1 % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5
6 :- module(b_compiler,[b_compile/6, b_optimize/6, b_compile_closure/2]).
7
8 :- use_module(library(lists)).
9
10 :- use_module(self_check).
11 :- use_module(bsyntaxtree).
12 :- use_module(error_manager).
13 :- use_module(debug,[debug_format/3]).
14 :- use_module(btypechecker,[fasttype/2]).
15 :- use_module(bmachine,[b_get_machine_operation_for_animation/6]).
16 :- use_module(b_interpreter).
17 :- use_module(custom_explicit_sets).
18 :- use_module(kernel_waitflags,[add_error_wf/5, add_internal_error_wf/5]).
19 %:- use_module(bmachine,[b_operation_reads_output_variables/3]).
20
21 :- use_module(module_information,[module_info/2]).
22 :- module_info(group,interpreter).
23 :- module_info(description,'This module compiles set comprehensions into closures; making them independent of the state of the B machine.').
24
25 /* compile boolean expression into a closure where the local state and the global
26 state has been incorporated, but any parameter is left in the closure */
27
28 :- public test_bexpr/3, test_bexpr2/3.
29 test_bexpr(Expr,[bind(cc,int(1)),bind(nn,int(2))], [bind(db,[(int(1),int(2))])]) :-
30 fasttype( +conjunct( +conjunct( +member( global('Name')<<identifier(nn), +identifier('Name')),
31 +member( global('Code')<<identifier(cc), +identifier('Code'))),
32 +not_member( global('Name')<<identifier(nn),
33 +domain(set(couple(global('Name'),global('Code')))<<identifier(db)))), Expr).
34
35 test_bexpr2(Expr,[],[]) :-
36 fasttype( +implication( +equal( seq(any)<<identifier(ss), +empty_sequence),
37 +equal( set(any)<<identifier(res), +empty_set)), Expr).
38
39
40
41 b_compile_closure(closure(P,T,Body),Res) :- b_compiler:b_compile(Body,P,[],[],CBody),!, Res=closure(P,T,CBody).
42 b_compile_closure(C,C).
43
44
45 % difference with b_compile: the states LS, S will not be thrown away by the interpreter
46 % thus: we do not have to compile all accesses, in particular lazy lookups !
47 %b_optimize(TExpr,Parameters,_LS,_S,NTExpr,_WF) :- TExpr=b(_,_,Infos), member(already_optimized,Infos),
48 % !, NTExpr=TExpr.
49 b_optimize(TExpr,Parameters,LS,S,NTExpr,WF) :- %print('OPTIMIZE: '),translate:print_bexpr(TExpr),nl, trace,
50 append(LS,[bind('$do_not_force_lazy_lookups',pred_true)],NewLS),
51 b_compile(TExpr,Parameters,NewLS,S,NTExpr,WF).
52 %bsyntaxtree:add_texpr_info_if_new(NTExpr,already_optimized,ResTExpr).
53
54 b_compile(TExpr,Parameters,NewLS,S,NTExpr) :-
55 ? b_compile(TExpr,Parameters,NewLS,S,NTExpr,no_wf_available). % for unit tests
56
57 :- assert_must_succeed(( b_compiler:test_bexpr(E,L,S),
58 b_compiler:b_compile(E,[nn],L,S,_R) )).
59 :- assert_must_succeed(( b_compiler:test_bexpr2(E,L,S),
60 b_compiler:b_compile(E,[ss,res],L,S,_R) )).
61 :- assert_must_succeed(( b_compiler:b_compile(b(greater(b(value(int(2)),integer,[]),
62 b(value(int(1)),integer,[])),pred,[]),[],[],[],Res),
63 check_eq(Res,b(truth,pred,_)) )).
64 :- assert_must_succeed(( b_compiler:b_compile(b(greater(b(value(int(2)),integer,[]),
65 b(value(int(3)),integer,[])),pred,[]),[],[],[],Res),
66 check_eq(Res,b(falsity,pred,_)) )).
67 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
68 b(value(int(_)),integer,[])),pred,[]),
69 b_compiler:b_compile(E,[],[],[],Res),
70 check_eq(Res,E) )).
71 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
72 b(value(_),integer,[])),pred,[]),
73 b_compiler:b_compile(E,[],[],[],Res),
74 check_eq(Res,E) )).
75 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
76 b(identifier(x),integer,[])),pred,[]),
77 b_compiler:b_compile(E,[],[bind(x,int(1))],[],Res),
78 check_eq(Res,b(truth,pred,_)) )).
79 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
80 b(identifier(x),integer,[])),pred,[]),
81 b_compiler:b_compile(E,[],[bind(x,int(3))],[],Res),
82 check_eq(Res,b(falsity,pred,_)) )).
83
84 %:- assert_pre(b_compiler:b_compile_boolean_expression(E,Parameters,LS,S,_),
85 % (type_check(E,boolean_expression),type_check(Parameters,list(variable_id)),
86 % type_check(LS,store),type_check(S,store))).
87 %:- assert_post(b_compiler:b_compile_boolean_expression(_,_,_,_,E), type_check(E,boolean_expression)).
88
89 /* probably not worthwhile:
90 b_compile(TExpr,Parameters,LS,S,NTExpr) :- get_texpr_info(TExpr,Info),
91 (memberchk(compiled(Parameters),Info) -> NTExpr = TExpr ,print(already_compiled(Parameters)),nl, translate:print_bexpr(TExpr),nl
92 ; b_compile0(TExpr,Parameters,LS,S,b(E,T,I)), translate:print(compiling(Parameters)),nl, translate:print_bexpr(TExpr),nl,
93 NTExpr = b(E,T,[compiled(Parameters)|I])).
94 */
95 :- use_module(closures,[get_recursive_identifier_of_closure_body/2]).
96 b_compile(TExpr,Parameters,LS,S,NTExpr,WF) :-
97 check_is_id_list(Parameters,Parameters0),
98 (get_recursive_identifier_of_closure_body(TExpr,TRID),
99 def_get_texpr_id(TRID,RID), nonmember(bind(RID,_),LS)
100 -> Parameters1=[RID|Parameters0] % add recursive ID virtually to parameters to avoid error messages
101 ; Parameters1=Parameters0),
102 % print('compile : '),translate:print_bexpr(TExpr),nl, statistics(runtime,[Start,_]),%%
103 sort(Parameters1,Parameters2),
104 ? if(b_compile1(TExpr,Parameters2,LS,S,NTExpr0,eval,FullyKnown,WF),
105 (FullyKnown=true
106 -> copy_pos_infos(TExpr,NTExpr0,NTExpr)
107 % ensure position info is not deleted if full expression compiled away, see PROB-412 (test 1677)
108 ; NTExpr=NTExpr0),
109 (add_internal_error_wf(b_compiler,'Compilation failed: ',TExpr,TExpr,WF),
110 %b_compile1(TExpr,Parameters1,LS,S,NTExpr0,eval,_FullyKnown,WF),
111 NTExpr = TExpr)
112 ).
113 %, bsyntaxtree:check_ast(NTExpr).
114 %, check_infos(TExpr,NTExpr).
115 %, print('compiled: '), translate:print_bexpr(NTExpr), print(' '),statistics(runtime,[Stop,_]), T is Stop-Start, print(T), print(' ms '),nl, bsyntaxtree:check_ast(NTExpr). % , print(NTExpr),nl. check_ast
116
117 /*
118 check_infos(Old,New) :- bsyntaxtree:get_texpr_info(Old,IO),
119 bsyntaxtree:get_texpr_info(New,IN),
120 member(X,IO), \+ member(X,IN),
121 bsyntaxtree:important_info(X),
122 print(check_infos(Old,New)),nl,
123 print('Not copied: '), print(X),fail.
124 check_infos(_,_). */
125
126 :- use_module(bsyntaxtree,[always_well_defined/1]).
127 :- use_module(translate,[translate_bexpression_with_limit/2]).
128 %:- use_module(hit_profiler,[add_profile_hit/1]).
129
130 % Eval=eval means the expression will be needed in a successful branch and we can pre-compute more aggressively
131 % Eval=false means the expression may not be needed (e.g., in a disjunction) and only perform efficient precomputations
132 b_compile1(TExpr,Parameters,LS,S,ResultTExpr,Eval,FullyKnown1,WF) :-
133 TExpr = b(Expr,Type,Infos),
134 NTExpr = b(NewUntypedExpr,Type,NewInfos),
135 %remove_bt(TExpr,Expr,NewUntypedExpr,NTExpr), % remove top-level Type Information
136 %hit_profiler:add_profile_hit(Expr),
137 %functor(Expr,E1,N1), %print(start_compile(E1/N1,Eval,FullyKnown1)),nl,
138 ? b_compile1_infos(Expr,Type,Infos,Parameters,LS,S,NewUntypedExpr,NewInfos,Eval,FullyKnown,WF),
139 %functor(NewUntypedExpr,E2,N2),
140 %format(' compiled ~w/~w -> ~w/~w : ',[E1,N1,E2,N2]),translate:print_bexpr_or_subst(NTExpr),nl,
141 %format(' fully=~w, eval=~w~n',[FullyKnown,Eval]),
142 (NTExpr = b(value(_),_,_)
143 -> FullyKnown1=FullyKnown, ResultTExpr=NTExpr
144 ; FullyKnown=true, evaluate_this(Eval,NewUntypedExpr,Type,NewInfos)
145 -> % print('eval : '),translate:print_bexpr(NTExpr),nl, %
146 (nonvar(NewUntypedExpr),
147 % if( would be more prudent !?, also: we used to call b_compute_expression_nowf
148 ? b_interpreter:b_compute_expression(NTExpr,LS,S,ResultValue,WF)
149 -> %print(result(ResultValue)),nl,
150 %remove_bt(TExpr,Expr,value(ResultValue),ResultTExpr)
151 get_texpr_type(TExpr,TT),ResultTExpr = b(value(ResultValue),TT,[]),
152 FullyKnown1 = FullyKnown
153 %, print(compiled_value(ResultTExpr)),nl
154 ; add_internal_error_wf(b_compiler,'Undefined value marked for evaluation:',NTExpr,Infos,WF),
155 %trace, b_interpreter:b_compute_expression(NTExpr,LS,S,ResultValue,WF),
156 ResultTExpr=NTExpr, FullyKnown1=false
157 )
158 ; % ((FullyKnown=true, NTExpr\=b(value(_),_,_)) -> format('not eval: ~w (~w)~n',[NTExpr,Eval]) ; true),
159 ResultTExpr=NTExpr, FullyKnown1=false
160 ).
