1 % (c) 2020-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html
4
5 :- module(well_def_prover, [prove_po/3]).
6
7 :- use_module(probsrc(module_information),[module_info/2]).
8 :- module_info(group,well_def_prover).
9 :- module_info(description,'This module proves WD POs.').
10
11 :- use_module(library(avl)).
12 :- use_module(library(lists)).
13
14 :- use_module(wdsrc(well_def_hyps),[get_hyp_var_type/3, portray_hyps/1, get_clash_renaming_subst/2,
15 is_hyp_var/2, is_finite_type_for_wd/2, add_new_hyp_any_vars/3, negate_op/2]).
16
17 :- use_module(wdsrc(well_def_tools), [rename_norm_term/3, member_in_norm_conjunction/2, not_occurs/2, occurs/2]).
18 :- use_module(probsrc(debug)).
19 :- use_module(probsrc(error_manager),[add_error/3, add_internal_error/2]).
20
21 :- use_module(probsrc(custom_explicit_sets),[domain_of_explicit_set_wf/3, equal_avl_tree/2,
22 range_of_explicit_set_wf/3,
23 invert_explicit_set/2,check_interval_in_custom_set/4, is_interval_closure/5,
24 check_avl_in_interval/3, check_avl_subset/2, is_one_element_avl/2,
25 avl_is_interval/3,
26 expand_custom_set_to_list/2, quick_definitely_maximal_set_avl/1,
27 expand_and_convert_to_avl_set/4, is_avl_sequence/1, is_avl_partial_function/1]).
28
29 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
30
31 % PROVING:
32 % --------
33
34 % some more rules are covered in process_sequent_aux of prove_sequent/3
35 prove_po(truth,_,truth).
36 prove_po(_NormTarget,hyp_rec(AVL,_),false_hyp) :- avl_fetch(falsity,AVL).
37 prove_po(NormTarget,hyp_rec(AVL,_),hyp) :- avl_fetch(NormTarget,AVL).
38 prove_po(member(X,Y),Hyps,mem(PT)) :- % Y is usually domain(Func)
39 simplify_expr(Y,Hyps,SY),
40 simplify_expr(X,Hyps,SX),
41 check_member_of_set(SY,SX,Hyps,PT).
42 prove_po(not_member(X,Y),Hyps,mem(PT)) :-
43 simplify_expr(Y,Hyps,SY),
44 simplify_expr(X,Hyps,SX),
45 check_not_member_of_set(SY,SX,Hyps,PT).
46 prove_po(finite(Set),Hyp,finite_set(PT)) :- check_finite(Set,Hyp,PT).
47 prove_po(not_equal(A,B),Hyp,not_equal) :-
48 simplify_expr(A,Hyp,SA),
49 simplify_expr(B,Hyp,SB),
50 check_not_equal(SA,SB,Hyp).
51 prove_po(equal(A,B),Hyp,equal) :- % not generated by our POG
52 simplify_expr(A,Hyp,SA),
53 simplify_expr(B,Hyp,SB),
54 check_equal(SA,SB,Hyp,_).
55 prove_po(greater(A,B),Hyp,PT) :- prove_po(less(B,A),Hyp,PT).
56 prove_po(greater_equal(A,B),Hyp,greater_equal) :- % print(check_leq(B,A)),nl,
57 check_leq(B,A,Hyp).
58 prove_po(less_equal(A,B),Hyp,less_equal) :-
59 check_leq(A,B,Hyp).
60 %prove_po(less_equal_real(A,B),Hyp,less_equal_real) :-
61 % check_leq(A,B,Hyp). % TODO: check that all proof rules are sound for reals, ditto for less
62 prove_po(less(A,B),Hyp,less) :-
63 check_leq(A,B,Hyp),!,
64 check_not_equal(A,B,Hyp).
65 prove_po(subset(A,B),Hyp,PT) :-
66 check_is_subset(A,B,Hyp,PT).
67 prove_po(subset_strict(A,B),Hyp,subset_strict(PT)) :- % A <<: B <=> A <: B & A /= B
68 check_is_subset(A,B,Hyp,PT),!,
69 check_not_equal(A,B,Hyp).
70 prove_po(not_subset_strict(A,B),Hyp,not_subset_strict(PT)) :-
71 check_not_is_subset_strict(A,B,Hyp,PT).
72 prove_po(not_subset(A,B),Hyp,subset_strict(PT)) :- % A /<: B <=> A/<<: B & A /= B
73 check_not_is_subset_strict(A,B,Hyp,PT),!,
74 check_not_equal(A,B,Hyp).
75 prove_po(conjunct(A,B),Hyp,conj(T1,T2)) :- % generated by Rodin
76 prove_po(A,Hyp,T1),
77 !,
78 prove_po(B,Hyp,T2).
79 prove_po(disjunct(A,B),Hyp,conj(T1,T2)) :- % could be generated by Rodin
80 (prove_po(A,Hyp,T1) -> true
81 ; prove_po(B,Hyp,T2)). % we could add not(A) as hypothesis, this is done in prove_sequent_goal
82 prove_po(implication(A,B),Hyp,imply(T2)) :- % generated by Rodin; now treated in prove_sequent_goal
83 % also generated for power_of_real
84 (prove_negated_po(A,Hyp,PT) -> T2=false_lhs(PT)
85 ; debug_println(19,not_pushing_lhs_for_implication(A)),
86 %push_normalized_hyp(A,Hyp,Hyp2), % TODO: activate this
87 prove_po(B,Hyp,T2)
88 ).
89 prove_po(exists([$(B0)],forall([$(X)],member($(X),Set),less_equal($(X),$(B0)))),Hyp,finite_max(PT)) :- X \= B0,
90 % generated by Rodin for max(Set)
91 debug_println(19,checking_finite_for_max(Set)),
92 check_finite(Set,Hyp,PT).
93 prove_po(exists([$(B0)],forall([$(X)],member($(X),Set),less_equal($(B0),$(X)))),Hyp,finite_min(PT)) :- X \= B0,
94 % generated by Rodin for min(Set)
95 debug_println(19,checking_finite_for_min(Set)),
96 check_finite(Set,Hyp,PT).
97 prove_po(negation(Goal),Hyp,negation(PT)) :- prove_negated_po(Goal,Hyp,PT).
98 %prove_po(NT,_,_) :- format('Unproven by WD Prover: ~w~n~n',[NT]),fail.
99
100 % some redundancy wrt negate_hyp; but negate_hyp currently does not go inside conjunction
101 prove_negated_po(falsity,_,falsity) :- !.
102 prove_negated_po(disjunct(A,B),Hyp,negdisj(T1,T2)) :- !,
103 (prove_negated_po(A,Hyp,T1) -> prove_negated_po(B,Hyp,T2)).
104 prove_negated_po(conjunct(A,B),Hyp,negconj(T1,T2)) :- !, % could be generated by Rodin
105 (prove_negated_po(A,Hyp,T1) -> true
106 ; prove_negated_po(B,Hyp,T2)). % we could add not(A) as hypothesis,
107 prove_negated_po(negation(Goal),Hyp,negation(PT)) :-!, prove_po(Goal,Hyp,PT).
108 prove_negated_po(OP,Hyp,negated_op(PT)) :- negate_op(OP,NOP), prove_po(NOP,Hyp,PT).
109
110
111 simple_value(Nr) :- number(Nr).
112 simple_value('$'(_)).
113 simple_value(boolean_true).
114 simple_value(boolean_false).
115 simple_value(record_field('$'(_),_)).
116 simple_value(value(_)).
117 simple_value(string(_)).
118 simple_value(function(F,_)) :- simple_value(F).
119 simple_value(couple(A,B)) :- simple_value(A), simple_value(B).
120
121 %get_set_of_possible_values(X,Hyps,XSet) :-
122 % if(try_get_set_of_possible_values(X,Hyps,R), XSet=R,
123 % XSet=set_extension([X])). % was typeset
124
125 try_get_set_of_possible_values(Nr,Hyps,R,Hyps) :- number(Nr),!,R=interval(Nr,Nr).
126 try_get_set_of_possible_values(X,Hyps,R,Hyps) :-
127 avl_fetch_binop_from_hyps_no_loop_check(X,equal,Hyps,Nr), number(Nr),!, % TODO: also treat is_explicit_value
128 R=interval(Nr,Nr).
129 try_get_set_of_possible_values(X,Hyps,XSet,Hyps2) :-
130 avl_fetch_worthwhile_mem_from_hyps(X,Hyps,XSet1,Hyps1),
131 (improve_integer_set_precision(X,XSet1,Hyps1,XSet,Hyps2)
132 -> true ; Hyps2=Hyps1, XSet=XSet1).
133 try_get_set_of_possible_values(X,Hyps,Res,Hyps3) :-
134 avl_fetch_equal_from_hyps(X,Hyps,X2,Hyps1),
135 quick_not_occurs_check(X,X2),
136 rewrite_local_loop_check(X,try_get_set_of_possible_values,X2,Hyps1,Hyps2),
137 (X2='$'(_) -> X = '$'(_) ; true), % avoid rewriting x -> card(...) -> x; TO DO: better cyclic equality prevention
138 try_get_set_of_possible_values(X2,Hyps2,Res,Hyps3), !.
139 try_get_set_of_possible_values(function(Func,_),Hyps,RangeSet,Hyps2) :- !,
140 get_range_or_superset(Func,Hyps,RangeSet,Hyps2).
141 try_get_set_of_possible_values(first(Seq),Hyps,RangeSet,Hyps2) :- !, % first(S) === S(1)
142 get_range_or_superset(Seq,Hyps,RangeSet,Hyps2).
143 try_get_set_of_possible_values(last(Seq),Hyps,RangeSet,Hyps2) :- !, % last(S) === S(size(S))
144 get_range_or_superset(Seq,Hyps,RangeSet,Hyps2).
145 % TO DO other sequence operations
146 try_get_set_of_possible_values(couple(A,B),Hyps,cartesian_product(SA,SB),Hyps2) :- !,
147 try_get_set_of_possible_values(A,Hyps,SA,Hyps1),
148 try_get_set_of_possible_values(B,Hyps1,SB,Hyps2).
149 try_get_set_of_possible_values(max(set_extension([V1,V2|_])),H,'NATURAL',H) :- % max({x,-x}) >= 0
150 ( V1 = unary_minus(V2), \+ number(V1) -> true
151 ; V2 = unary_minus(V1), \+ number(V2) -> true), !. % instead of NATURAL we could try and infer values for V1/V2
152 try_get_set_of_possible_values(max(Set),H,Set,H).
153 try_get_set_of_possible_values(min(Set),H,Set,H).
154 try_get_set_of_possible_values(mu(Set),H,Set,H).
155 try_get_set_of_possible_values(max_int,H,'NATURAL1',H).
156 % TO DO: min_int
157 try_get_set_of_possible_values(value(avl_set(A1)),Hyps,value(avl_set(A2)),Hyps) :- !,
158 expand_and_convert_to_avl_set([avl_set(A1)],A2,get_set_of_possible_values,'WD(?)').
159 try_get_set_of_possible_values(add(X,Y),Hyps,Set,Hyps2) :-
160 add_with_number(add(X,Y),A,Nr),
161 try_get_set_of_possible_values(A,Hyps,ValA,Hyps2),
162 add_to_value_set(ValA,Nr,Set),!.
163 try_get_set_of_possible_values(minus(A,Nr),Hyps,Set,Hyps2) :-
164 try_get_set_of_possible_values(A,Hyps,ValA,Hyps2), number(Nr), Nr1 is -Nr,
165 add_to_value_set(ValA,Nr1,Set),!.
