),
5034 in_closure1_membership_test_wf3(VXResult,V,W,Rest,X,Y,Discarded,MemRes,WF).
5035
5036 :- block in_closure1_membership_test_wf3(-,?,?,?,?,?,?,?,?).
5037 in_closure1_membership_test_wf3(pred_false,V,W,Rest,X,Y,Discarded,MemRes,WF) :-
5038 in_closure1_membership_test_wf2(Rest,X,Y,[(V,W)|Discarded],MemRes,WF).
5039 in_closure1_membership_test_wf3(pred_true,V,W,Rest,X,Y,Discarded,MemRes,WF) :- % V=X
5040 propagate_false(MemRes,WYResult),
5041 % TODO: Res=[],Discarded=[] -> MemRes=WYResult
5042 equality_objects_wf(W,Y,WYResult,WF), % MemRes = pred_false => WYResult = pred_false
5043 in_closure1_membership_test_wf4(WYResult,V,W,Rest,X,Y,Discarded,MemRes,WF).
5044
5045 :- block in_closure1_membership_test_wf4(-,?,?,?,?,?,?,?,?).
5046 in_closure1_membership_test_wf4(pred_false,_V,W,Rest,X,Y,Discarded,MemRes,WF) :-
5047 append(Discarded,Rest,Restart),
5048 in_closure1_membership_test_wf2(Restart,W,Y,[],MemRes1,WF),
5049 propagate_false(MemRes,MemRes1), % MemRes = pred_false -> MemRes1=pred_false
5050 when(nonvar(MemRes1),
5051 (MemRes1=pred_true -> MemRes=pred_true
5052 ; in_closure1_membership_test_wf2(Rest,X,Y,Discarded,MemRes,WF) % (V,W) not in Discarded: was not useful
5053 )).
5054 in_closure1_membership_test_wf4(pred_true,_V,_W,_Rest,_X,_Y,_Discarded,MemRes,_WF) :- % W=Y
5055 MemRes = pred_true.
5056 /* ------------------ */
5057
5058 :- block propagate_false(-,?).
5059 propagate_false(pred_false,pred_false).
5060 propagate_false(pred_true,_).
5061