161
162
163 :- use_module(library(ordsets),[ord_member/2, ord_union/3]).
164 :- use_module(bsyntaxtree,[create_exists_or_let_predicate/3]).
165 :- use_module(tools_lists,[delete_first/3]).
166 add_parameters(SortedIds,NewIds,NewSortedIds) :-
167 sort(NewIds,SNew),
168 ord_union(SortedIds,SNew,NewSortedIds).
169
170 b_compile1_infos(exists(ExistsPara,Pred),_,OldInfos,Parameters,LS,S,NExpr,NewInfos,Eval,FullyKnown,WF) :- !,
171 FullyKnown=false, % predicates never automatically evaluated in b_compile1
172 get_texpr_ids(ExistsPara,AtomicIds),
173 add_parameters(Parameters,AtomicIds,NParameters),
174 ? b_compile1(Pred,NParameters,LS,S,NPred,Eval,_FullyKnown1,WF),
175 (is_falsity(NPred) -> NExpr = falsity, NewInfos = OldInfos
176 ; is_truth(NPred) -> NExpr = truth, NewInfos = OldInfos
177 %; Pred==NPred, write(unchanged(Parameters)),nl, member(used_ids(Old),OldInfos), print(used(Old)),nl,nl,fail
178 ; create_exists_or_let_predicate(ExistsPara,NPred,b(NExpr,pred,NI)),
179 %print('COMPILED EXISTS: '), translate:print_bexpr(b(NExpr,pred,NI)),nl,
180 (delete_first(OldInfos,used_ids(_),I1),
181 ? member(used_ids(NewUsedIds),NI) -> NewInfos = [used_ids(NewUsedIds)|I1]
182 ; %nl,print(missing_used_ids(OldInfos,NI)),nl, % can happen when we construt a let_predicate above
183 update_infos(NExpr,OldInfos,Parameters,NewInfos))
184 ).
185 b_compile1_infos(identifier(Id),Type,OldInfos,Parameters,LS,S,NExpr,NewInfos,_Eval,FullyKnown,WF) :- !,
186 ( ord_member(Id,Parameters) ->
187 NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos
188 ; Id=op(_) ->
189 NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos
190 ; b_interpreter:lookup_value_in_store_and_global_sets_wf(Id,Type,LS,S,Value,OldInfos,WF) ->
191 NExpr = value(Value), (known_value(Value) -> FullyKnown=true ; FullyKnown=false),
192 NewInfos = [was_identifier(Id)|OldInfos]
193 ; add_internal_error_wf(b_compiler,'Compilation of identifier failed: ',Id,OldInfos,WF),
194 NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos
195 ).
196 b_compile1_infos(Expr,_,OldInfos,_Parameters,_LS,_S,NewUntypedExpr,NewInfos,_Eval,FullyKnown,_WF) :-
197 ? b_ast_cleanup:is_integer_set(Expr,_Set),!,
198 NewUntypedExpr=Expr, NewInfos=OldInfos,FullyKnown=true.
199 b_compile1_infos(operation_call_in_expr(Operation,OpCallParas),_Type,OldInfos,Parameters,LS,S,
200 Compiled,NewInfos,Eval,FullyKnown,WF) :- !,
201 def_get_texpr_id(Operation,op(OperationName)),
202 FullyKnown = false,
203 b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF),
204 b_get_operation_normalized_read_write_info(OperationName,ReadVars,Modified),
205 %exclude(operation_identifier,Read,ReadVars), % Read used to contain operations used via operation_call_in_expr; TO DO: check if this is ok in other places of source code of ProB; see test 1957
206 (Modified=[] -> true
207 ; add_error_wf(b_compiler,'Calling operation that modifies state in expression:',OperationName,OldInfos,WF)),
208 % print(compile_call_op(OperationName,ReadVars,Modified,OpCallParaValues)),nl,
209 (ReadVars=[]
210 -> Compiled = operation_call_in_expr(Operation,OpCallParaValues),
211 NewInfos = OldInfos
212 ; maplist(create_value_for_read_variable(LS,S,WF),ReadVars,TRead,TValues),
213 safe_create_texpr(let_expression_global(TRead,TValues,
214 b(operation_call_in_expr(Operation,OpCallParaValues),any,OldInfos)),any,[generated_by_b_compiler],New),
215 New = b(Compiled,_,NewInfos)
216 %NewInfos = [generated_by_b_compiler],
217 %Compiled = let_expression_global(TRead,TValues,
218 % b(operation_call_in_expr(Operation,OpCallParaValues),any,OldInfos))
219 ).
220 b_compile1_infos(kodkod(Id,Identifiers),_,OldInfos,Parameters,LS,S,NExpr,NewInfos,_Eval,FullyKnown,WF) :- !,
221 FullyKnown=false, NewInfos=OldInfos,
222 exclude(is_parameter(Parameters),Identifiers,IdsToCompile),
223 (IdsToCompile=[]
224 -> NExpr = kodkod(Id,Identifiers)
225 ; maplist(precompile_id(LS,S,WF),IdsToCompile,Values),
226 % as we cannot inspect kodkod problem: wrap it into a let with the values stored:
227 NExpr = let_predicate(IdsToCompile,Values,b(kodkod(Id,Identifiers),pred,OldInfos))
228 ).
229 b_compile1_infos(Expr,_,OldInfos,Parameters,LS,S,NewUntypedExpr,NewInfos,Eval,FullyKnown,WF) :-
230 ? b_compile2(Expr,Parameters,LS,S,NewUntypedExpr,Eval,FullyKnown,WF),
231 update_infos(NewUntypedExpr,OldInfos,Parameters,NewInfos).
232
233
234 is_parameter(Parameters,b(identifier(Id),_,_)) :- ord_member(Id,Parameters).
235
236 precompile_id(LS,S,WF,b(identifier(Id),Type,Info),b(value(Value),Type,[])) :-
237 b_interpreter:lookup_value_in_store_and_global_sets_wf(Id,Type,LS,S,Value,Info,WF).
238 % was_identifier is aded in b_compile1_infos
239
240 :- use_module(bmachine,[b_get_operation_normalized_read_write_info/3]).
241
242 %operation_identifier(op(_)).
243 create_value_for_read_variable(LS,S,WF,Variable,TVariable,TValue) :-
244 b_interpreter:lookup_value_in_store_and_global_sets_wf(Variable,_Type,LS,S,Value,unknown,WF),!,
245 % TO DO: try and find type?
246 TVariable = b(identifier(Variable),any,[]),
247 TValue = b(value(Value),any,[]).
248 create_value_for_read_variable(_LS,_S,WF,Variable,TVariable,b(value(term(undefined)),any,[])) :-
249 TVariable = b(identifier(Variable),any,[]),
250 add_internal_error_wf(b_compiler,'Cannot find variable (read) while compiling operation:',Variable,unknown,WF),
251 fail.
252
253 :- use_module(library(ordsets)).
254 update_infos(forall(EParas,LHS,RHS),Infos,Parameters,NewInfos) :-
255 % forall also has used_ids field as it may call exists in negative context
256 conjunct_predicates([LHS,RHS],Cond),
257 update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos),!.
258 update_infos(exists(EParas,Cond),Infos,Parameters,NewInfos) :- % we create_exists_or_let_predicate above, but other transformations may generate an exists below:
259 update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos),!.
260 update_infos(BOP,Infos,_,NewInfos) :- bsyntaxtree:syntaxelement(BOP, [A,B],[], [], [], _),
261 wd_and_efficient(BOP), % should not generate WD errors itself
262 ? (select(contains_wd_condition,Infos,NewInfos) % there is a WD condition attached
263 -> fast_check_wd(A),
264 fast_check_wd(B)
265 ),
266 %print(removing_wd_condition(BOP)),nl,
267 !.
268 update_infos(_,I,_,I).
269
270 update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos) :-
271 select_used_ids(UsedIds,Infos,I1,EParas,Cond),
272 UsedIds \= [],!,
273 % remove those used identifiers which will be compiled into the predicate
274 sort(Parameters,SParas),
275 ord_intersection(UsedIds,SParas,NewUsedIds),
276 %print(update(Parameters,UsedIds,I1,new(NewUsedIds))),nl,
277 NewInfos = [used_ids(NewUsedIds)|I1].
278
279 :- use_module(bsyntaxtree,[find_identifier_uses/3]).
280 ?select_used_ids(UsedIds,Infos,I1,_,_) :- select(used_ids(UsedIds),Infos,I1),!.
281 % check_used_ids_info(Parameters,Condition,UsedIds,b_compiler)
282 select_used_ids(UsedIds,Infos,Infos,_Parameters,Condition) :-
283 %add_error(bcompiler,'Expected information of used identifiers in exists operation information : ',Parameters:Infos), %% missing info can happen due to simplifcation rules below !
284 find_identifier_uses(Condition, [], UsedIds). % ,print(used(UsedIds,in_exist(Parameters))),nl.