166 % TO DO : add unary_minus, multiplication with nr
167 try_get_set_of_possible_values(Seq,Hyps,Set,Hyps) :-
168 infer_sequence_type_of_expr(Seq,Hyps,SeqType),!,
169 (SeqType=seq1 -> Set=seq1(typeset) ; Set=seq(typeset)). % TO DO: examine type of list elements
170 try_get_set_of_possible_values(X,Hyps,XSet,Hyps2) :-
171 avl_fetch_binop_from_hyps(X,greater_equal,Hyps,Low,Hyps1), !,
172 (avl_fetch_binop_from_hyps(X,less_equal,Hyps1,Up,Hyps2) -> XSet = interval(Low,Up)
173 ; Low=0 -> XSet = 'NATURAL', Hyps2=Hyps1
174 ; number(Low),Low>0 -> XSet= 'NATURAL1', Hyps2=Hyps1). % TO DO: improve precision
175 try_get_set_of_possible_values(X,Hyps,XSet,Hyps2) :-
176 rewrite_integer(X,Hyps,X2,Hyps1),!,
177 try_get_set_of_possible_values(X2,Hyps1,XSet,Hyps2).
178 try_get_set_of_possible_values(size(A),Hyps,XSet,Hyps) :-
179 (check_not_empty_set(A,Hyps) -> XSet = 'NATURAL1' ; XSet='NATURAL').
180 try_get_set_of_possible_values(card(A),Hyps,XSet,Hyps) :-
181 (check_not_empty_set(A,Hyps) -> XSet = 'NATURAL1' ; XSet='NATURAL').
182 try_get_set_of_possible_values(if_then_else(_,A,B),Hyps,R,Hyps) :-
183 (try_get_set_of_possible_values(A,Hyps,AV,Hyps1)
184 -> try_get_set_of_possible_values(B,Hyps1,BV,Hyps2)),
185 construct_union(AV,BV,Hyps2,R).
186 try_get_set_of_possible_values(modulo(A,B),Hyps1,XSet,Hyps2) :-
187 number(B), B>0,
188 B1 is B-1,
189 XSet1 = interval(0,B1), % value of A mod B must be in 0..B1
190 % note: this also holds in z_or_tla_minor_mode, we have (-3) mod 2 = 1
191 (try_get_set_of_possible_values(A,Hyps1,XSet2,Hyps2),
192 maximal_value(XSet2,Up)
193 -> intersect_sets(XSet1,interval(0,Up),XSet)
194 % we were able to reduce the interval further by finding possible upper-bound for A
195 % we could call improve_upper_bound
196 ; Hyps2=Hyps1, XSet=XSet1).
197
198 maximal_value(interval(_,Up),Up).
199 maximal_value(value(avl_set(A)),Up) :- avl_max(A,int(Up)).
200 % TO DO: add avl_set
201
202
203 is_integer_set(interval(_,_)).
204 is_integer_set('NATURAL').
205 is_integer_set('NATURAL1').
206 is_integer_set('INTEGER').
207 % TO DO: add avl_set
208
209 % detect sets which can profit from narrowing down:
210 is_infinite__or_large_integer_set('NATURAL',0,inf).
211 is_infinite__or_large_integer_set('NATURAL1',1,inf).
212 %is_infinite__or_large_integer_set('INTEGER',-inf,inf).
213 is_infinite__or_large_integer_set(interval(Low,max_int),Low,max_int). % one cannot prove a lot with max_int anyway!?
214
215 % try and improve precision of integer set
216 % limitation: only looks for one other hypotheses; maybe we should do this in well_defs_hyps.pl
217 improve_integer_set_precision(X,XSet1,Hyps1,NewSet,Hyps3) :-
218 is_integer_set(XSet1),
219 avl_fetch_worthwhile_mem_from_hyps(X,Hyps1,XSet2,Hyps2),
220 XSet2 \= XSet1,
221 !,
222 intersect_sets(XSet1,XSet2,XSet12),
223 try_improve_interval(XSet12,X,Hyps2,NewSet,Hyps3). % TO DO: we could try and find another member
224 % TO DO: also look at less_equal, greater_equal constraints
225 improve_integer_set_precision(X,XSet1,Hyps1,NewSet,Hyps3) :-
226 is_infinite__or_large_integer_set(XSet1,Low,LargeUp),
227 avl_fetch_binop_from_hyps(X,less_equal,Hyps1,Up,Hyps2),
228 Up \= LargeUp, % we really improve upon earlier value
229 !,
230 try_improve_interval(interval(Low,Up),X,Hyps2,NewSet,Hyps3).
231 improve_integer_set_precision(X,XSet1,Hyps1,NewSet,Hyps2) :-
232 try_improve_interval(XSet1,X,Hyps1,NewSet,Hyps2).
233
234 try_improve_interval(interval(OldLow,OldUp),X,Hyps1,interval(NewLow,NewUp),Hyps2) :- !,
235 improve_interval(X,OldLow,OldUp,Hyps1,NewLow,NewUp,Hyps2).
236 try_improve_interval(Set,_,Hyps,Set,Hyps).
237
238 % phase 1: try improve upper bound
239 improve_interval(X,OldLow,OldUp,Hyps1,NewLow,NewUp,Hyps3) :-
240 improve_upper_bound(X,OldUp,Hyps1,NewUp1,Hyps2),!,
241 improve_interval(X,OldLow,NewUp1,Hyps2,NewLow,NewUp,Hyps3).
242 improve_interval(X,OldLow,Up,Hyps1,NewLow,Up,Hyps2) :-
243 improve_interval2(X,OldLow,Hyps1,NewLow,Hyps2).
244 %
245 improve_upper_bound(X,OldUp,Hyps1,NewUp,Hyps2) :-
246 avl_fetch_binop_from_hyps(X,less_equal,Hyps1,Up,Hyps2),
247 order_values(OldUp,Up,NewUp,OldUp),
248 NewUp \= OldUp.
249
250 % now try and improve lower bound:
251 improve_interval2(X,OldLow,Hyps1,NewLow,Hyps3) :-
252 improve_lower_bound(X,OldLow,Hyps1,Low1,Hyps2),!,
253 improve_interval2(X,Low1,Hyps2,NewLow,Hyps3).
254 improve_interval2(_,Low,Hyps,Low,Hyps).
255 %
256 improve_lower_bound(X,OldLow,Hyps1,NewLow,Hyps2) :-
257 avl_fetch_binop_from_hyps(X,greater_equal,Hyps1,Low,Hyps2),
258 order_values(Low,OldLow,OldLow,NewLow),
259 NewLow \= OldLow.
260
261
262 % try and intersect two sets:
263 intersect_sets(interval(L1,U1),B,Res) :- !, intersect_interval(B,L1,U1,Res).
264 intersect_sets(B,interval(L1,U1),Res) :- intersect_interval(B,L1,U1,Res).
265 intersect_sets('NATURAL1','NATURAL','NATURAL1').
266 intersect_sets('NATURAL','NATURAL1','NATURAL1').
267 % TODO: support avl_set
268
269 intersect_interval(interval(L2,U2),L1,U1,interval(L3,U3)) :-
270 order_values(L1,L2,_,L3), % choose larger value as lower bound
271 order_values(U1,U2,U3,_). % choose smaller value as upper bound
272 intersect_interval('NATURAL1',L1,U1,interval(L3,U1)) :- order_values(L1,1,L3,_).
273 intersect_interval('NATURAL',L1,U1,interval(L3,U1)) :- order_values(L1,0,L3,_).
274
275 % order values for interval intersection
276 order_values(N1,N2,R1,R2) :- number(N1),!, order_aux_nr(N2,N1,R1,R2).
277 order_values(N1,N2,R1,R2) :- number(N2),!, order_aux_nr(N1,N2,R1,R2).
278 order_values(min_int,N2,R1,R2) :- !, R1=min_int,R2=N2.
279 order_values(max_int,N2,R1,R2) :- !, R1=N2,R2=max_int.
280 order_values(N1,N2,N1,N2). % just choose N1
281
282 order_aux_nr(N2,N1,R1,R2) :- number(N2),!,
283 (N2>N1 -> R1=N1,R2=N2 ; R1=N2,R2=N1).
284 order_aux_nr(max_int,N1,R1,R2) :- N1 < 1, !, R1=N1, R2=max_int.
285 order_aux_nr(_N2,N1,N1,N1). % choose the number as the bound
286
287
288 %try_get_set_of_possible_values(X,_,_,_) :- print(try_get_set_of_possible_values_failed(X)),nl,fail.
289 % TO DO: more precise representation of open-ended intervals interval(Low,'$infinity'))
290 % TO DO: intersect multiple solutions; e.g., intervals and >=, <= constraints
291
292 add_to_value_set(interval(L,U),Nr,interval(L2,U2)) :- add_nr(L,Nr,L2), add_nr(U,Nr,U2).
293 add_to_value_set('NATURAL',1,'NATURAL1'). % TO DO: extend
294 %add_to_value_set(value(avl_set(A1),Nr,value(avl_set(A2)) :- TO DO: add Nr to all values in A2
295
296 % adding a known number to an arithmetic expression; could be extended
297 % this is mainly for dealing with index arithmetic for arrays
298 add_nr(Nr1,ToAdd,Nr2) :- number(Nr1),!, Nr2 is Nr1+ToAdd.
299 add_nr(minus(Expr,Nr1),ToAdd,Res) :- number(Nr1),!, Nr2 is Nr1-ToAdd,
300 (Nr2=0 -> Res=Expr ; Res= minus(Expr,Nr2)).
301 add_nr(add(Expr,Nr1),ToAdd,Res) :- number(Nr1),!, Nr2 is Nr1+ToAdd,
302 (Nr2=0 -> Res=Expr ; Res= add(Expr,Nr2)).
303 add_nr(add(Nr1,Expr),ToAdd,Res) :- number(Nr1),!, Nr2 is Nr1+ToAdd,
304 (Nr2=0 -> Res=Expr ; Res= add(Expr,Nr2)).
305
306
307 % check if an expression is a sequence
308 check_is_sequence(El,Hyps) :- check_is_sequence(El,Hyps,_).
309 check_is_non_empty_sequence(El,Hyps) :- check_is_sequence(El,Hyps,seq1).
310
311 check_is_sequence(S,_,seq) :- is_empty_set(S),!.
312 check_is_sequence(El,Hyps,RequiredType) :-
313 infer_sequence_type_of_expr(El,Hyps,Type),
314 (Type=seq1 -> true ; RequiredType=seq -> true
315 ; check_not_equal(El,empty_set,Hyps)).
316 check_is_sequence(A,Hyps,RequiredType) :-
317 avl_fetch_worthwhile_equal_from_hyps(A,Hyps,Value,Hyps2),
318 check_is_sequence(Value,Hyps2,RequiredType).
319 check_is_sequence(domain_restriction(Dom,S),Hyps,Res) :- !,
320 is_interval(Dom,Hyps,1,N),
321 check_is_sequence(S,Hyps,SeqType),
322 (SeqType=seq1, check_leq(1,N,Hyps) -> Res=seq1 ; Res=seq).
323 check_is_sequence(El,Hyps,RequiredType) :-
324 avl_fetch_mem_or_struct(El,Hyps,Set,Hyps2),
325 is_set_of_sequences_type(Set,Hyps2,Type), % should we move this to subset? dealt with in subset_transitivity_rule
326 % required for :wd Right:seq(BOOL) & (Right/=[] => tail(Right)=res) in test 2018
327 (Type=seq1 -> true ; RequiredType=seq -> true
328 ; check_not_equal(El,empty_set,Hyps2)),
329 !.