285 % TO DO: avoid re-computing used-ids; we should refactor b_compile2 to return new Info field
286
287
288
289 evaluate_this(eval,X,Type,Info) :- !, worth_it_type(Type,X,Info).
290 evaluate_this(_,function(A,B),Type,Info) :- !,
291 A=b(value(avl_set(_)),_,_),
292 B=b(value(_),_,_),
293 worth_it_type(Type,function(A,B),Info). % will check well-definedness
294 evaluate_this(_,X,_Type,_Info) :- wd_and_efficient(X).
295
296
297 % things which are very quick to compute
298 wd_and_efficient(sequence_extension(_)) :- !.
299 wd_and_efficient(set_extension(_)) :- !.
300 wd_and_efficient(integer_set(_)) :- !. % will be converted into value(global_set(_))
301 %% wd_and_efficient(value(_)) :- !. % is already computed
302 % the following will reduce the size of the representation; usually a good thing;
303 % we assume only avl_sets apprear here; inner set comprehensions are never computed into symbolic form by b_compile (see known_value below):
304 %wd_and_efficient(identity(_)) :- !.
305 wd_and_efficient(range(_)) :- !.
306 wd_and_efficient(domain(_)) :- !.
307 wd_and_efficient(domain_restriction(_,_)) :- !.
308 wd_and_efficient(domain_subtraction(_,_)) :- !.
309 wd_and_efficient(range_restriction(_,_)) :- !.
310 wd_and_efficient(range_subtraction(_,_)) :- !.
311 wd_and_efficient(intersection(_,_)) :- !.
312 wd_and_efficient(set_subtraction(_,_)) :- !.
313 wd_and_efficient(image(_,_)) :- !.
314 wd_and_efficient(reverse(_)) :- !. % added for rgen_rgen_Worst_Case_Stopping_distance_NCT_trm13
315 % reverse has n.log(n) complexity, but is always wd and can be beneficial
316 wd_and_efficient(union(A,B)) :- finite_set(A), finite_set(B), !. % has complexity n
317 % usually the union of two avl_sets will be smaller than keeping them separate, what about intervals?
318 wd_and_efficient(interval(_,_)) :- !. % ditto
319 wd_and_efficient(card(S)) :- !, % added for rgen_rgen_Worst_Case_Stopping_distance_NCT_trm13
320 (finite_set(S) -> true % is wd for finite set; has currently linear complexity but reduces size of closure
321 ; is_interval(S) -> true). % card is simple to compute
322 wd_and_efficient(min(S)) :- !, % logarithmic for avl_set, see test 1338
323 finite_non_empty_set(S).
324 wd_and_efficient(max(S)) :- !, % logarithmic for avl_set
325 finite_non_empty_set(S).
326 wd_and_efficient(string_set) :- !.
327 % some other efficient operators:
328 % external_function_call CHOOSE (test 1338) ?
329 % first, last, ... need to ensure we have sequence
330 wd_and_efficient(X) :- worth_it_int(X),!.
331 wd_and_efficient(X) :- worth_it_other(X).
332
333 is_interval(b(value(V),set(_),_)) :- nonvar(V), V=closure(P,T,B),
334 is_fixed_interval(P,T,B,_,_).
335
336 finite_set(b(value(V),set(_),_)) :- nonvar(V), finite_set_aux(V).
337 finite_set_aux([]).
338 finite_set_aux(avl_set(_)).
339 finite_non_empty_set(b(value(V),set(_),_)) :- nonvar(V), V=avl_set(_).
340
341 fast_check_wd(b(E,_,Infos)) :-
342 (nonmember(contains_wd_condition,Infos) -> true
343 ; nonvar(E), E=value(_)).
344
345 check_wd(NTExpr) :- bsyntaxtree:always_well_defined(NTExpr). % ,print(wd(NTExpr)),nl.
346 %(bsyntaxtree:always_well_defined(NTExpr) -> true ; print(not_guaranteed_wd(NTExpr)),nl).
347
348 % (worth_it_type(Type,X,Info) -> true ; X=value(_) -> true ; print(not_evaluating(X)),nl,fail).
349 worth_it_type(integer,X,Info) :- worth_it_int_wd(X),!, check_wd(b(X,integer,Info)).
350 worth_it_type(T,function(A,B),Info) :- !,
351 (check_wd(b(function(A,B),T,Info)) -> true
352 ; fail). %print('not_precompiling_function '),translate:print_bexpr(A), print(' @ '), translate:print_bexpr(B),nl,fail).
353 worth_it_type(integer,X,_) :- worth_it_int(X),!.
354 worth_it_type(T,X,Info) :- worth_it_wd(X),!, check_wd(b(X,T,Info)).
355 ?worth_it_type(set(_),X,_) :- worth_it_set(X),!.
356 worth_it_type(seq(_),X,_) :- worth_it_set(X),!.
357 worth_it_type(_,X,_) :- worth_it_other(X).
358
359 % TO DO: we should use the predicate has_wd_condition from b_ast_cleanup
360
361 % integer operations that could generate WD-errors
362 worth_it_int_wd(div(_,_)).
363 worth_it_int_wd(max(_)).
364 worth_it_int_wd(min(_)).
365 worth_it_int_wd(mod(_,_)).
366 worth_it_int_wd(power_of(_,_)).
367 worth_it_int_wd(card(_)). % has WD condition !!
368 worth_it_int_wd(size(_)).
369
370 % other operations that could generate WD-errors
371 worth_it_wd(first(_)).
372 worth_it_wd(last(_)).
373 worth_it_wd(tail(_)).
374 worth_it_wd(front(_)).
375 worth_it_wd(restrict_front(_,_)).
376 worth_it_wd(restrict_tail(_,_)).
377 worth_it_wd(rel_iterate(_,_)). %% could be expensive
378 worth_it_wd(general_intersection(_)).
379 worth_it_wd(general_concat(_)).
380
381 % to do: check other operators that could be not well-defined !
382
383 worth_it_int(unary_minus(_)).
384 worth_it_int(add(_,_)).
385 worth_it_int(minus(_,_)).
386 worth_it_int(multiplication(_,_)).
387 worth_it_int(max_int).
388 worth_it_int(min_int).
389
390 %worth_it_set(empty_set). % treated below
391 %worth_it_set(empty_sequence). % treated below
392 %worth_it_set(closure(_)). % this is closure1; it is currently always kept symbolic and can be counterproductive to compile; e.g., card(closure1(%x.(x : 1 .. 200|x + 1)))
393 %% ?? need to be more careful here; can be expensive --> need to keep track which parts need definitely to be evaluated
394 worth_it_set(integer_set(_)). % will be converted into value(global_set(_))
395 ?worth_it_set(comprehension_set(A,B)) :- b_ast_cleanup:is_integer_set(comprehension_set(A,B),_).
396 worth_it_set(interval(_,_)).
397 worth_it_set(reflexive_closure(A)) :- \+ symbolic_value(A).
398 worth_it_set(reverse(_)). % function inverse
399 worth_it_set(domain(_)). worth_it_set(range(_)).
400 worth_it_set(union(_,_)). worth_it_set(intersection(_,_)). worth_it_set(set_subtraction(_,_)).
401 worth_it_set(image(_,B)) :- \+ symbolic_value(B).
402 worth_it_set(composition(_,_)).
403 worth_it_set(domain_restriction(_,_)). worth_it_set(domain_subtraction(_,_)).
404 worth_it_set(range_restriction(_,_)). worth_it_set(range_subtraction(_,_)).
405 worth_it_set(direct_product(A,B)) :- \+ symbolic_value(A), \+ symbolic_value(B).
406 worth_it_set(parallel_product(A,B)) :- \+ symbolic_value(A), \+ symbolic_value(B).
407 worth_it_set(iteration(_,_)).
408 worth_it_set(set_extension([H|_])) :- \+ symbolic_value(H). % otherwise we may get an enumeration warning
409 worth_it_set(sequence_extension([H|_])) :- \+ symbolic_value(H). % ditto, TODO: check tail unless expensive
410 worth_it_set(rev(_)). % reverse of sequence
411 worth_it_set(concat(_,_)).
412 worth_it_set(seq(_)). % will be kept symbolic anyway
413 worth_it_set(seq1(_)). % will be kept symbolic anyway; relevant for test 1731
414 % f=%x.(x:iseq(struct(a:seq1(NATURAL),b:BOOL))|x) & f([rec(a:[222],b:TRUE)])=[rec(a:[222],b:xx)] & xx=TRUE
415 % however: value can be put into a set-extension!
416 worth_it_set(iseq(_)). % will be kept symbolic anyway
417 worth_it_set(iseq1(_)). % will be kept symbolic anyway
418 worth_it_set(perm(_)). % will be kept symbolic anyway
419 worth_it_set(pow_subset(_)). % will be kept symbolic anyway
420 worth_it_set(pow1_subset(_)). % will be kept symbolic anyway
421 worth_it_set(fin_subset(_)). % will be kept symbolic anyway
422 worth_it_set(fin1_subset(_)). % will be kept symbolic anyway
423 worth_it_set(general_union(X)) :- \+ symbolic_value(X). % otherwise we can get enumeration warnings
424 worth_it_set(identity(_)).
425 worth_it_set(first_of_pair(_)). % can also produce set
426 worth_it_set(second_of_pair(_)). % can also produce set
427 worth_it_set(cartesian_product(_,_)). % will usually be kept symbolic
428 worth_it_set(string_set). % ensure we have values inside compiled closures, e.g., for custom_explicit_set card computations
429 worth_it_set(bool_set).
430
431 symbolic_value(b(value(Val),_,_)) :- nonvar(Val), symbolic_val_aux(Val).
432 symbolic_val_aux(closure(P,T,B)) :- \+ is_fixed_interval(P,T,B,_,_).
433 symbolic_val_aux(global_set(_)).