330 check_is_sequence(X,Hyps,RequiredType) :- try_get_set_of_possible_values(X,Hyps,XSet,Hyps2),
331 (RequiredType==seq1 -> check_is_subset(XSet,seq1(typeset),Hyps2,_PT)
332 ; check_is_subset(XSet,seq(typeset),Hyps2,_PT)).
333 % check if something is an interval
334 is_interval(Expr,Hyps,A,B) :- simplify_expr(Expr,Hyps,SE), is_interval_aux(SE,A,B).
335 is_interval_aux(interval(A,B),A,B).
336 is_interval_aux(value(CS),A,B) :- nonvar(CS), CS= avl_set(AVL), avl_is_interval(AVL,A,B).
337
338 is_set_of_sequences_type(seq1(_),_,seq1) :- !.
339 is_set_of_sequences_type(seq(_),_,seq) :- !.
340 is_set_of_sequences_type(iseq(_),_,seq) :- !.
341 is_set_of_sequences_type(iseq1(_),_,seq) :- !.
342 is_set_of_sequences_type(perm(A),Hyps,Type) :- !,
343 (check_not_equal(A,empty_set,Hyps) -> Type=seq1 ; Type=seq).
344 is_set_of_sequences_type(Func,Hyps,Type) :- % a total function 1..Up --> Range is a sequence
345 get_exact_domain_of_func_or_rel_type(Func,Hyps,Dom,Hyps1),
346 check_equal_pattern(Dom,interval(1,Up),Hyps1,Hyps2),
347 % we could call check_equal for Low; relevant for :wd BV=16 & II=1 & BIdx = II..BV & s:BIdx --> BOOL & res=size(s)
348 is_partial_function_type(Func,Hyps2,_),
349 (number(Up), Up>0 % we could call check_leq
350 -> Type=seq1 ; Type=seq).
351
352 % a simple equality check
353 check_equal_pattern(A,Target,Hyps,Hyps1) :-
354 check_equal_h(A,Target,not_ground,[],Hyps,Hyps1).
355 check_equal(A,Target,Hyps,Hyps1) :-
356 check_equal_h(A,Target,ground,[],Hyps,Hyps1).
357
358 % TargetGround=ground means Target is a ground, fully known expressions and not a pattern with variables
359 check_equal_h(A,Target,_,_,Hyps,Hyps1) :- A=Target,!, Hyps1=Hyps.
360 check_equal_h(union(A1,A2),union(B1,B2),TGr,History,Hyps,Hyps2) :-
361 check_equal_h(A1,B1,TGr,History,Hyps,Hyps1),!, % TO DO: add other rules, e.g., check A1 and B2
362 check_equal_h(A2,B2,TGr,History,Hyps1,Hyps2).
363 check_equal_h(intersection(A,B),EmptySet,ground,_,Hyps,Hyps) :- is_empty_set(EmptySet),!,
364 check_disjoint(A,B,Hyps).
365 check_equal_h(couple(A1,A2),couple(B1,B2),TGr,History,Hyps,Hyps2) :- % TO DO: records, ...
366 check_equal_h(A1,B1,TGr,History,Hyps,Hyps1),!,
367 check_equal_h(A2,B2,TGr,History,Hyps1,Hyps2).
368 check_equal_h(A,Target,TGr,History,Hyps,Hyps2) :-
369 avl_fetch_equal_from_hyps(A,Hyps,A2,Hyps1), nonmember(A2,History),
370 check_equal_h(A2,Target,TGr,[A|History],Hyps1,Hyps2).
371 check_equal_h(A,Target,TGr,History,Hyps,Hyps2) :- Target = '$'(_),
372 avl_fetch_equal_from_hyps(Target,Hyps,T2,Hyps1), nonmember(T2,History),
373 check_equal_h(A,T2,TGr,[A|History],Hyps1,Hyps2).
374 check_equal_h(A,Target,ground,_,Hyps,Hyps) :-
375 avl_fetch_from_hyps(subset(A,Target),Hyps),
376 avl_fetch_from_hyps(subset(Target,A),Hyps).
377
378 infer_sequence_type_of_expr(sequence_extension([_|_]),_,seq1).
379 infer_sequence_type_of_expr(sorted_set_extension(SList),_,seq1) :-
380 sorted_set_extension_is_seq(SList,1).
381 infer_sequence_type_of_expr(set_extension(List),_,seq1) :- sort(List,SList),
382 sorted_set_extension_is_seq(SList,1).
383 infer_sequence_type_of_expr(insert_tail(_,_),_,seq1).
384 % we do not need to check Seq is a sequence; this will be checked in its own PO, ditto for operators below
385 infer_sequence_type_of_expr(insert_front(_,_),_,seq1).
386 infer_sequence_type_of_expr(concat(A,B),Hyps,R) :-
387 ( infer_sequence_type_of_expr(A,Hyps,seq1) -> R=seq1
388 ; infer_sequence_type_of_expr(B,Hyps,seq1) -> R=seq1
389 ; R=seq).
390 infer_sequence_type_of_expr(restrict_front(_,_),_,seq).
391 infer_sequence_type_of_expr(restrict_tail(_,_),_,seq).
392 infer_sequence_type_of_expr(rev(A),Hyps,R) :-
393 (infer_sequence_type_of_expr(A,Hyps,seq1) -> R=seq1 ; R=seq).
394 infer_sequence_type_of_expr(front(_),_,seq). % we could call check_not_empty_set(front(A),Hyps)
395 infer_sequence_type_of_expr(tail(_),_,seq). % ditto
396 infer_sequence_type_of_expr(general_concat(_),_,seq).
397 infer_sequence_type_of_expr(value(avl_set(SeqAVL)),_,seq1) :- !, SeqAVL \= empty,
398 is_avl_sequence(SeqAVL).
399 infer_sequence_type_of_expr(if_then_else(_,A,B),Hyps,Type) :- !,
400 (infer_sequence_type_of_expr(A,Hyps,S1)
401 -> infer_sequence_type_of_expr(B,Hyps,S2), lub_seq(S1,S2,Type)).
402 infer_sequence_type_of_expr(S,_,seq) :- is_empty_set(S).
403 infer_sequence_type_of_expr(Expr,Hyps,R) :-
404 is_lambda_function_with_domain(Expr,Domain),
405 Domain = interval(1,N),
406 (check_leq(1,N,Hyps) -> R = seq1 ; R=seq).
407 % TO DO: rule for composition
408
409 lub_seq(seq1,seq1,seq1).
410 lub_seq(seq1,seq,seq).
411 lub_seq(seq,seq1,seq).
412 lub_seq(seq,seq,seq).
413
414 % check if a sorted set extension represent a proper sequence
415 sorted_set_extension_is_seq([],_).
416 sorted_set_extension_is_seq([couple(Nr,_)|T],Nr) :- N1 is Nr+1, sorted_set_extension_is_seq(T,N1).
417
418 % --------
419 % DOMAIN
420
421 % compute exact domain
422 % currently there can be multiple solutions for $(_) case below; first one is usually more precise
423 %compute_exact_domain(Value,Hyps2,Res) :- debug:print_quoted_with_max_depth(compute_exact_domain(Value,Hyps2,Res),4),nl,fail.
424
425
426 compute_exact_domain(reverse(Func),Hyps,Res,Hyps2) :- !,
427 compute_exact_range(Func,Hyps,Res,Hyps2).
428 compute_exact_domain(rev(Func),Hyps,Res,Hyps2) :- !, % reverse of a sequence; domain identical
429 compute_exact_domain(Func,Hyps,Res,Hyps2).
430 compute_exact_domain(identity(Domain),Hyps,Res,Hyps2) :- !, Hyps2=Hyps, Res=Domain.
431 compute_exact_domain(restrict_front(_Seq,N),Hyps,Res,Hyps2) :- !,
432 % WD Condition requires N : 0..size(Seq)
433 Hyps2=Hyps, Res = interval(1,N). % TODO: similar rule for restrict_tail
434 compute_exact_domain(Func,Hyps,Res,Hyps2) :-
435 compute_exact_domain_direct(Func,Hyps,Res,Hyps2),!. % No recursive application of equal or hyp
436 compute_exact_domain(Func,Hyps,Domain,Hyps2) :-
437 avl_fetch_worthwhile_equal_from_hyps(Func,Hyps,Func2,Hyps1),
438 compute_exact_domain(Func2,Hyps1,Domain,Hyps2).
439 %compute_exact_domain(Expr,_,Domain,_) :- print(compute_exact_domain_failed(Expr,_,Domain)),nl,fail.
440
441
442 compute_exact_domain_direct(Func,Hyps,Res,Hyps2) :-
443 avl_fetch_mem_or_struct(Func,Hyps,Function,Hyps1), % look for Func : Res --> Range ; e.g. Func:perm(1..10) -> DomSet=1..10
444 % f : _ +-> ( Dom --> _ ) & x:Dom ==> x:dom(f(_))
445 % f : _ +-> ( Dom --> _ ) => dom(f(_)) = Dom
446 get_exact_domain_of_func_or_rel_type(Function,Hyps1,Res,Hyps2),!. % is thus also minimal domain
447 compute_exact_domain_direct(Func,Hyps,Res,Hyps3) :- Func = '$'(_), % Look for Func = Value definition
448 avl_fetch_equal_from_hyps(Func,Hyps,Value,Hyps2),
449 compute_exact_domain(Value,Hyps2,Res,Hyps3).
450 compute_exact_domain_direct(value(CS),Hyps,value(Res),Hyps) :- !, nonvar(CS),
451 domain_of_explicit_set_wf(CS,Res,no_wf_available).
452 compute_exact_domain_direct(overwrite(F1,F2),Hyps,D12,Hyps2) :- !, % dom(F1 <+ F2) = dom(F1) \/ dom(F2)
453 compute_exact_domain(F1,Hyps,D1,Hyps1), compute_exact_domain(F2,Hyps1,D2,Hyps2),
454 construct_union(D1,D2,Hyps2,D12).
455 compute_exact_domain_direct(domain_restriction(S,F),Hyps,intersection(S,D),Hyps2) :- !, % dom(S <| F) = S /\ dom(F)
456 compute_exact_domain(F,Hyps,D,Hyps2).
457 compute_exact_domain_direct(domain_subtraction(S,F),Hyps,set_subtraction(D,S),Hyps2) :- !, % dom(S <<| F) = dom(F) - S
458 compute_exact_domain(F,Hyps,D,Hyps2).
459 compute_exact_domain_direct(direct_product(F,G),Hyps,intersection(DF,DG),Hyps2) :- !, % dom(F><G) = dom(F) /\ dom(G)
460 compute_exact_domain(F,Hyps,DF,Hyps1),
461 compute_exact_domain(G,Hyps1,DG,Hyps2).
462 compute_exact_domain_direct(composition(F1,F2),Hyps,Domain,Hyps4) :- !, % dom((F1;F2)) = dom(F1) if ran(F1) <: dom(F2)
463 compute_exact_domain(F1,Hyps,Domain,Hyps2),
464 compute_exact_domain(F2,Hyps2,D2,Hyps3), % or_subset would also be ok
465 (maximal_set(D2,Hyps3) -> Hyps4=Hyps3
466 ; get_range_or_superset(F1,Hyps3,R1,Hyps4),
467 check_is_subset(R1,D2,Hyps4,_PT)
468 ).