434
435 :- use_module(external_functions,[not_declarative/1,external_fun_has_wd_condition/1]).
436 worth_it_other(boolean_true).
437 worth_it_other(boolean_false).
438 worth_it_other(string(_)).
439 worth_it_other(first_of_pair(_)).
440 worth_it_other(second_of_pair(_)).
441 worth_it_other(couple(_,_)).
442 worth_it_other(record_field(_,_)).
443 worth_it_other(external_function_call(FunName,_)) :-
444 \+ not_declarative(FunName),
445 \+ external_fun_has_wd_condition(FunName). %print(compile(FunName)),nl.
446 % CHOOSE for finite_non_empty_set ?
447 worth_it_other(rec(_)).
448 worth_it_other(struct(_)).
449 %worth_it_other(value(_)). % does not have to be evaluted; already a value
450
451 /*
452 % To do: distinguish which parts definitely need to be evaluated
453 %dont_eval_subexpressions(member). % special membership code can be used
454 %dont_eval_subexpressions(not_member). % special membership code can be used
455 dont_eval_subexpressions(disjunct(_,_)). % it may not be necessary to eval RHS
456 dont_eval_subexpressions(implication(_,_)). % it may not be necessary to eval RHS
457 */
458
459 :- use_module(bsyntaxtree, [get_negated_operator_expr/2]).
460 :- use_module(kernel_objects,[equal_object/3]).
461 :- use_module(kernel_mappings,[binary_boolean_operator/3]).
462 :- use_module(kernel_tools,[filter_cannot_match/4, get_template_for_filter_cannot_match/2]).
463 b_compile2(Exp,_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,WF) :- var(Exp), !,
464 add_internal_error_wf(b_compiler,'Variable Expression: ',Exp,unknown,WF),
465 NExpr=Exp, FullyKnown=false.
466 b_compile2(truth,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=truth, FullyKnown=false. % predicates never fully known
467 b_compile2(falsity,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=falsity, FullyKnown=false. % predicates never fully known
468 b_compile2(empty_set,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value([]), FullyKnown=true.
469 b_compile2(empty_sequence,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value([]), FullyKnown=true.
470 b_compile2(boolean_false,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value(pred_false), FullyKnown=true.
471 b_compile2(boolean_true,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value(pred_true), FullyKnown=true.
472 b_compile2(value(Val),_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !,
473 NExpr=value(Val),
474 (known_value(Val) -> % ground(Val) -> known_value ?
475 FullyKnown=true ; FullyKnown=false).
476 b_compile2(integer(Val),_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !,
477 NExpr=value(int(Val)), (number(Val) -> FullyKnown=true ; FullyKnown=false).
478 b_compile2(lazy_lookup_pred(Id),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :- !,
479 ( ord_member(Id,Parameters) -> %print(lazy_lookup_pred_id_as_parameter(Id,Parameters)),nl,
480 NExpr = lazy_lookup_pred(Id), FullyKnown=false
481 ; compute_lazy_lookup(Id,lazy_lookup_pred(Id),LS,S,NExpr,FullyKnown,WF)
482 ).
483 b_compile2(lazy_lookup_expr(Id),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :- !,
484 ( ord_member(Id,Parameters) -> %print(lazy_lookup_expr_id_as_parameter(Id,Parameters)),nl,
485 NExpr = lazy_lookup_expr(Id), FullyKnown=false
486 ; compute_lazy_lookup(Id,lazy_lookup_expr(Id),LS,S,NExpr,FullyKnown,WF)
487 ).
488
489 % treat a few common cases, more efficiently than syntaxtransformation
490 b_compile2(equal(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
491 FullyKnown=false, % predicates never evaluated in b_compile1
492 ? b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
493 ? b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
494 ( FullyKnownA=true, FullyKnownB=true,
495 NExprA = b(value(VA),_,_), NExprB = b(value(VB),_,_)
496 -> (equal_object(VA,VB,b_compile2_1) -> NExpr = truth ; NExpr = falsity)
497 ; generate_equality(NExprA,NExprB,NExpr)
498 ).
499 b_compile2(not_equal(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
500 FullyKnown=false, % predicates never evaluated in b_compile1
501 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
502 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
503 ( FullyKnownA=true, FullyKnownB=true,
504 NExprA = b(value(VA),_,_), NExprB = b(value(VB),_,_)
505 -> %print(computing_neq(VA,VB)),nl,
506 (kernel_objects:equal_object(VA,VB,b_compile2_2) -> NExpr = falsity ; NExpr = truth)
507 %, print(result(NExpr)),nl
508 ; NExpr = not_equal(NExprA,NExprB)
509 ).
510 b_compile2(member(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
511 FullyKnown=false, % predicates never evaluated in b_compile1
512 ? b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
513 (NExprB = b(value(X),BT,BI)
514 -> (X==[], always_well_defined(A) -> NExpr = falsity
515 ? ; b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
516 % check if we can decide membership (e.g., 1:{1})
517 ? (quick_test_membership1(NExprA,X,PRes)
518 -> convert_pred_res(PRes,NExpr)
519 % TO DO: maybe optimize x: {y|P(y)} --> P(x) ; by commenting in code below
520 % However, ensure test 273 succeeds and closure equality correctly detected (e.g., for BV16 = {bt|bt : BIT_VECTOR & bv_size(bt) = 16})
521 % ; (get_texpr_id(NExprA,IDA),
522 % get_comprehension_set(NExprB,IDB,Pred), get_texpr_info(NExprB,Info),
523 % print(rename(IDB,IDA,Info)),nl,
524 % bsyntaxtree:rename_bt(Pred,[rename(IDB,IDA)],PredA)) -> get_texpr_expr(PredA,NExpr)
525 ; custom_explicit_sets:singleton_set(X,El) % replace x:{El} -> x=El
526 -> get_texpr_type(NExprA,TA),
527 generate_equality_with_value(NExprA,FullyKnownA,El,FullyKnownB,TA,NExpr)
528 ; get_template_for_filter_cannot_match(NExprA,VA)
529 -> filter_cannot_match(X,VA,NewX,Filtered),
530 % (Filtered=false -> true ; print(filtered(NewX,VA,X)),nl),
531 (Filtered=false -> NExpr = member(NExprA,NExprB)
532 ; (NewX==[], always_well_defined(A)) -> NExpr = falsity
533 ; custom_explicit_sets:singleton_set(NewX,El)
534 -> get_texpr_type(NExprA,TA),
535 %nl,print(create_equal(NExprA,FullyKnownA,El,FullyKnownB,NExprB)),nl,nl,
536 generate_equality_with_value(NExprA,FullyKnownA,El,FullyKnownB,TA,NExpr)
537 ; NExpr = member(NExprA, b(value(NewX),BT,BI))
538 )
539 % end fo filtering
540 ; NExpr = member(NExprA,NExprB)
541 )
542 % , print('compile: '),print(NExpr),nl
543 )
544 ; NExpr = member(NExprA,NExprB),
545 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF)
546 ).
547 % TO DO: also optimize things like: (ev1 |-> 0) |-> eg : #221:{((1|->0)|->3),((2|->0)|->0),...,((233|->0)|->218),((234|->0)|->228)}
548
549 b_compile2(not_member(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
550 FullyKnown=false, % predicates never evaluated in b_compile1
551 b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF),
552 (NExprB = b(value(X),_,_)
553 -> (X==[], always_well_defined(A) -> NExpr = truth
554 ; b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
555 (quick_test_membership1(NExprA,X,PRes)
556 -> convert_neg_pred_res(PRes,NExpr)
557 ; NExpr = not_member(NExprA,NExprB))
558 )
559 ; NExpr = not_member(NExprA,NExprB),
560 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF)
561 ).
562 b_compile2(function(Fun,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
563 (is_lazy_extension_function_for_fun_app(Fun)
564 -> Eval1=false % extension function applications treated lazily
565 % TO DO: first evaluate B, if known then only evaluate relevant part of extension function
566 ; Eval1=Eval),
567 b_compile1(Fun,Parameters,LS,S,NExprA,Eval1,FullyKnown1,WF),
568 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown12),
569 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF),
570 %tools_printing:print_term_summary(compiled_function(FullyKnown1,FullyKnown2,NExprA,NExprB)),nl,
571 (FullyKnown2=true, preferences:preference(find_abort_values,false),
572 % check if we have enough information to apply a partially specified function as a list
573 % e.g. if the function is [(int(1),A),(int(2),B)] and the argument is int(2): we can apply the function without knowing A or B; can have a dramatic importance when expanding unversal quantifiers !
574 ? can_apply_partially_specified_function(NExprA,NExprB,ResultExpr,WF)
575 -> NExpr = ResultExpr,
576 (FullyKnown12=true -> FullyKnown=true
577 ; ResultExpr=value(ResultValue),known_value(ResultValue) -> FullyKnown=true
578 ; FullyKnown = false)
579 ; %tools_printing:print_term_summary(cannot_apply_function(FullyKnown2,NExprA,NExprB)),nl,
580 %translate:print_bexpr(NExprA),nl, translate:print_bexpr(NExprB),nl,
581 NExpr = function(NExprA,NExprB), FullyKnown = FullyKnown12).
582
583 b_compile2(conjunct(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
584 FullyKnown=false, % predicates never automatically evaluated in b_compile1
585 ? b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
586 (is_falsity(NExprA) -> NExpr = falsity
587 ;
588 % TO DO: propagate static information from A to B, e.g. if A :: x=10 -> add x=10 to LS/Parameters
589 % also: try and detect unsatisfiable predicates beforehand
590 ? b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF),
591 (is_falsity(NExprB) -> NExpr = falsity
592 ; is_truth(NExprB) -> get_texpr_expr(NExprA,NExpr)
593 ; is_truth(NExprA) -> get_texpr_expr(NExprB,NExpr)
594 ; NExpr = conjunct(NExprA,NExprB))
595 ).