469 compute_exact_domain_direct(union(F,G),Hyps,UnionDFDG,Hyps2) :- !, % dom(F \/ G) = dom(F) \/ dom(G)
470 compute_exact_domain(F,Hyps,DF,Hyps1),
471 compute_exact_domain(G,Hyps1,DG,Hyps2),
472 construct_union(DF,DG,Hyps2,UnionDFDG).
473 compute_exact_domain_direct(sorted_set_extension(List),Hyps,Res,Hyps2) :- !,
474 compute_exact_domain_direct(set_extension(List),Hyps,Res,Hyps2).
475 compute_exact_domain_direct(set_extension(List),Hyps,Res,Hyps) :- !, maplist(get_dom_el,List,Domain),
476 construct_set_extension(Domain,Hyps,Res).
477 compute_exact_domain_direct(Expr,Hyps,Domain,Hyps) :- is_lambda_function_with_domain(Expr,Domain),!.
478 compute_exact_domain_direct(Func,Hyps,Domain,Hyps2) :-
479 avl_fetch_equal_from_hyps(domain(Func),Hyps,Domain,Hyps2).
480
481 % get domain element of a couple
482 get_dom_el(couple(A,_),A).
483 % get range element of a couple
484 get_ran_el(couple(_,B),B).
485
486 % construct union term with a few optimisations
487 construct_union(empty_set,B,_Hyps,Res) :- !,Res=B.
488 construct_union(set_extension(A),set_extension(B),Hyps,Res) :- !,
489 append(A,B,AB),
490 construct_set_extension(AB,Hyps,Res).
491 construct_union(A,empty_set,_,Res) :- !,Res=A.
492 construct_union(A,B,_,union(A,B)).
493
494 % get maximal domain of a function (i.e., domain or superset thereof)
495 :- if(environ(prob_safe_mode,true)).
496 get_domain_or_superset(F,H,R,H2) :- nonvar(H2),
497 add_internal_error('Instantiated hyps:',get_domain_or_superset(F,H,R,H2)),fail.
498 :- endif.
499 get_domain_or_superset(reverse(Func),Hyps,Res,Hyps2) :- !,
500 get_range_or_superset(Func,Hyps,Res,Hyps2).
501 get_domain_or_superset(Func,Hyps,Res,Hyps3) :-
502 compute_exact_domain_direct(Func,Hyps,Res,Hyps2),
503 rewrite_local_loop_check(Func,get_domain_or_superset,Res,Hyps2,Hyps3),
504 !.
505 get_domain_or_superset(domain_restriction(A,_),Hyps,Res,Hyps) :- Res=A. % in case compute_exact_domain_direct fails
506 get_domain_or_superset(Func,Hyps,Res,Hyps1) :-
507 function_restriction(Func,LargerFunc),
508 get_domain_or_superset(LargerFunc,Hyps,Res,Hyps1).
509 get_domain_or_superset(direct_product(A,B),Hyps,Res,Hyps2) :- % dom(A >< B) = dom(A) /\ dom (B)
510 (get_domain_or_superset(A,Hyps,Res,Hyps2) -> true
511 ; get_domain_or_superset(B,Hyps,Res,Hyps2) -> true).
512 get_domain_or_superset(Func,Hyps,DomSet,Hyps2) :- simple_value(Func),
513 avl_fetch_mem_or_struct(Func,Hyps,FunctionType,Hyps1),
514 get_domain_or_superset_of_func_or_rel_type(FunctionType,Hyps1,DomSet,Hyps2).
515 %get_possible_domain_of_func_or_rel_type(FunctionType,Hyps,DomSet,_).
516 get_domain_or_superset(Func,Hyps,Domain,Hyps2) :-
517 avl_fetch_worthwhile_equal_from_hyps(Func,Hyps,Func2,Hyps1),
518 get_domain_or_superset(Func2,Hyps1,Domain,Hyps2).
519 get_domain_or_superset(Func,Hyps,DomSuperSet,Hyps2) :-
520 avl_fetch_binop_from_hyps(domain(Func),subset,Hyps,DomSuperSet,Hyps2).
521
522 % get exact (thus also minimal) domain of a function type
523 :- if(environ(prob_safe_mode,true)).
524 get_exact_domain_of_func_or_rel_type(F,H,R,H2) :-
525 nonvar(H2), add_internal_error('Instantiated hyps:',get_exact_domain_of_func_or_rel_type(F,H,R,H2)),fail.
526 :- endif.
527 get_exact_domain_of_func_or_rel_type(FunType,Hyps,A,Hyps) :-
528 get_possible_domain_of_func_or_rel_type(FunType,Hyps,A,exact),!.
529 get_exact_domain_of_func_or_rel_type(FunType,Hyps,Domain,Hyps2) :-
530 avl_fetch_worthwhile_equal_from_hyps(FunType,Hyps,FunType2,Hyps1), % in case we have a definition like X = 1..n --> R
531 get_exact_domain_of_func_or_rel_type(FunType2,Hyps1,Domain,Hyps2).
532 get_exact_domain_of_func_or_rel_type(sorted_set_extension(F),Hyps,Domain,Hyps2) :- !,
533 get_exact_domain_of_func_or_rel_type(set_extension(F),Hyps,Domain,Hyps2).
534 get_exact_domain_of_func_or_rel_type(set_extension([Func|TF]),Hyps,Domain,Hyps2) :-
535 compute_exact_domain(Func,Hyps,Domain,Hyps2), % now check that all other functions have the same domain
536 (member(Func2,TF), \+ compute_exact_domain(Func2,Hyps2,Domain,_) -> fail
537 ; true).
538
539 get_possible_domain_of_func_or_rel_type(iseq(_),_,'NATURAL1',subset).
540 get_possible_domain_of_func_or_rel_type(iseq1(_),_,'NATURAL1',subset).
541 get_possible_domain_of_func_or_rel_type(partial_bijection(A,_),_,A,subset).
542 get_possible_domain_of_func_or_rel_type(partial_function(A,_),_,A,subset).
543 get_possible_domain_of_func_or_rel_type(partial_injection(A,_),_,A,subset).
544 get_possible_domain_of_func_or_rel_type(partial_surjection(A,_),_,A,subset).
545 get_possible_domain_of_func_or_rel_type(perm(A),Hyps,Domain,Type) :-
546 (compute_card_of_set(A,Hyps,CardA,_) % we could do check_finite and use card(A) instead of CardA
547 -> Domain = interval(1,CardA), Type=exact
548 ; check_finite(A,Hyps,_) -> Domain = interval(1,card(A)), Type=exact
549 ; %print(could_not_compute_card_for_perm(A)),nl,
550 Domain = 'NATURAL1', Type=subset
551 ).
552 get_possible_domain_of_func_or_rel_type(relations(A,_),_,A,subset).
553 get_possible_domain_of_func_or_rel_type(seq(_),_,'NATURAL1',subset).
554 get_possible_domain_of_func_or_rel_type(seq1(_),_,'NATURAL1',subset).
555 get_possible_domain_of_func_or_rel_type(surjection_relation(A,_),_,A,subset).
556 get_possible_domain_of_func_or_rel_type(total_bijection(A,_),_,A,exact).
557 get_possible_domain_of_func_or_rel_type(total_function(A,_),_,A,exact).
558 get_possible_domain_of_func_or_rel_type(total_injection(A,_),_,A,exact).
559 get_possible_domain_of_func_or_rel_type(total_relation(A,_),_,A,exact).
560 get_possible_domain_of_func_or_rel_type(total_surjection_relation(A,_),_,A,exact).
561 get_possible_domain_of_func_or_rel_type(total_surjection(A,_),_,A,exact).
562
563
564 % variation of get_possible_domain_of_func_or_rel_type, which uses Hyps and can deal with set_extensions
565 :- if(environ(prob_safe_mode,true)).
566 get_domain_or_superset_of_func_or_rel_type(F,H,R,H2) :- nonvar(H2),
567 add_internal_error('Instantiated hyps:',get_domain_or_superset_of_func_or_rel_type(F,H,R,H2)),fail.
568 :- endif.
569 get_domain_or_superset_of_func_or_rel_type(sorted_set_extension(List),Hyps,Dom,Hyps2) :- !,
570 get_domain_or_superset_of_func_or_rel_type(set_extension(List),Hyps,Dom,Hyps2).
571 get_domain_or_superset_of_func_or_rel_type(set_extension(List),Hyps,Dom,Hyps2) :- !,
572 % if we have f: {f1,f2,...} => dom(f) <: dom(f1) \/ dom(f2) \/ ...
573 merge_possible_domains_of_list(List,Hyps,empty_set,Dom,Hyps2).
574 get_domain_or_superset_of_func_or_rel_type(Func,Hyps,Res,Hyps) :-
575 get_possible_domain_of_func_or_rel_type(Func,Hyps,D,_),!,Res=D.
576
577 % merge domains of a list of possible functions
578 merge_possible_domains_of_list([],Hyps,Acc,Acc,Hyps).
579 merge_possible_domains_of_list([H|T],Hyps,Acc,Res,Hyps2) :-
580 get_domain_or_superset(H,Hyps,Domain,Hyps1),!,
581 construct_union(Acc,Domain,Hyps1,Acc1),
582 merge_possible_domains_of_list(T,Hyps1,Acc1,Res,Hyps2).
583
584 % RANGE
585 % -----
586
587 % compute range or subset thereof
588
589 compute_exact_range(reverse(Func),Hyps,Res,Hyps2) :-
590 compute_exact_domain(Func,Hyps,Res,Hyps2).
591 compute_exact_range(rev(Func),Hyps,Res,Hyps2) :- % reverse of a sequence: same range
592 compute_exact_range(Func,Hyps,Res,Hyps2).
593 compute_exact_range(identity(Domain),Hyps,Res,Hyps2) :- !, Hyps2=Hyps, Res=Domain.
594 compute_exact_range(Func,Hyps,Res,Hyps2) :-
595 compute_exact_range_direct(Func,Hyps,Res,Hyps2),!. % No recursive application of equal or hyp
596 compute_exact_range(Func,Hyps,Res,Hyps2) :- Func = '$'(_),
597 avl_fetch_mem_or_struct(Func,Hyps,FunctionType,Hyps2), % Func : _ --> Res
598 get_exact_range_of_func_type_direct(FunctionType,Res).
599 compute_exact_range(Func,Hyps,Range,Hyps2) :-
600 avl_fetch_worthwhile_equal_from_hyps(Func,Hyps,Func2,Hyps1),
601 compute_exact_range(Func2,Hyps1,Range,Hyps2).
602 %compute_exact_range(Expr,H,Domain) :- nl,portray_hyps(H),nl,print(compute_range_failed(Expr,_,Domain)),nl,fail.
603 % TO DO: rule for composition (exact case)
604
605
606 compute_exact_range_direct(S,Hyps,empty_set,Hyps) :- is_empty_set(S),!.
607 compute_exact_range_direct(function(Func2,_),Hyps,Res,Hyps2) :-
608 % f : _ +-> ( _ --> Ran ) & x:Ran ==> x:ran(f(_))
609 % f : _ +-> ( _ -->> Ran ) => ran(f(_)) = Ran
610 get_range_or_superset(Func2,Hyps,Range,Hyps2),
611 get_exact_range_of_func_type_direct(Range,Res). % is thus also minimal domain
612 compute_exact_range_direct(value(CS),Hyps,value(Res),Hyps) :- !, nonvar(CS), % TO DO: maybe only if small enough
613 range_of_explicit_set_wf(CS,Res,no_wf_available).
614 compute_exact_range_direct(sequence_extension(L),Hyps,Res,Hyps) :- !,
615 construct_set_extension(L,Hyps,Res).
616 compute_exact_range_direct(union(F,G),Hyps,UnionRFRG,Hyps2) :- !, % ran(F \/ G) = ran(F) \/ ran(G)
617 compute_exact_range(F,Hyps,RF,Hyps1),
618 compute_exact_range(G,Hyps1,RG,Hyps2),
619 construct_union(RF,RG,Hyps2,UnionRFRG).
620 compute_exact_range_direct(sorted_set_extension(List),Hyps,Res,Hyps2) :- !,
621 compute_exact_range_direct(set_extension(List),Hyps,Res,Hyps2).
622 compute_exact_range_direct(set_extension(List),Hyps,Res,Hyps) :- !, maplist(get_ran_el,List,Domain),
623 construct_set_extension(Domain,Hyps,Res).
624 compute_exact_range_direct(Func,Hyps,Range,Hyps2) :-
625 avl_fetch_equal_from_hyps(range(Func),Hyps,Range,Hyps2).
626
627 % get maximal range of a function (i.e., range or superset thereof)
628 :- if(environ(prob_safe_mode,true)).
629 get_range_or_superset(P,H,R,H1) :- nonvar(H1), add_internal_error('Illegal hyps:',get_range_or_superset(P,H,R,H1)),fail.
630 :- endif.
631 get_range_or_superset(reverse(Func),Hyps,Res,Hyps2) :- !,
632 get_domain_or_superset(Func,Hyps,Res,Hyps2).
633 get_range_or_superset(Func,Hyps,Res,Hyps3) :-
634 compute_exact_range_direct(Func,Hyps,Res,Hyps2),
635 rewrite_local_loop_check(Func,get_range_or_superset,Res,Hyps2,Hyps3),
636 !. % can be a loop dom(f) = ran(g)
637 get_range_or_superset(function(Func2,_),Hyps,Res,Hyps2) :-
638 % f2 : _ +-> ( _ --> Res ) ==> ran(f2(.)) <: Res
639 get_range_or_superset(Func2,Hyps,Range,Hyps1),
640 get_possible_range_of_func_or_rel_type(Range,Hyps1,Res,_,Hyps2).
641 get_range_or_superset(range_restriction(_,B),Hyps,Res,Hyps) :- Res=B. % in case compute_exact_range_direct fails
642 get_range_or_superset(Func,Hyps,Res,Hyps1) :-
643 function_restriction(Func,LargerFunc),
644 get_range_or_superset(LargerFunc,Hyps,Res,Hyps1).
645 get_range_or_superset(Func,Hyps,RangeSet,Hyps2) :- simple_value(Func),
646 avl_fetch_mem_or_struct(Func,Hyps,FunctionType,Hyps1),
647 get_possible_range_of_func_or_rel_type(FunctionType,Hyps1,RangeSet,_,Hyps2).
648 get_range_or_superset(tail(Seq),Hyps,Res,Hyps2) :- !, % ran(tail(S)) <: ran(S)
649 get_range_or_superset(Seq,Hyps,Res,Hyps2).
650 get_range_or_superset(front(Seq),Hyps,Res,Hyps2) :- !, % ran(front(S)) <: ran(S)
651 get_range_or_superset(Seq,Hyps,Res,Hyps2).
652 get_range_or_superset(restrict_front(Seq,_),Hyps,Res,Hyps2) :- !,
653 get_range_or_superset(Seq,Hyps,Res,Hyps2).
654 get_range_or_superset(restrict_tail(Seq,_),Hyps,Res,Hyps2) :- !,
655 get_range_or_superset(Seq,Hyps,Res,Hyps2).
656 get_range_or_superset(concat(Seq1,Seq2),Hyps,Res12,Hyps2) :- !, % ran(S1^S2) = ran(S1) \/ ran(S2)
657 get_range_or_superset(Seq1,Hyps,Res1,Hyps2),
658 get_range_or_superset(Seq2,Hyps,Res2,Hyps2),
659 construct_union(Res1,Res2,Hyps2,Res12).
660 get_range_or_superset(composition(_,Func2),Hyps,Res2,Hyps2) :- !, % ran((F1;F2)) <: ran(F2)
661 get_range_or_superset(Func2,Hyps,Res2,Hyps2).
662 get_range_or_superset(Func,Hyps,Range,Hyps2) :-
663 avl_fetch_worthwhile_equal_from_hyps(Func,Hyps,Func2,Hyps1),
664 get_range_or_superset(Func2,Hyps1,Range,Hyps2).
665 get_range_or_superset(Func,Hyps,RangeSuperSet,Hyps2) :-
666 avl_fetch_binop_from_hyps(range(Func),subset,Hyps,RangeSuperSet,Hyps2).
667 get_range_or_superset(comprehension_set(IDS,Body),Hyps,RangeSuperSet,Hyps2) :-
668 get_lambda_args_and_body(IDS,Body,_,Expr,RestIDs,_), % TO DO: add RestIDs and typing to hyps
669 add_new_hyp_any_vars(Hyps,RestIDs,Hyps1), % do not infer anything about lambda vars; TO DO: push RestBody
670 get_clash_renaming_subst(Hyps1,Renaming),
671 rename_norm_term(Expr,Renaming,RNExpr),
672 try_get_set_of_possible_values(RNExpr,Hyps1,RangeSuperSet,Hyps2).
673 % get_range_or_superset(Func,_,_,_) :- print(get_range_or_superset_failed(Func)),nl,fail.
674 % to do: more sequence operations: insert_front, insert_tail
675
676 % get exact range without equality rewrites
677 get_exact_range_of_func_type_direct(Func,R) :-
678 get_possible_range_of_func_or_rel_type_direct(Func,R,exact).
679 % TO DO: maybe do same treatment for set_extension as in get_exact_domain_of_func_or_rel_type
680
681 % get possible range with equality rewrites
682 get_possible_range_of_func_or_rel_type(Func,Hyps,Range,ResType,Hyps2) :-
683 get_possible_range_of_func_or_rel_type_direct(Func,Range,Type),!, ResType=Type,Hyps2=Hyps.
684 get_possible_range_of_func_or_rel_type(Func,Hyps,Range,ResType,Hyps2) :-
685 avl_fetch_worthwhile_equal_from_hyps(Func,Hyps,Func2,Hyps1),
686 get_possible_range_of_func_or_rel_type(Func2,Hyps1,Range,ResType,Hyps2).
687
688 % get possible range without equality rewrites
689 get_possible_range_of_func_or_rel_type_direct(total_function(_,B),B,subset).
690 get_possible_range_of_func_or_rel_type_direct(total_injection(_,B),B,subset).
691 get_possible_range_of_func_or_rel_type_direct(total_surjection(_,B),B,exact).
692 get_possible_range_of_func_or_rel_type_direct(total_bijection(_,B),B,exact).
693 get_possible_range_of_func_or_rel_type_direct(total_relation(_,B),B,subset).
694 get_possible_range_of_func_or_rel_type_direct(total_surjection_relation(_,B),B,exact).
695 get_possible_range_of_func_or_rel_type_direct(partial_function(_,B),B,subset).
696 get_possible_range_of_func_or_rel_type_direct(partial_injection(_,B),B,subset).
697 get_possible_range_of_func_or_rel_type_direct(partial_surjection(_,B),B,exact).
698 get_possible_range_of_func_or_rel_type_direct(partial_bijection(_,B),B,exact).
699 get_possible_range_of_func_or_rel_type_direct(perm(B),B,exact).
700 get_possible_range_of_func_or_rel_type_direct(iseq(B),B,subset).
701 get_possible_range_of_func_or_rel_type_direct(iseq1(B),B,subset).
702 get_possible_range_of_func_or_rel_type_direct(seq(B),B,subset).
703 get_possible_range_of_func_or_rel_type_direct(seq1(B),B,subset).
704 get_possible_range_of_func_or_rel_type_direct(relations(_,B),B,subset).
705 get_possible_range_of_func_or_rel_type_direct(surjection_relation(_,B),B,exact).
706
707
708 % EXACT REWRITING/SIMPLIFICATION RULES
709
710 % simplifier, useful rules independent of context
711 simplify_expr(A,Hyps,Res) :-
712 rewrite_set_expression_exact(A,Hyps,A2,_),!, Res=A2.
713 simplify_expr(A,Hyps,Res) :-
714 rewrite_integer(A,Hyps,A2,_),!, Res=A2.
715 simplify_expr(record_field(rec(Fields),Field),Hyps,SExpr) :-
716 member(field(Field,Expr),Fields),!,
717 simplify_expr(Expr,Hyps,SExpr).
718 simplify_expr(domain(reverse(A)),_,range(A)) :- !.
719 simplify_expr(range(reverse(A)),_,domain(A)) :- !.
720 simplify_expr(E,_,E).
721
722
723 get_lambda_args_and_body(IDS,Body,LambdaID,LambdaExpr,RestArgs,RestBodyList) :-
724 LambdaID='$'(Lambda),
725 append(RestArgs,[LambdaID],IDS), % TO DO: pass lambda info from typed unnormalized expression!
726 conj_to_list(Body,BodyList,[]),
727 select(equal(A,B),BodyList,RestBodyList),
728 ( A=LambdaID, not_occurs(B,Lambda), LambdaExpr=B
729 ; B=LambdaID, not_occurs(A,Lambda), LambdaExpr=A
730 ).
731
732 % just check if something is a lambda function or similar, without computing exact domain
733 is_lambda_function(comprehension_set(IDS,Body)) :- !,
734 get_lambda_args_and_body(IDS,Body,_,_,_,_).
735 is_lambda_function(Expr) :- is_lambda_function_with_domain(Expr,_).
736
737 % determine if something is a lambda function and determine exact domain:
738 is_lambda_function_with_domain(comprehension_set(IDS,Body),Set) :-
739 get_lambda_args_and_body(IDS,Body,_,_,Args,RestBodyList),
740 get_argument_types(Args,Args,RestBodyList,ArgTypes),
741 create_cartesian_product(ArgTypes,Set).
742 is_lambda_function_with_domain(cartesian_product(Domain,Set),Domain) :-
743 singleton_set(Set,_).
744 is_lambda_function_with_domain(set_extension([couple(El,_)]),set_extension([El])).
745 is_lambda_function_with_domain(Set,singleton_set([El])) :- singleton_set(Set,couple(El,_)). % TO DO: longer lists and check no multiple domain elements
746 is_lambda_function_with_domain(sequence_extension(List),interval(1,Len)) :- length(List,Len).
747 % we could treat domain_restriction, domain_subtraction here
748
749 singleton_set(set_extension([El]),El).
750 singleton_set(sorted_set_extension([El]),El).
751
752 conj_to_list(conjunct(A,B)) --> !, conj_to_list(A),conj_to_list(B).
753 conj_to_list(X) --> [X].
754
755 :- use_module(probsrc(tools),[map_split_list/4]).
756 % we support Arg:Set and we support an argument not appearing at all (equivalent to Arg:typeset)
757 get_argument_types([],_,[],[]). % no other conjuncts remain in body
758 get_argument_types(['$'(ID1)|T],AllArgs,BodyList,[Set1|TS]) :-
759 map_split_list(typing_predicate_for(ID1,AllArgs),BodyList,TypingSetList,RestBody),
760 create_intersection(TypingSetList,Set1),
761 get_argument_types(T,AllArgs,RestBody,TS).