596 b_compile2(disjunct(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
597 FullyKnown=false, % predicates never automatically evaluated in b_compile1
598 ? b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
599 (is_truth(NExprA) -> NExpr = truth
600 ? ; b_compile1(B,Parameters,LS,S,NExprB,false,_,WF), % does not have to be executed in a successful branch: set Eval to false to avoid computing expensive expressions which may not be needed
601 (is_truth(NExprB) -> NExpr = truth
602 ; is_falsity(NExprA) -> get_texpr_expr(NExprB,NExpr)
603 ; is_falsity(NExprB) -> get_texpr_expr(NExprA,NExpr)
604 ; NExpr = disjunct(NExprA,NExprB))
605 ).
606 b_compile2(implication(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
607 FullyKnown=false, % predicates never automatically evaluated in b_compile1
608 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
609 (is_falsity(NExprA) -> NExpr = truth
610 ; is_truth(NExprA) -> b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF), get_texpr_expr(NExprB,NExpr)
611 ; NExpr = implication(NExprA,NExprB),
612 b_compile1(B,Parameters,LS,S,NExprB,false,_,WF) % B does not have to be executed in a successful branch: set Eval to false to avoid computing expensive expressions which may not be needed
613 % TO DO: add preference to force pre-computation everywhere and pass Eval instead of false to b_compile1; ditto for disjunction
614 ).
615 b_compile2(negation(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
616 FullyKnown=false, % predicates never automatically evaluated in b_compile1
617 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
618 ( get_negated_operator_expr(NExprA,NegatedA) -> NExpr = NegatedA
619 ; NExpr = negation(NExprA)
620 ).
621 b_compile2(if_then_else(A,B,C),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
622 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
623 (is_falsity(NExprA) -> b_compile1(C,Parameters,LS,S,NExprC,Eval,FullyKnown,WF), get_texpr_expr(NExprC,NExpr)
624 ; is_truth(NExprA) -> b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown,WF), get_texpr_expr(NExprB,NExpr)
625 ; NExpr = if_then_else(NExprA,NExprB,NExprC), FullyKnown=false,
626 b_compile1(B,Parameters,LS,S,NExprB,false,_,WF), % set Eval to false as we do not know if B will be needed
627 b_compile1(C,Parameters,LS,S,NExprC,false,_,WF) % ditto for C
628 ).
629 /* b_compile2(comprehension_set(CParas,Body),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :-
630 sort(Parameters,SParas),
631 b_ast_cleanup:not_occurs_in_predicate(SParas,Body), %can only be applied if Body does not reference Parameters
632 !,
633 b_generate_inner_closure_if_necessary(Parameters,CParas,Body,LS,S,Result), % will itself call b_compile
634 NExpr = value(Result),
635 (ground(Result) -> FullyKnown=true ; FullyKnown=false). */
636 b_compile2(forall(ForallPara,A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
637 FullyKnown=false, % predicates never automatically evaluated in b_compile1
638 get_texpr_ids(ForallPara,AtomicIds),
639 add_parameters(Parameters,AtomicIds,NParameters),
640 b_compile1(A,NParameters,LS,S,NA,Eval,_FullyKnownA,WF),
641 (is_falsity(NA) -> NExpr = truth
642 ; b_compile1(B,NParameters,LS,S,NB,Eval,_FullyKnownB,WF),
643 (is_truth(NB) -> NExpr = truth
644 ; NExpr = forall(ForallPara,NA,NB)
645 % TO DO ??: if we have an equality -> replace Body by value and remove quantifier
646 %,print('COMPIlED: '),translate:print_bexpr(b(NExpr,pred,[])),nl
647 )
648 ).
649 % some special cases to avoid calling syntaxtransformation
650 b_compile2(record_field(A,FieldName),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
651 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
652 % First: we can try compute even if value not fully known !, we just need record field list
653 (get_record_field(NExprA,FieldName,NExpr,FullyKnown) -> true
654 ; NExpr = record_field(NExprA,FieldName), FullyKnown=FullyKnownA).
655 b_compile2(couple(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
656 %NExpr = couple(NExprA,NExprB),
657 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
658 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown),
659 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF),
660 (FullyKnown \== true, % evaluation will already combine the result
661 NExprA=b(value(VA),_,_),NExprB=b(value(VB),_,_)
662 -> NExpr = value((VA,VB))
663 ; NExpr = couple(NExprA,NExprB)).
664 b_compile2(image(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
665 %NExpr = image(NExprA,NExprB),
666 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
667 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown),
668 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF),
669 (FullyKnown \= true, NExprA=b(value(VA),BT,BI),
670 NExprB=b(value(VB),_,_), nonvar(VB),
671 custom_explicit_sets:singleton_set(VB,VBX)
672 -> filter_cannot_match(VA,(VBX,_),NewVA,_Filtered), %nl,print(filtered_image(VBX,VA,NewVA)),nl,
673 NExpr = image(b(value(NewVA),BT,BI),NExprB)
674 % TO DO: add case where VB==[] or VA==[] are the empty set
675 ; NExpr = image(NExprA,NExprB)
676 ). %, print('compile image: '),translate:print_bexpr(NExpr),nl.
677 % TO DO: do something like can_apply_partially_specified_function; or filter_can_match
678 b_compile2(assertion_expression(A,Msg,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
679 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
680 (is_truth(NExprA) -> % the ASSERT EXPR is redundant
681 %print(removed_assert),nl, translate:print_bexpr(B),nl,
682 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown,WF),
683 get_texpr_expr(NExprB,NExpr)
684 ; b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF),
685 FullyKnown=false, % we cannot get rid of WD condition
686 NExpr = assertion_expression(NExprA,Msg,NExprB)
687 ).
688 b_compile2(domain(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
689 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
690 (FullyKnown1=false,get_texpr_expr(NExprA,NA),evaluate_domain(NA,Domain) % try and compute domain even if not fully known
691 -> FullyKnown = true, NExpr = value(Domain)
692 ; FullyKnown = FullyKnown1, NExpr = domain(NExprA)).
693 b_compile2(range(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
694 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
695 (FullyKnown1=false,evaluate_range(NExprA,Range) % try and compute range even if not fully known
696 -> FullyKnown = true, NExpr = value(Range)
697 ; FullyKnown = FullyKnown1, NExpr = range(NExprA)).
698 b_compile2(assign(LHS_List,RHS_List),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
699 NExpr = assign(New_LHS_List,NewRHS_List), FullyKnown = false,
700 maplist(b_compile_lhs(Parameters,LS,S,Eval,WF),LHS_List,New_LHS_List),
701 b_compile_l(RHS_List,Parameters,LS,S,NewRHS_List,Eval,_FullyKnown2,WF).
702 b_compile2(assign_single_id(ID,B),Parameters,LS,S,assign_single_id(ID,NExprB),Eval,FullyKnown,WF) :- !,
703 FullyKnown = false,
704 b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF).
705 b_compile2(operation_call(Operation,OpCallResults,OpCallParas),Parameters,LS,S,InlinedOpCall,Eval,FullyKnown,WF) :-
706 % TO DO: evaluate if we should also use the let_expression_global approach used for operation_call_in_expr
707 !,
708 def_get_texpr_id(Operation,op(OperationName)),
709 FullyKnown = false,
710 b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF),
711 TopLevel=false,
712 b_get_machine_operation_for_animation(OperationName,OpResults,OpFormalParameters,Body,_OType,TopLevel),
713 bsyntaxtree:replace_ids_by_exprs(Body,OpResults,OpCallResults,Body2),
714 get_texpr_ids(OpFormalParameters,OpIds),
715 add_parameters(Parameters,OpIds,InnerParas),
716 b_compile1(Body2,InnerParas,[],S,NBody,Eval,FullyKnown,WF), % do not pass local state: this may override constants,... from the called machine
717 % Note: global state S should be valid for all machines in currently loaded specification
718 get_texpr_ids(OpCallResults,OpRIds),
719 add_parameters(Parameters,OpRIds,LocalKnownParas),
720 simplify_assignment(OpFormalParameters,OpCallParaValues,LHSFormalParas,RHSCallVals), %%
721 split_formal_parameters(LHSFormalParas,RHSCallVals,LocalKnownParas,
722 FreshOpParas,FreshCallVals,
723 ClashOpParas, ClashCallVals), % only set up VAR for fresh Paras
724 % print(split(LHSFormalParas,LocalKnownParas,fresh(FreshOpParas),clash(ClashOpParas))),nl,
725 (FreshOpParas=[] -> get_texpr_expr(NBody,Let1)
726 ; create_equality_for_let(FreshOpParas,FreshCallVals,Equality1),
727 Let1 = let(FreshOpParas,Equality1,NBody)),
728 (ClashOpParas = []
729 -> InlinedOpCall = Let1
730 ; %nl,print(clash(ClashOpParas)),nl,
731 maplist(create_fresh_id,ClashOpParas,FreshCopy),
732 create_equality_for_let(ClashOpParas,FreshCopy,Equality2), % copy Values from Fresh Ids
733 create_equality_for_let(FreshCopy,ClashCallVals,Equality3), % assign Parameter Vals to Fresh Ids
734 get_texpr_pos(Body,BodyPos), BodyPosInfo = [nodeid(BodyPos)],
735 Let2 = let(ClashOpParas,Equality2,b(Let1,subst,[BodyPosInfo])),
736 InlinedOpCall = let(FreshCopy,Equality3,b(Let2,subst,[BodyPosInfo]))
737 ).
738 %, print('Compiled operation call: '), translate:print_subst(b(InlinedOpCall,subst,BodyPosInfo)),nl,nl.