762
763 % check if we have a typing predicate for a given identifier
764 typing_predicate_for(ID1,AllArgs,member('$'(ID1),Set1),Set1) :- l_not_occurs(Set1,AllArgs).
765 typing_predicate_for(ID1,AllArgs,subset('$'(ID1),SSet1),pow_subset(SSet1)) :- l_not_occurs(SSet1,AllArgs).
766
767 % check if any argument appears in expression; if so we have a link between arguments and no proper type
768 l_not_occurs(Expr,AllArgs) :- member('$'(ID),AllArgs), occurs(Expr,ID),!,fail.
769 l_not_occurs(_,_).
770
771 create_intersection([],typeset). % no constraints on identifier: use typeset
772 create_intersection([A],Res) :- !, Res=A.
773 create_intersection([A|T],intersection(A,Rest)) :- create_intersection(T,Rest).
774
775 create_cartesian_product([Type],Res) :- !, Res=Type.
776 create_cartesian_product([Type|T],Res) :- create_cartesian_product3(T,Type,Res).
777
778 create_cartesian_product3([],Res,Res).
779 create_cartesian_product3([Type|T],Acc,Res) :-
780 create_cartesian_product3(T,cartesian_product(Acc,Type),Res).
781 % Note: dom(%(x,y,z).(x:BOOL & y:1..2 & z:BOOL|1)) = (BOOL*(1..2))*BOOL
782
783 % ------------------------
784
785 % Partial Function Check:
786
787 % check if Func : Domain +-> Range
788 check_is_partial_function_with_type(Func,_,_,_,empty_set) :- is_empty_set(Func),!.
789 check_is_partial_function_with_type(Func,Domain,Range,Hyps,pfun(PTD,PTR)) :-
790 check_is_partial_function(Func,Hyps),!,
791 (maximal_set(Domain,Hyps) -> PTD=maximal_domain ; check_is_subset(domain(Func),Domain,Hyps,PTD)),!,
792 (maximal_set(Range,Hyps) -> PTR=maximal_range ; check_is_subset(range(Func),Range,Hyps,PTR)).
793
794 % various way to make a function smaller, related to subset
795 function_restriction(domain_subtraction(_,F),F).
796 function_restriction(domain_restriction(_,F),F).
797 function_restriction(range_subtraction(F,_),F).
798 function_restriction(range_restriction(F,_),F).
799 function_restriction(set_subtraction(F,_),F).
800
801 % check if Func : DomTYPE +-> RanTYPE
802 % check if we can deduce from the Hypotheses that something is a partial function
803 check_is_partial_function(Func,Hyps) :-
804 avl_fetch_mem_or_struct(Func,Hyps,Function,Hyps1),
805 % also deals with function(_) f : _ +-> ( _ +-> _ ) => f(_) : _ +-> _
806 is_partial_function_type(Function,Hyps1,_),!.
807 check_is_partial_function(reverse(Func),Hyps) :-
808 check_is_injective(Func,Hyps),!.
809 check_is_partial_function(value(avl_set(AVL)),_) :- !,
810 nonvar(AVL),
811 is_avl_partial_function(AVL).
812 check_is_partial_function(composition(F1,F2),Hyp) :- !,
813 % composition of two partial functions is a partial function
814 (check_is_partial_function(F1,Hyp)
815 -> check_is_partial_function(F2,Hyp)
816 ).
817 check_is_partial_function(overwrite(F1,F2),Hyp) :- !,
818 % overwrite of two partial functions is a partial function
819 (check_is_partial_function(F1,Hyp)
820 -> check_is_partial_function(F2,Hyp)
821 ).
822 check_is_partial_function(direct_product(F1,F2),Hyp) :- !,
823 % direct_product of two partial functions is a partial function a:A+->B & b:A+->C => a><b : A+->(B*C)
824 (check_is_partial_function(F1,Hyp)
825 -> check_is_partial_function(F2,Hyp)
826 ).
827 check_is_partial_function(identity(_),_Hyp) :- !.
828 check_is_partial_function(Func,Hyp) :- function_restriction(Func,LargerFunc), !,
829 check_is_partial_function(LargerFunc,Hyp).
830 check_is_partial_function(intersection(F1,F2),Hyp) :- !,
831 (check_is_partial_function(F1,Hyp) -> true ; check_is_partial_function(F2,Hyp)).
832 check_is_partial_function(sorted_set_extension(List),Hyp) :- !,
833 check_set_extension_is_partial_function(List,Hyp).
834 check_is_partial_function(set_extension(List),Hyp) :- !,
835 check_set_extension_is_partial_function(List,Hyp).
836 check_is_partial_function(Expr,_) :-
837 is_lambda_function(Expr),!. % also treats cartesian_product and sequence_extension
838 % check_is_partial_function(X,_Hyp) :- is_empty_set(X),!. % covered by infer_sequence_type_of_expr below
839 check_is_partial_function(Expr,Hyps) :-
840 infer_sequence_type_of_expr(Expr,Hyps,_),!. % any sequence expression is a partial function; e.g. a <- b, front(.)
841 check_is_partial_function(Func,Hyps) :- rewrite_set_expression_exact(Func,Hyps,NewFunc,Hyps2),!,
842 check_is_partial_function(NewFunc,Hyps2).
843 check_is_partial_function(union(F1,F2),Hyps) :-
844 check_is_subset(F1,F2,Hyps,_),!,
845 check_is_partial_function(F2,Hyps).
846 check_is_partial_function(union(F1,F2),Hyps) :-
847 check_is_subset(F2,F1,Hyps,_),!,
848 check_is_partial_function(F1,Hyps).
849 check_is_partial_function(union(F1,F2),Hyps) :- !,
850 check_domain_disjoint(F1,F2,Hyps,Hyps2), % domain must be disjoint, not F1 and F2
851 check_is_partial_function(F1,Hyps2),
852 check_is_partial_function(F2,Hyps2).
853 check_is_partial_function(Func,Hyps) :- % f<:g & g: A +-> B => f : A +-> B
854 (Op = equal ; Op = subset),
855 avl_fetch_binop_from_hyps(Func,Op,Hyps,Func2,Hyps1),
856 quick_not_occurs_check(Func,Func2),
857 check_is_partial_function(Func2,Hyps1).
858
859 check_domain_disjoint(F1,F2,Hyps,Hyps2) :-
860 compute_exact_domain(F1,Hyps,DF1,Hyps2),
861 % example: :prove f:BOOL +-> BOOL & x /: dom(f) => f \/ {x|->TRUE} : BOOL +-> BOOL
862 is_set_extension(DF1,List1),!,
863 l_check_not_member_of_set(List1,domain(F2),Hyps2). % we could try and compute domain(F2) first
864 check_domain_disjoint(F2,F1,Hyps,Hyps2) :-
865 compute_exact_domain(F1,Hyps,DF1,Hyps2),
866 is_set_extension(DF1,List1),!,
867 l_check_not_member_of_set(List1,domain(F2),Hyps2).
868 check_domain_disjoint(F1,F2,Hyps,Hyps2) :-
869 get_domain_or_superset(F1,Hyps,DomFunc1,Hyps1),
870 get_domain_or_superset(F2,Hyps1,DomFunc2,Hyps2),
871 check_disjoint(DomFunc1,DomFunc2,Hyps2).
872
873 %check_is_partial_function(Func,_) :- print(check_is_partial_function_failed(Func)),nl,fail.
874
875 % check if this is a partial function type or something defined to be equal to a function type
876 :- if(environ(prob_safe_mode,true)).
877 is_partial_function_type(P,H,H1) :- nonvar(H1),
878 add_internal_error('Illegal hyps:',is_partial_function_type(P,H,H1)),fail.
879 :- endif.
880 is_partial_function_type(PF,Hyps,Hyps1) :- is_partial_function(PF,_,_),!,Hyps1=Hyps.
881 is_partial_function_type(range(Func),Hyps,Hyps2) :-
882 get_range_or_superset(Func,Hyps,RanFunc,Hyps1),!,
883 is_partial_function_type(RanFunc,Hyps1,Hyps2).
884 is_partial_function_type(domain(Func),Hyps,Hyps2) :-
885 get_domain_or_superset(Func,Hyps,DomFunc,Hyps1),!,
886 is_partial_function_type(DomFunc,Hyps1,Hyps2).
887 is_partial_function_type(sorted_set_extension(Funcs),Hyps,Hyps2) :- !,
888 is_partial_function_type(set_extension(Funcs),Hyps,Hyps2).
889 is_partial_function_type(set_extension(Funcs),Hyps,Hyps2) :- !,
890 (member(F,Funcs), \+ check_is_partial_function(F,Hyps) -> fail
891 ; Hyps2=Hyps). % all elements of Funcs are partial functions
892 is_partial_function_type(Func,Hyps,Hyps2) :-
893 get_superset(Func,Hyps,SuperSet,Hyps1),!,
894 is_partial_function_type(SuperSet,Hyps1,Hyps2).
895 is_partial_function_type(PF,Hyps,Hyps2) :-
896 avl_fetch_worthwhile_equal_from_hyps(PF,Hyps,PF2,Hyps1), % in case we have a definition like X = 1..n --> R
897 is_partial_function_type(PF2,Hyps1,Hyps2).
898
899 % get worthwhile superset
900 get_superset(comprehension_set([ID],Body),Hyps,Set,Hyps) :-
901 get_parameter_superset_in_body(ID,[ID],Body,Set).
902 get_superset(set_subtraction(A,_),Hyps,A,Hyps).
903 get_superset(intersection(A,B),Hyps,R,Hyps) :- (R=A ; R=B).
904
905 is_partial_function(total_function(A,B),A,B).
906 is_partial_function(partial_function(A,B),A,B).
907 is_partial_function(total_injection(A,B),A,B).
908 is_partial_function(partial_injection(A,B),A,B).
909 is_partial_function(total_surjection(A,B),A,B).
910 is_partial_function(partial_surjection(A,B),A,B).
911 is_partial_function(total_bijection(A,B),A,B).
912 is_partial_function(partial_bijection(A,B),A,B).
913 is_partial_function(perm(A),'NATURAL1',A).
914 is_partial_function(seq(B),'NATURAL1',B).
915 is_partial_function(seq1(B),'NATURAL1',B).
916 is_partial_function(iseq(B),'NATURAL1',B).
917 is_partial_function(iseq1(B),'NATURAL1',B).
918
919 % if First = f(1,GS) -> we can check if function is total; we could store summary of set_extension in hyps
920 check_set_extension_is_partial_function([_],_) :- !. % one element set extension is a function
921 check_set_extension_is_partial_function(List,Hyps) :-
922 maplist(get_explicit_dom_value(Hyps),List,VList),!,
923 sort(VList,SList),
924 SList = [couple(First,_)|TS],
925 check_set_ext_pf(TS,First,Hyps).
926 check_set_extension_is_partial_function([couple(A,_),couple(B,_)],Hyps) :-
927 check_not_equal(A,B,Hyps). % TO DO: all_different for longer lists
928
929 check_set_ext_pf([],_,_).
930 check_set_ext_pf([couple(Next,_)|TS],Last,Hyp) :-
931 Next \= Last,
932 check_set_ext_pf(TS,Next,Hyp).
933
934 get_explicit_dom_value(Hyps,couple(Val,RanVal),couple(Val2,RanVal)) :- get_explicit_value(Val,Hyps,Val2).
935
936 get_explicit_value(couple(A,B),Hyps,couple(A2,B2)) :- !,
937 get_explicit_value(A,Hyps,A2), get_explicit_value(B,Hyps,B2).