739 % Maybe this version is faster when no OpCallResults:
740 %b_compile2(operation_call(Operation,OpCallResults,OpCallParas),Parameters,LS,S,InlinedOpCall,Eval,FullyKnown,WF) :-
741 % OpCallResults=[],
742 % !,
743 % def_get_texpr_id(Operation,op(OperationName)),
744 % FullyKnown = false,
745 %% b_compile_l(Results,Parameters,LS,S,NResults,Eval,_,WF),
746 % b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF),
747 % TopLevel=false,
748 % b_get_machine_operation_for_animation(OperationName,OpResults,OpParameters,Body,_OType,TopLevel),
749 % % Note: input parameters cannot be assigned to: so replace ids is ok
750 % % However, we cannot replace output parameters: these can be assigned to and we can have aliasing
751 % % Note: no aliasing is allowed in OpCallResults (cf Atelier-B handbook x,x <-- op not allowed)
752 % bsyntaxtree:replace_ids_by_exprs(Body,OpParameters,OpCallParaValues,Body2),
753 % get_texpr_ids(OpResults,OpIds),
754 % append(OpIds,Parameters,InnerParas),
755 % b_compile1(Body2,InnerParas,LS,S,NBody,Eval,FullyKnown,WF),
756 % FinalBody = NBody.
757 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :-
758 functor(Expr,BOP,2),
759 binary_boolean_operator(BOP,_,_),!, % from kernel_mappings, slightly more efficient than syntaxtransformation
760 arg(1,Expr,A),
761 FullyKnown=false, % predicates never evaluated in b_compile1
762 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
763 arg(2,Expr,B),
764 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
765 (eval_binary_bool(FullyKnownA,NExprA,FullyKnownB,NExprB,BOP,Result)
766 -> NExpr = Result
767 ; functor(NExpr,BOP,2), arg(1,NExpr,NExprA), arg(2,NExpr,NExprB)
768 ).
769 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :-
770 functor(Expr,BOP,2),
771 kernel_mappings:binary_function(BOP,_,_),!, % slightly more efficient than syntaxtransformation
772 arg(1,Expr,A),
773 ? b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
774 combine_fully_known(FullyKnownA,FullyKnownB,FullyKnown),
775 arg(2,Expr,B),
776 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
777 functor(NExpr,BOP,2), arg(1,NExpr,NExprA), arg(2,NExpr,NExprB).
778 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :-
779 functor(Expr,UOP,1),
780 kernel_mappings:unary_function(UOP,_,_),!, % slightly more efficient than syntaxtransformation
781 arg(1,Expr,A),
782 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown,WF),
783 functor(NExpr,UOP,1), arg(1,NExpr,NExprA).
784 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- % GENERAL CASE
785 %hit_profiler:add_profile_hit(Expr),
786 ? syntaxtransformation(Expr,Subs,Names,NSubs,NExpr),
787 get_texpr_ids(Names,Ids),
788 add_parameters(Parameters,Ids,NParameters),
789 ? b_compile_l(Subs,NParameters,LS,S,NSubs,Eval,FullyKnown,WF).
790
791 b_compile_l([],_,_,_,[],_Eval,true,_WF).
792 b_compile_l([Expr|ExprRest],P,LS,S,[NExpr|NExprRest],Eval,FullyKnown,WF) :-
793 ? b_compile1(Expr,P,LS,S,NExpr,Eval,FullyKnown1,WF),
794 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown),
795 b_compile_l(ExprRest,P,LS,S,NExprRest,Eval,FullyKnown2,WF).
796
797 % detecth when a parameter clashes with existing known ids
798 id_clash(LocalKnownParas,TID) :- def_get_texpr_id(TID,ID), member(ID,LocalKnownParas).
799
800 /* comment in if we want to compile inner comprehension sets:
801 :- use_module(bsyntaxtree,[split_names_and_types/3]).
802 :- use_module(closures,[construct_closure_if_necessary/4]).
803 b_generate_inner_closure_if_necessary(OuterParameters,ClosureParas,Condition,LocalState,State,Result) :-
804 split_names_and_types(ClosureParas,Names,Types),
805 add_parameters(OuterParameters,Names,FullNames),
806 b_compile(Condition,FullNames,LocalState,State,ClosurePred),
807 print('INNER COMPILE: '), translate:print_bexpr(ClosurePred),nl,
808 construct_closure_if_necessary(Names,Types,ClosurePred,Result).
809 */
810
811
812 % the LHS contains l-values which should not be looked up in the environment
813 % however, we need to deal with things like f(i) := RHS and compile i
814 b_compile_lhs(Parameters,LS,S,Eval,WF,TExpr,NewTExpr) :-
815 TExpr = b(Expr,Type,Info), NewTExpr = b(NewExpr,Type,Info),
816 b_compile_lhs_aux(Expr,Parameters,LS,S,NewExpr,Eval,WF).
817
818 b_compile_lhs_aux(function(A,B),Parameters,LS,S,function(NewA,NewB),Eval,WF) :- !,
819 b_compile_lhs(Parameters,LS,S,Eval,WF,A,NewA), % we can have nexted function calls f(e)(g) :=
820 b_compile1(B,Parameters,LS,S,NewB,Eval,_,WF).
821 b_compile_lhs_aux(E,_,_,_,E,_,_WF). % other LHS should be identifier -> just copy
822
823 get_record_field(b(value(Val),_,_),FieldName,value(Field),FullyKnown) :- !,
824 nonvar(Val), Val=rec(Fields),
825 safe_get_field(Fields,FieldName,Field),
826 known_value(Field,FullyKnown).
827 get_record_field(b(function(FUN,ARG),_Type,_Info),FieldName,function(ReducedFUN,ARG),false) :-
828 % {1|->rec(a:1,b:2),...}(x)'b --> {1|->2,...}(x)
829 %nl,print(get_field(FUN,ARG,FieldName)),nl,
830 % TO DO: also allow nested functions calls {1|->rec(a:1,b:2),...}(x)(y)'b or other reduction operators
831 get_field_in_range(FUN,FieldName,ReducedFUN).
832 safe_get_field(V,FN,_) :- (var(V) ; var(FN)),!,fail.
833 safe_get_field([field(N,V)|T],FieldName,Result) :- nonvar(N),
834 (N=FieldName -> Result=V ; safe_get_field(T,FieldName,Result)).
835
836 :- use_module(probsrc(custom_explicit_sets),[expand_custom_set_to_list/4, convert_to_avl/2]).
837 :- use_module(probsrc(avl_tools),[avl_height_less_than/2]).
838 get_field_in_range(b(value(OldVal),set(couple(Dom,OldRange)),Info),FieldName,
839 b(value(NewVal),set(couple(Dom,NewRange)),Info)) :-
840 nonvar(OldVal), OldVal=avl_set(AVL),
841 avl_height_less_than(AVL,10),
842 OldRange = record(Fields),
843 member(field(FieldName,NewRange),Fields),!,
844 expand_custom_set_to_list(avl_set(AVL),List,_,get_field_in_range),
845 maplist(safe_get_range_field(FieldName),List,NewList),
846 convert_to_avl(NewList,NewVal).
847
848 % compute the field access for the range elements:
849 safe_get_range_field(FieldName,(Dom,rec(Fields)),(Dom,Field)) :- safe_get_field(Fields,FieldName,Field).
850
851
852 eval_binary_bool(true,b(value(ValA),_,_),true,b(value(ValB),_,_),BOP,Result) :-
853 ground(ValA),
854 ground(ValB),
855 eval_binary_aux(BOP,ValA,ValB,Result).
856
857 eval_binary_aux(less,int(A),int(B),Result) :-
858 (A < B -> Result = truth ; Result = falsity).
859 eval_binary_aux(greater,int(A),int(B),Result) :-
860 (A > B -> Result = truth ; Result = falsity).
861 eval_binary_aux(less_equal,int(A),int(B),Result) :-
862 (A =< B -> Result = truth ; Result = falsity).
863 eval_binary_aux(greater_equal,int(A),int(B),Result) :-
864 (A >= B -> Result = truth ; Result = falsity).
865 eval_binary_aux(subset,avl_set(A1),avl_set(A2),Result) :-
866 (custom_explicit_sets:check_avl_subset(A1,A2) -> Result = truth ; Result = falsity).
867 eval_binary_aux(subset,[],_,Result) :- Result=truth.
868 %eval_binary_aux(less_real,real(A),real(B),Result) :- % TO DO
869 % (A < B -> Result = truth ; Result = falsity).
870 % TO DO: other operators are not_subset, strict_subset, ... intervals for subset,...
871
872
873
874 :- use_module(store,[lookup_value_for_existing_id_wf/5]).
875 compute_lazy_lookup(Id,Expr,LS,S,NExpr,FullyKnown,WF) :-
876 lookup_value_for_existing_id_wf(Id,LS,S,(Evaluated,Value),WF),
877 % the lazy expression has already been registered, but maybe not yet evaluated
878 !,
879 known_value(Value,FullyKnown), % compute if value fully known
880 (Evaluated==pred_true -> NExpr = value(Value)
881 ; FullyKnown==true -> NExpr = value(Value)
882 ; memberchk(bind('$do_not_force_lazy_lookups',_),LS) -> NExpr = Expr % we do not force lookup: there could be WD issues ! TO DO: examine Infos for wd_condition; we could also return NExpr = lazy_value(Id,Evaluated,Value)
883 ; if(Evaluated = pred_true,
884 % will force evaluation ! Note: this means shared expression inside a compiled expression must be well-defined
885 NExpr = value(Value),
886 (add_internal_error_wf(b_compiler,'Compilation failed: ', Id, unknown,WF),
887 fail))
888 ).
889 compute_lazy_lookup(Id,_E,_LS,_S,_LazyValue,_,WF) :-
890 add_internal_error_wf(b_compiler,'Compilation failed, illegal lazy_lookup_value: ',Id,unknown,WF),
891 fail.
892
893 combine_fully_known(true,A,A).
894 combine_fully_known(false,_,false).
895
896 :- use_module(tools_lists,[length_greater/2]).
897 % is an extension function with at least two elements, but not too long
898 % (for long set extensions it is much better to compile them to avl once; see private_examples/ClearSy/2019_Sep/rule_dummy)
899 % extension functions are treated lazily in b_interpreter for function application under the condition:
900 % memberchk(contains_wd_condition,FInfo) ; preferences:preference(use_clpfd_solver,false) ; ground_value(ArgValue)
901 is_lazy_extension_function_for_fun_app(b(A,_,FInfo)) :-
902 preferences:preference(data_validation_mode,false),
903 (memberchk(contains_wd_condition,FInfo) -> Lim=98 ; Lim = 23),
904 is_extension_function_aux(A,Lim).
905 is_extension_function_aux(set_extension([_A,_|T]),Lim) :- \+ length_greater(T,Lim).
906 is_extension_function_aux(sequence_extension([_,_|T]),Lim) :- \+ length_greater(T,Lim).
907
908 :- use_module(bsyntaxtree,[is_set_type/2]).
909 % check if we can apply an argument to a partially specified function (as a list and now also as AVL)
910 %can_apply_partially_specified_function(Fun,X,_,_) :- print(fun(Fun)),nl,print(val(X)),nl,fail.
911 can_apply_partially_specified_function(b(Expr,TYPE,_), b(value(X),TA,_),ResultExpr,WF) :-
912 ? can_apply_aux(Expr,TYPE,X,TA,ResultExpr,WF).
913
914 can_apply_aux(value(VAL),TYPE,X,TA,value(ResultValue),WF) :-
915 is_set_type(TYPE,couple(TA,_TB)),
916 ? lookup_result(VAL,X,ResultValue,WF).
917 can_apply_aux(sequence_extension(List),_,X,integer,ResultExpr,_WF) :-
918 % important, e.g., for solving test 1551: {b|[a,b,c](2)=333} =res & a : res & b:res
919 nonvar(X), X=int(Index), number(Index),
920 % this will prevent computing rest of sequence extension: can hide WD issues !
921 % print(apply_seq_extension(Index,List)),nl,
922 nth1(Index,List,b(ResultExpr,_,_)).
923
924 :- use_module(kernel_equality,[equality_objects_wf/4, equality_can_be_decided_by_unification/1]).
925 %lookup_result(VAR,ArgValue,Result,WF) :- var(VAR),!,kernel_mappings:kernel_call_apply_to(VAR,ArgValue,Result,unknown,unknown,WF).
926 % the clause above is unsound; as apply_to CAN RAISE WD ERRORS !! what if we have IF 1:dom(f) THEN f(1) ELSE f(0) END; we do not want to compute f(1) ! it can also instantiate unbound variables !
927 % the idea was to avoid that we wait on the full function, before compiled closure can be evaluated; test 1552
928 % important for e.g. a = {(1, {([]|->2)} ), (2, const(1, [a(1)]))}
929 % or: a = {1 |-> {[] |-> 2}, 2 |-> (dom({pi,ff,p|((pi : seq(INTEGER) & ff : INTEGER) & p : seq(INTEGER)) & (p |-> ff : [a(1)](1) & pi = 1 -> p)}) \/ {[] |-> 1})}
930 % test 1552 is currently skipped
931 % TO DO: think whether there are other deterministic computations that can be done in b_compile: prj1,prj2, record-field access ? this would ensure that closures,... can be computed earlier
932 lookup_result(VAR,_,_,_WF) :- var(VAR),!,fail.
933 lookup_result(avl_set(A),X,Result,_WF) :-
934 ? (custom_explicit_sets:try_apply_to_avl_set(X,Result,A)
935 -> true % precompiled function application
936 ; debug_format(19,'Function application in b_compiler for avl_set is not well-defined for: ~w~n',[X]),
937 % We could transform the function application into a construct that raises a WD error
938 fail).
939 lookup_result(closure(_P,_T,_B),_X,_Result,_WF) :- !,
940 fail. % TODO: should we replace parameters by values in body? if domain is full type?
941 lookup_result(List,X,Result,WF) :- List = [_|_],equality_can_be_decided_by_unification(X),!,
942 % this is relevant for long lists,
943 % see public_examples/B/ExternalFunctions/Satsolver/QueensBoardVersionTF_Satsolver.mch
944 fast_lookup_result(List,X,Result,WF).
945 lookup_result(List,X,Result,WF) :-
946 regular_lookup_result_in_list(List,X,Result,WF).
947
948 regular_lookup_result_in_list([],X,_Result,_WF) :-
949 debug_format(19,'Function application in b_compiler for list is not well-defined for: ~w~n',[X]), % ditto
950 fail.
951 regular_lookup_result_in_list([(HFrom,HTo)|T],X,Result,WF) :-
952 equality_objects_wf(HFrom,X,PredRes,WF),
953 %kernel_equality:equality_objects1(HFrom,X,PredRes,WF), % this could be called if X is guaranteed nonvar
954 nonvar(PredRes), % only proceed if we have enough information to determine the result of the comparison
955 (PredRes = pred_true -> Result = HTo % we have found the value; we assume there is no other value later
956 % TO DO: if find_abort_values=true: look later in the list if for all other HFrom PredRes=pred_false
957 ; regular_lookup_result_in_list(T,X,Result,WF)).
958
959 % a faster version which does not use equality_objects_wf
960 fast_lookup_result([(HFrom,HTo)|T],X,Result,WF) :- !,
961 equality_can_be_decided_by_unification(HFrom),
962 (HFrom=X -> Result = HTo
963 ; fast_lookup_result(T,X,Result,WF)
964 ).
965 fast_lookup_result(List,X,Result,WF) :-
966 regular_lookup_result_in_list(List,X,Result,WF).
967
968
969 % get_comprehension_set(b(SET,_,_),ID,PRED) :- get_comprehension_set_aux(SET,ID,PRED).
970 % get_comprehension_set_aux(comprehension_set([TID],PRED),ID,PRED) :-
971 % get_texpr_id(TID,ID).
972 % get_comprehension_set_aux(value(V),ID,PRED) :- nonvar(V), V = closure([ID],_,PRED).
973
974
975
976
977 quick_test_membership1(b(value(VA),_,_),VB,Result) :-
978 ? quick_test_membership_aux(VB,VA,Result).
979 quick_test_membership_aux(VAR,_,_) :- var(VAR),!,fail.
980 quick_test_membership_aux([],_,pred_false).
981 quick_test_membership_aux(avl_set(AVL),X,Result) :-
982 custom_explicit_sets:quick_test_avl_membership(AVL,X,Result). % we could also check that in case X is not ground but partially instantiated, whether there is a possible match in AVL (if not Result = pred_false)
983 quick_test_membership_aux(global_set(GS),X,Result) :- nonvar(X), X=int(IX), nonvar(IX),
984 custom_explicit_sets:membership_global_set(GS,X,R,_WF),
985 nonvar(R), Result=R.
986 quick_test_membership_aux(closure(P,T,B),X,Result) :- nonvar(X), X=int(IX), nonvar(IX),
987 is_fixed_interval(P,T,B,LOW,UP),
988 kernel_equality:in_nat_range_test(X,int(LOW),int(UP),R),
989 nonvar(R), Result=R.
990 quick_test_membership_aux(closure(P,T,B),X,Result) :- X==[], % check {} : POW(_) / FIN(_) and {} : POW1(_) / FIN1(_)
991 ? custom_explicit_sets:is_powerset_closure(closure(P,T,B),Kind,_),
992 (contains_empty_set(Kind) -> Result = pred_true ; Result=pred_false).
993
994 is_fixed_interval(P,T,B,LOW,UP) :-
995 custom_explicit_sets:is_interval_closure(P,T,B,LOW,UP), integer(LOW),integer(UP).
996
997 contains_empty_set(pow).
998 contains_empty_set(fin).
999
1000 convert_pred_res(pred_false,falsity).
1001 convert_pred_res(pred_true,truth).
1002 convert_neg_pred_res(pred_true,falsity).
1003 convert_neg_pred_res(pred_false,truth).
1004
1005 generate_equality(b(A,_,_),b(B,_,_),Res) :-
1006 ( generate_equality_aux(A,B,Res) ;
1007 generate_equality_aux(B,A,Res) ),
1008 !.
1009 generate_equality(A,B,equal(A,B)).
1010
1011 generate_equality_aux(convert_bool(AA),value(PT),Res) :-
1012 PT==pred_true,
1013 get_texpr_expr(AA,TA),
1014 !,
1015 Res = TA.
1016 generate_equality_aux(convert_bool(AA),value(PF),Res) :-
1017 PF==pred_false,!,
1018 Res = negation(AA).
1019
1020 % generate an equal(_,_) node where the second one is a Value
1021 generate_equality_with_value(b(value(ValA),_,_),true,ValB,true,_TA,NExpr) :-
1022 % both are FullyKnown
1023 simple_value(ValA), % we should avoid closures
1024 !,
1025 kernel_equality:equality_objects(ValA,ValB,PRes),
1026 convert_pred_res(PRes,NExpr).
1027 generate_equality_with_value(NExprA,_,Value,_,TA,equal(NExprA,b(value(Value),TA,[]))).
1028
1029 % similar to custom_explicit_sets:simple_value
1030 % values where we can decide equality easily
1031 simple_value(fd(_,_)).
1032 simple_value(pred_true /* bool_true */).
1033 simple_value(pred_false /* bool_false */).
1034 simple_value(int(_)).
1035 simple_value((A,B)) :- simple_value(A), simple_value(B).