938 get_explicit_value(rec(Fields),Hyps,rec(SFields2)) :- !,
939 maplist(get_field_value(Hyps),Fields,Fields2),
940 sort(Fields2,SFields2).
941 get_explicit_value(Val,Hyps,R) :- is_explicit_value(Val,AVal,Hyps),!,R=AVal.
942 get_explicit_value('$'(ID),Hyps,Res) :-
943 avl_fetch_equal_from_hyps('$'(ID),Hyps,Val2,Hyps2),
944 is_explicit_value(Val2,Res,Hyps2). % should we allow recursion through multiple equations?
945
946 % is value which can be compared using Prolog equality
947 % cf. avl_can_fetch
948 is_explicit_value(boolean_true,pred_true,_).
949 is_explicit_value(boolean_false,pred_false,_).
950 is_explicit_value(Nr,Nr,_) :- number(Nr). % integers and floats
951 is_explicit_value(integer(Nr),Nr,_) :- integer(Nr). % normally already replaced by norm_expr2
952 is_explicit_value(string(Atom),Atom,_).
953 is_explicit_value(real(Atom),Res,_) :- atom(Atom),
954 construct_real(Atom,term(floating(Res))). % c.f. is_real/1 in kernel_reals
955 is_explicit_value(couple(A,B),(AV,BV),Hyp) :- is_explicit_value(A,AV,Hyp), is_explicit_value(B,BV,Hyp).
956 is_explicit_value('$'(ID),'$'(ID),Hyp) :- is_global_constant_id(ID,Hyp).
957 is_explicit_value(value(R),Nr,_) :- nonvar(R),R=int(Nr), integer(Nr). % TODO: more values, strings, reals, ...
958
959
960 get_field_value(Hyps,field(Name,Val),field(Name,Val2)) :- get_explicit_value(Val,Hyps,Val2).
961
962 :- use_module(probsrc(b_global_sets), [lookup_global_constant/2]).
963 % enumerated set element name
964 is_global_constant_id(ID,Hyp) :-
965 lookup_global_constant(ID,_),
966 \+ is_hyp_var(ID,Hyp). % global enumerated set constant visible
967
968 is_enumerated_set(ID,Hyp) :-
969 enumerated_set(ID),
970 \+ is_hyp_var(ID,Hyp). % global enumerated set constant visible
971
972 % Disjoint check:
973 check_disjoint(A,B,Hyps) :- %print(disj(A,B)),nl, portray_hyps(Hyps),nl,
974 (check_disjoint_aux(A,B,Hyps) -> true ; check_disjoint_aux(B,A,Hyps)).
975 check_disjoint_aux(S,_,_) :- is_empty_set(S),!.
976 check_disjoint_aux(A,B,Hyps) :-
977 avl_fetch_from_hyps(equal(intersection(A,B),empty_set),Hyps),!.
978 check_disjoint_aux(domain_subtraction(A,_),B,Hyps) :- !, % A <<| f /\ B = {} if dom(B) <: A
979 get_domain_or_superset(B,Hyps,DomB,Hyps2),
980 check_is_subset(DomB,A,Hyps2,_).
981 check_disjoint_aux(set_subtraction(AA,A),B,Hyps) :- !,
982 (check_is_subset(B,A,Hyps,_) -> true % x \ A /\ B = {} if B <: A
983 ; check_disjoint(AA,B,Hyps) -> true). % AA-A /\ B ={} if AA /\ B = {}
984 check_disjoint_aux(set_extension(As),B,Hyps) :- !, l_check_not_member_of_set(As,B,Hyps).
985 check_disjoint_aux(sorted_set_extension(As),B,Hyps) :- !, l_check_not_member_of_set(As,B,Hyps).
986 check_disjoint_aux(A,B,Hyps) :-
987 avl_fetch_worthwhile_equal_from_hyps(A,Hyps,A1,Hyps1),
988 check_disjoint(A1,B,Hyps1).
989 % TO DO: move union of set_extension here?
990
991 l_check_not_member_of_set([],_,_).
992 l_check_not_member_of_set([El|T],Set,Hyps) :-
993 check_not_member_of_set(Set,El,Hyps,_PT),
994 l_check_not_member_of_set(T,Set,Hyps).
995
996 % Injective check:
997
998 check_is_injective(Func,Hyps) :-
999 get_type_from_hyps(Func,Hyps,Function,Hyps1),
1000 %print(check_rev_fun(Func,Function)),nl,
1001 is_injective_function_type(Function,Hyps1,_).
1002 check_is_injective(value(avl_set(AVL)),_) :- !,
1003 nonvar(AVL), invert_explicit_set(avl_set(AVL),Inv),
1004 Inv=avl_set(AVL2), is_avl_partial_function(AVL2).
1005 check_is_injective(identity(_),_).
1006 check_is_injective(Set,_) :- singleton_set(Set,_). % TO DO: extend to more than singleton set_extension
1007 check_is_injective(sequence_extension([_]),_). % TO DO: check all elements are different
1008 check_is_injective(Func, Hyps) :-
1009 avl_fetch_equal_from_hyps(Func,Hyps,Value,Hyps2),
1010 %print(check_inj_value(Func,Value)),nl,
1011 check_is_injective(Value,Hyps2).
1012
1013 % check if this is a partial function type or something defined to be equal to a function type
1014 is_injective_function_type(PF,Hyps,Hyps1) :- is_injective(PF),!,Hyps1=Hyps.
1015 is_injective_function_type(PF,Hyps,Hyps2) :-
1016 avl_fetch_worthwhile_equal_from_hyps(PF,Hyps,PF2,Hyps1), % in case we have a definition like X = 1..n --> R
1017 is_injective_function_type(PF2,Hyps1,Hyps2).
1018
1019 is_injective(total_injection(_,_)).
1020 is_injective(partial_injection(_,_)).
1021 is_injective(total_bijection(_,_)).
1022 is_injective(partial_bijection(_,_)).
1023 is_injective(iseq(_)).
1024 is_injective(iseq1(_)).
1025
1026 % check_not_is_subset_strict(A,B,Hyps,PT) check if A is not a strict subset of B
1027 % not really used for WD proofs at the moment; mainly as top-level goal in prove_po
1028 % probably quite a few more rules necessary to make it useful
1029 check_not_is_subset_strict(A,B,Hyps,hyp) :-
1030 avl_fetch_from_hyps(not_subset_strict(A,B),Hyps),!. % hyp; currently not marked as useful by default!
1031 check_not_is_subset_strict(_,B,_,empty_set) :- % A /<<: {}
1032 is_empty_set(B).
1033 check_not_is_subset_strict(MAX,_,Hyps,maximal_set) :- % MAX /<<: B
1034 maximal_set(MAX,Hyps),!.
1035 check_not_is_subset_strict(A,B,Hyps,superset_eq1(PT)) :-
1036 (Operator = equal ; Operator = superset), % A :> S2 & S2 /<<: B => A /<<: B
1037 avl_fetch_binop_from_hyps(A,Operator,Hyps,S2,Hyps2),
1038 rewrite_local_loop_check(A,check_not_is_subset_strict,S2,Hyps2,Hyps3),
1039 check_not_is_subset_strict(S2,B,Hyps3,PT),!.
1040 check_not_is_subset_strict(A,B,Hyps,subset_eq2(PT)) :-
1041 (Operator = equal ; Operator = subset), % B <: S2 & A /<<: S2 => A /<<: B
1042 avl_fetch_binop_from_hyps(B,Operator,Hyps,S2,Hyps2),
1043 rewrite_local_loop_check(B,check_not_is_subset_strict,S2,Hyps2,Hyps3),
1044 check_not_is_subset_strict(A,S2,Hyps3,PT),!.
1045 %check_not_is_subset_strict(A,B,H,_) :- print(check_not_is_subset_strict_failed(A,B)),nl, portray_hyps(H),nl,fail.
1046
1047 % check if something is a subset of something else
1048 check_is_subset(H,H,_,equal).
1049 check_is_subset(A,B,Hyps,hyp) :-
1050 avl_fetch_from_hyps(subset(A,B),Hyps),!. % hyp
1051 check_is_subset(_,MAX,Hyps,maximal_set) :- maximal_set(MAX,Hyps),!.
1052 check_is_subset(S,_,_,empty_set) :- is_empty_set(S),!. % {} <: B
1053 check_is_subset(cartesian_product(A,B),cartesian_product(A2,B2),Hyps,cart(PTA,PTB)) :- !,
1054 % A <: A2 & B <: B2 => (A*B) <: (A2*B2)
1055 (check_is_subset(A,A2,Hyps,PTA)
1056 -> check_is_subset(B,B2,Hyps,PTB)).
1057 check_is_subset('NATURAL1','NATURAL',_,nat1_nat) :- !.
1058 check_is_subset(interval(L,U),B,Hyps,interval(PT)) :- !, check_subset_interval(B,L,U,Hyps,PT).
1059 check_is_subset(intersection(A,B),Super,Hyps,intersection(PT)) :- !,
1060 ( check_is_subset(A,Super,Hyps,PT) -> true ; check_is_subset(B,Super,Hyps,PT)).
1061 check_is_subset(union(A,B),Super,Hyps,union(PTA,PTB)) :- !,
1062 ( check_is_subset(A,Super,Hyps,PTA) -> check_is_subset(B,Super,Hyps,PTB)).
1063 check_is_subset(domain_subtraction(_,B),Super,Hyps,dom_sub(PT)) :- !,check_is_subset(B,Super,Hyps,PT).
1064 check_is_subset(domain_restriction(_,B),Super,Hyps,dom_res(PT)) :- !,check_is_subset(B,Super,Hyps,PT).
1065 check_is_subset(range_subtraction(A,_),Super,Hyps,ran_sub(PT)) :- !,check_is_subset(A,Super,Hyps,PT).
1066 check_is_subset(range_restriction(A,_),Super,Hyps,ran_res(PT)) :- !,check_is_subset(A,Super,Hyps,PT).
1067 check_is_subset(set_subtraction(A,_),Super,Hyps,set_sub(PT)) :- !,check_is_subset(A,Super,Hyps,PT).
1068 check_is_subset(value(avl_set(AVL)),B,Hyps,avl) :- !,check_subset_avl(B,AVL,Hyps).
1069 check_is_subset(A,B,Hyps,subset_eq(PT)) :-
1070 (Operator = equal ; Operator = subset), % for subset_strict we also have subset in Hyps
1071 % TO DO: similar rule for B
1072 avl_fetch_binop_from_hyps(A,Operator,Hyps,S2,Hyps2),
1073 rewrite_local_loop_check(A,check_is_subset,S2,Hyps2,Hyps3),
1074 check_is_subset(S2,B,Hyps3,PT),!.
1075 check_is_subset('$'(ID),B,Hyps,eq(ID,PT)) :-
1076 get_type_from_hyps('$'(ID),Hyps,Set,Hyps2),
1077 extract_element_super_set_type(Set,Hyps2,S2),
1078 rewrite_local_loop_check(ID,check_is_subset,S2,Hyps2,Hyps3),
1079 check_is_subset(S2,B,Hyps3,PT),!.
1080 check_is_subset(domain(Func),B,Hyps,domain(PT)) :-
1081 get_domain_or_superset(Func,Hyps,DomFunc,Hyps2),
1082 %rewrite_local_loop_check(domain(Func),check_is_subset,DomFunc,Hyps2,Hyps3),
1083 check_is_subset(DomFunc,B,Hyps2,PT),!.