1036 simple_value(rec(Fields)) :- maplist(simple_field,Fields).
1037 simple_value(string(_)).
1038
1039 simple_field(field(_,Val)) :- simple_value(Val).
1040
1041 known_value(X,FullyKnown) :- (known_value(X) -> FullyKnown=true ; FullyKnown=false).
1042 known_value(X) :- nonvar(X), known_value2(X).
1043 known_value2(global_set(GS)) :- nonvar(GS).
1044 known_value2(freetype(GS)) :- nonvar(GS).
1045 known_value2(closure(P,T,B)) :- known_closure(P,T,B).
1046 %Note: for other closures: they still may have to be computed; some of the computations in wd_and_efficient could be expensive for closures
1047 known_value2(avl_set(_)). % already fully normalised
1048 known_value2((X,Y)) :- known_value(X),known_value(Y).
1049 known_value2(fd(A,B)) :- number(A),atomic(B).
1050 known_value2(int(N)) :- number(N).
1051 known_value2([]).
1052 known_value2(pred_true).
1053 known_value2(pred_false).
1054 known_value2(string(S)) :- atomic(S).
1055 known_value2([H|T]) :- known_value(H), known_value(T).
1056 %known_value2(record(Fields)) :- known_fields(Fields).
1057 known_value2(rec(Fields)) :- known_fields(Fields).
1058
1059 % something we could do:
1060 %optimize_known_value([H|T],Res) :- (convert_to_avl([H|T],CS) -> Res=CS ; print(failed_to_convert_known_list),nl,fail).
1061 % try_convert_to_avl
1062
1063 known_closure(P,T,B) :- custom_explicit_sets:is_interval_closure(P,T,B,Low,Up), !,
1064 number(Low), number(Up),
1065 Up < Low+1000.
1066 known_closure(P,T,B) :-
1067 is_cartesian_product_closure(closure(P,T,B),A1,A2),
1068 !,% we could call is_cartesian_product_closure_aux(P,T,B,A1,A2)
1069 known_value(A1), known_value(A2).
1070
1071 known_fields(X) :- var(X),!,fail.
1072 known_fields([]).
1073 known_fields([field(N,V)|T]) :- ground(N),known_value(V),known_fields(T).
1074
1075 %b_evaluate1(TExpr,Parameters,LS,S,ResultTExpr,FullyKnown) :-
1076
1077 check_is_id_list([],[]).
1078 check_is_id_list([H|T],Res) :-
1079 (H=b(identifier(_),_,_)
1080 -> add_internal_error('Typed id list as argument: ',check_is_id_list([H|T],Res)), % use get_texpr_ids or maplist(def_get_texpr_id,P,PIDs)
1081 maplist(def_get_texpr_id,[H|T],Res)
1082 ; Res=[H|T]).
1083
1084 :- use_module(kernel_frozen_info,[kfi_domain/2]).
1085
1086 :- use_module(custom_explicit_sets,[construct_interval_closure/3]).
1087 % try and evaluate domain of a list (avl_set already dealt with separately)
1088 %evaluate_domain(X,_) :- print(dom(X)),nl,fail.
1089 evaluate_domain(sequence_extension(L),Domain) :- length(L,Len),
1090 % this will prevent computing range of sequence extension: can hide WD issues ! TO DO: check wd info and/or preference
1091 construct_interval_closure(1,Len,Domain).
1092 % TO DO: set_extension when possible ?
1093 evaluate_domain(value(L),Domain) :-
1094 get_domain(L,Domain).
1095
1096 get_domain(V,Dom) :- var(V),!,kfi_domain(V,Dom). % try infer domain from attached co-routines
1097 get_domain([],[]).
1098 get_domain([V|VT],Result) :- nonvar(V), V=(D,_),
1099 known_value(D),get_list_domain(VT,DT),
1100 %length(DT,Len),print(got_list_domain(D,Len)),nl,
1101 (custom_explicit_sets:try_convert_to_avl([D|DT],Res) -> Result=Res
1102 ; write(could_not_convert_domain_to_avl(D)),nl, Result=[D|DT]). %sort([D|DT],Result)?
1103 % we could also do this:
1104 %get_domain(closure(Par,Typ,Body),Result) :-
1105 % is_lambda_value_domain_closure(Par,Typ,Body, DomainValue,Expr), check_wd(Expr),
1106 % Result=DomainValue.
1107 get_list_domain(V,_) :- var(V),!,fail.
1108 get_list_domain([],[]).
1109 get_list_domain([V|VT],[D|DT]) :- nonvar(V), V=(D,_),
1110 known_value(D),get_list_domain(VT,DT).
1111
1112
1113 :- use_module(kernel_frozen_info,[kfi_range/2]).
1114
1115 % try and evaluate range of a list (avl_set already dealt with separately)
1116 evaluate_range(b(value(L),_T,_),Range) :-
1117 get_range(L,Range).
1118 get_range(V,Dom) :- var(V),!,kfi_range(V,Dom). % try infer range from attached co-routines
1119 get_range([],[]).
1120 get_range([V|VT],Result) :- nonvar(V), V=(_,D),
1121 known_value(D),
1122 get_list_range(VT,DT),
1123 sort([D|DT],Result).
1124
1125 get_list_range(V,_) :- var(V),!,fail.
1126 get_list_range([],[]).
1127 get_list_range([V|VT],[D|DT]) :-
1128 nonvar(V), V=(_,D),
1129 known_value(D),
1130 get_list_range(VT,DT).
1131
1132 create_equality_for_let(LHS,RHS,Conj) :-
1133 maplist(create_eq,LHS,RHS,CL),
1134 conjunct_predicates(CL,Conj).
1135 create_eq(Id,Expr,TPred) :- safe_create_texpr(equal(Id,Expr),pred,TPred).
1136
1137 % split formal operation call parameters into those which clash and those that do not:
1138 split_formal_parameters([],[],_,[],[],[],[]).
1139 split_formal_parameters([Formal1|FormalT],[Val1|VT],LocalKnownParas,Fresh,FV,Clash,CV) :-
1140 (id_clash(LocalKnownParas,Formal1)
1141 -> Fresh = FreshT, FV=FVT, Clash = [Formal1|ClashT], CV = [Val1|CVT]
1142 ; Fresh = [Formal1|FreshT], FV = [Val1|FVT], Clash = ClashT, CV = CVT
1143 ), split_formal_parameters(FormalT,VT,LocalKnownParas,FreshT,FVT,ClashT,CVT).
1144
1145 :- use_module(gensym,[gensym/2]).
1146 create_fresh_id(b(identifier(_),T,I),b(identifier(FRESHID),T,I)) :-
1147 gensym('__COMPILED_ID__',FRESHID).
1148
1149 :- use_module(bsyntaxtree, [get_texpr_pos/2,same_id/3]).
1150 % compute which assignments are really necessary, remove skip assignments x := x
1151 simplify_assignment([],[],[],[]).
1152 simplify_assignment([ID1|T1],[ID2|T2],Res1,Res2) :-
1153 (same_id(ID1,ID2,_) -> Res1=TR1, Res2=TR2 ; Res1=[ID1|TR1], Res2=[ID2|TR2]),
1154 simplify_assignment(T1,T2,TR1,TR2).
1155
1156
1157 /*
1158 % check if an AST term is a total lambda without WD condition:
1159 % NExprA=value(closure([x,...,'_lambda_result_'],b(equal())), NExprB=couple(,,,,) -> replace x by parameters
1160 % possibly better to do this via contains_wd_condition or similar Info field?!
1161
1162
1163 is_total_lambda(b(value(V),_,_),OtherIDs,LambdaExpr) :- nonvar(V),
1164 V=closure(Args,_Types,Body),
1165 is_total_lambda_closure(Args,Body, OtherIDs, LambdaExpr).
1166
1167 :- use_module(probsrc(bsyntaxtree),[conjunction_to_list/2,occurs_in_expr/2]).
1168 is_total_lambda_closure(Args,b(equal(TLambda,LambdaExpr),pred,_),OtherIDs,LambdaExpr) :-
1169 get_texpr_id(TLambda,LambdaID),
1170 append(OtherIDs,[LambdaID],Args),
1171 \+ occurs_in_expr(LambdaID,LambdaExpr).
1172
1173 % try and get arguments from expression
1174 get_actual_arguments([_],Expr,Args) :- !,
1175 % print('arg1: '),tools_printing:print_term_summary(Expr),nl,
1176 check_simple(Expr),
1177 Args= [Expr].
1178 get_actual_arguments([_|T],b(Couple,_,_),[Arg1|TArgs]) :-
1179 get_couple(Couple,Arg1,Arg2), print('arg: '),tools_printing:print_term_summary(Arg1),nl,
1180 check_simple(Arg1),
1181 get_actual_arguments(T,Arg2,TArgs).
1182
1183 check_simple(b(V,_,_)) :- simple2(V).
1184 simple2(value(_)).
1185 simple2(identifier(_)).
1186 simple2(integer(_)).
1187
1188 get_couple(couple(A,B),A,B).
1189 %get_couple(value(V),A,B) :- nonvar(V), V=(V1,V2), ... % TODO
1190
1191
1192 Code for bcompile2(function(...))
1193
1194
1195 % ; is_total_lambda(NExprA,Ids,Expr) ,
1196 % get_actual_arguments(Ids,NExprB,Args) %, print(ok),nl, translate:l_print_bexpr_or_subst(Args),nl
1197 % ->
1198 % bsyntaxtree:replace_ids_by_exprs(Expr,Ids,Args,Result),
1199 % % only ok if we do not replicate expressions !! we could repeatedly re-apply rule / compilation on result
1200 % print(' replaced: '),translate:print_bexpr(Result),nl,
1201 % Result = b(NExpr,_,_), FullyKnown = FullyKnown12
1202
1203 */