1084 check_is_subset(range(Func),B,Hyps,range(PT)) :-
1085 get_range_or_superset(Func,Hyps,RanFunc,Hyps2),
1086 %rewrite_local_loop_check(range(Func),check_is_subset,RanFunc,Hyps2,Hyps3),
1087 check_is_subset(RanFunc,B,Hyps2,PT),!.
1088 check_is_subset(function(Func,_),B,Hyps,function_range(PT)) :- !,
1089 get_range_or_superset(Func,Hyps,RanFunc,Hyps2), % f : _ +-> POW(Ran) & Ran <: B => f(.) <: B
1090 subset_transitivity_rule(RanFunc,pow_subset(B),A2,B2), % extract pow_subset from Range
1091 check_is_subset(A2,B2,Hyps2,PT).
1092 check_is_subset(image(Func,_),B,Hyps,image(PT)) :- % or B=range(Range)
1093 (B = range(FuncB),check_equal(Func,FuncB,Hyps,_) -> !, PT=range_of_same_func % f[.] <: ran(f)
1094 ; get_range_or_superset(Func,Hyps,Range,Hyps2) -> !, check_is_subset(Range,B,Hyps2,PT)).
1095 check_is_subset(A,B,Hyps,transitivity(PT)) :- subset_transitivity_rule(A,B,A2,B2),
1096 !, % unary subset rules like POW(A2) <: POW(B2) if A2 <: B2
1097 check_is_subset(A2,B2,Hyps,PT).
1098 check_is_subset(A,B,Hyps,transitivity(PT1,PT2)) :- subset_bin_transitivity_rule(A,B,A1,A2,B1,B2),
1099 !, % binary subset rules like A1+->B1 <: A2+->B2 if A1 <:B1 & A2 <: B2
1100 (check_is_subset(A1,B1,Hyps,PT1) -> check_is_subset(A2,B2,Hyps,PT2)).
1101 check_is_subset(sorted_set_extension(List),B,Hyps,PT) :- !,
1102 check_is_subset(set_extension(List),B,Hyps,PT).
1103 check_is_subset(set_extension(List),B,Hyps,set_extension) :-
1104 simplify_expr(B,Hyps,BS), % simplify expression once
1105 %portray_hyps(Hyps),nl,
1106 l_check_is_member(List,BS,Hyps).
1107 check_is_subset(Sub,union(A,B),Hyps,sub_union(PT)) :- !,
1108 ( check_is_subset(Sub,A,Hyps,PT) -> true ; check_is_subset(Sub,B,Hyps,PT)).
1109 % get_set_of_possible_values; treat sequence_extension
1110 %check_is_subset(A,B,_,_) :- print(check_is_subset_failed(A,B)),nl,nl,fail.
1111
1112 l_check_is_member([],_,_).
1113 l_check_is_member([El|T],B,Hyps) :- check_member_of_set(B,El,Hyps,_ProofTree), l_check_is_member(T,B,Hyps).
1114
1115 % extract set type of the elements of a set: x: POW(A) ==> x<:A
1116 extract_element_super_set_type(FuncType,Hyps,cartesian_product(A,B)) :-
1117 get_possible_domain_of_func_or_rel_type(FuncType,Hyps,A,_),!,
1118 get_possible_range_of_func_or_rel_type_direct(FuncType,B,_).
1119 extract_element_super_set_type(fin_subset(A),_,A).
1120 extract_element_super_set_type(fin1_subset(A),_,A).
1121 extract_element_super_set_type(pow_subset(A),_,A).
1122 extract_element_super_set_type(pow1_subset(A),_,A).
1123
1124 % simple not member of set check
1125 check_not_member_of_set(Set,_,Hyps,empty_set) :- check_equal(Set,empty_set,Hyps,_),!.
1126 check_not_member_of_set(Set,El,Hyps,hyp) :-
1127 avl_fetch_from_hyps(not_member(El,Set),Hyps),!. % hyp
1128 check_not_member_of_set(if_then_else(_,A,B),El,Hyps,if_then_else(PTA,PTB)) :-
1129 (check_not_member_of_set(A,El,Hyps,PTA) -> check_not_member_of_set(B,El,Hyps,PTB)),!.
1130 check_not_member_of_set(intersection(A,B),El,Hyps,inter(PT)) :-
1131 (check_not_member_of_set(A,El,Hyps,PT) -> true ; check_not_member_of_set(B,El,Hyps,PT)),!.
1132 check_not_member_of_set(set_subtraction(A,B),El,Hyps,inter(PT)) :-
1133 (check_not_member_of_set(A,El,Hyps,PT) -> true ; check_member_of_set(B,El,Hyps,PT)),!.
1134 check_not_member_of_set(union(A,B),El,Hyps,inter(PTA,PTB)) :-
1135 (check_not_member_of_set(A,El,Hyps,PTA) -> check_not_member_of_set(B,El,Hyps,PTB)),!.
1136 check_not_member_of_set(overwrite(A,B),El,Hyps,overwrite(PTA,PTB)) :-
1137 (check_not_member_of_set(A,El,Hyps,PTA) -> check_not_member_of_set(B,El,Hyps,PTB)),!.
1138 check_not_member_of_set('NATURAL1',El,Hyps,nat1) :-
1139 check_leq(El,0,Hyps).
1140 check_not_member_of_set('NATURAL',El,Hyps,nat1) :-
1141 check_leq(El,-1,Hyps).
1142 check_not_member_of_set(interval(From,To),El,Hyps,interval) :-
1143 (check_leq(El,minus(From,1),Hyps) -> true
1144 ; check_leq(add(To,1),El,Hyps) -> true). % TODO: or interval empty
1145 check_not_member_of_set(domain(Func),El,Hyps,not_in_domain(PT)) :-
1146 check_not_member_of_domain(Func,El,Hyps,PT),!.
1147 check_not_member_of_set(range(Func),El,Hyps,not_in_range(PT)) :-
1148 check_not_member_of_range(Func,El,Hyps,PT),!.
1149 check_not_member_of_set(Set,couple(From,_),Hyps,not_in_dom(PT)) :-
1150 % x /: dom(f) => x|->y /: f
1151 avl_fetch_binop_from_hyps(From,not_member,Hyps,Set2,Hyps2),
1152 check_is_subset(domain(Set),Set2,Hyps2,PT),
1153 !.
1154 check_not_member_of_set(Set,couple(_,To),Hyps,not_in_range) :-
1155 avl_fetch_from_hyps(not_member(To,range(Set)),Hyps), % y /: ran(f) => x|->y /: f
1156 !. % TODO: generalise this rule somewhat, see domain above
1157 check_not_member_of_set(A,El,Hyps,eq(ProofTree)) :-
1158 avl_fetch_worthwhile_equal_from_hyps(A,Hyps,Value,Hyps2),
1159 rewrite_local_loop_check(A,check_member_of_set,Value,Hyps2,Hyps3),
1160 check_not_member_of_set(Value,El,Hyps3,ProofTree).
1161 check_not_member_of_set(Set,El,Hyps,not_in_set_extension) :-
1162 is_set_extension(Set,List),
1163 check_not_member_of_list(List,El,Hyps).
1164 %check_not_member_of_set(Set,El,Hyps,_) :- print(not_mem_failed(Set,El)),nl,fail.
1165 % TO DO: process equalities, set_extension?, value(avl_set(AVL)), ...
1166
1167 % check if an element is not in the domain of a function
1168 check_not_member_of_domain(domain_subtraction(DS,Func),El,Hyps,not_dom_sub(PT)) :-
1169 (check_member_of_set(DS,El,Hyps,PT) -> true
1170 ; check_not_member_of_domain(Func,El,Hyps,PT)).
1171 check_not_member_of_domain(domain_restriction(DS,Func),El,Hyps,not_dom_sub(PT)) :-
1172 (check_not_member_of_set(DS,El,Hyps,PT) -> true
1173 ; check_not_member_of_domain(Func,El,Hyps,PT)).
1174 check_not_member_of_domain(Func,El,Hyps,PT) :-
1175 get_domain_or_superset(Func,Hyps,DomFunc,Hyps1),!,
1176 check_not_member_of_set(DomFunc,El,Hyps1,PT).
1177
1178 % check if an element is not in the domain of a function
1179 check_not_member_of_range(range_subtraction(Func,DS),El,Hyps,not_dom_sub(PT)) :-
1180 (check_member_of_set(DS,El,Hyps,PT) -> true
1181 ; check_not_member_of_range(Func,El,Hyps,PT)).
1182 check_not_member_of_range(range_restriction(Func,DS),El,Hyps,not_dom_sub(PT)) :-
1183 (check_not_member_of_set(DS,El,Hyps,PT) -> true
1184 ; check_not_member_of_range(Func,El,Hyps,PT)).
1185 check_not_member_of_range(Func,El,Hyps,PT) :-
1186 get_range_or_superset(Func,Hyps,RanFunc,Hyps1),!,
1187 check_not_member_of_set(RanFunc,El,Hyps1,PT).
1188
1189
1190
1191 % check that an element does not occur in a list of values/expressions
1192 check_not_member_of_list([],_,_).
1193 check_not_member_of_list([H|T],El,Hyps) :-
1194 check_not_equal(H,El,Hyps),
1195 check_not_member_of_list(T,El,Hyps).
1196
1197 is_set_extension(set_extension(List),List).
1198 is_set_extension(sorted_set_extension(List),List).
1199
1200
1201 % check_member_of_set(Set,Element,Hyps,ProofTree)
1202 % check_member_of_set(A,B,_H,_ProofTree) :- print(check_member_of_set(A,B)),nl,fail.
1203 check_member_of_set(Set,_,Hyps,maximal_set) :- maximal_set(Set,Hyps), !.
1204 check_member_of_set(Set,if_then_else(_,A,B),Hyps,if(P1,P2)) :- !, % if-then-else exprssion
1205 (check_member_of_set(Set,A,Hyps,P1) -> check_member_of_set(Set,B,Hyps,P2)).
1206 check_member_of_set(Set,El,Hyps,hyp) :-
1207 % we could do avl_fetch_binop_from_hyps(El,member,Hyps,Set2,Hyps2), and check_subset(Set2,Set)
1208 avl_fetch_from_hyps(member(El,Set),Hyps),!. % hyp
1209 % TO DO: sometimes value(El) stored !
1210 check_member_of_set(sorted_set_extension(List),El,Hyps,PT) :- !, % ordsets:ord_member(El,List),!.
1211 check_member_of_set(set_extension(List),El,Hyps,PT).
1212 check_member_of_set(set_extension(List),El,Hyps,set_extension) :- member(El2,List),
1213 check_equal(El,El2,Hyps,_),!. % TO DO: avoid multiple equality rewriting of El for long lists ?
1214 check_member_of_set(partial_function(T1,T2),El,Hyps,partial_function(PT)) :-
1215 check_is_partial_function_with_type(El,T1,T2,Hyps,PT).
1216 check_member_of_set(range(Func),El,Hyps,mem_range(PT)) :-
1217 check_member_of_range(El,Func,Hyps,PT),!. % check before function application below, can do symbolic range check
1218 check_member_of_set(image(Func,set_extension([S1|_])),El,Hyps,mem_range_for_image(PT0,PT1)) :-
1219 % El:ran(F) & S /\ dom(F) \= {} => El:F[S]
1220 check_member_of_set(range(Func),El,Hyps,PT0),!,
1221 check_member_of_set(domain(Func),S1,Hyps,PT1). % TO DO: more general check S /\ dom(F) \= {}
1222 check_member_of_set(A,ElFunc,Hyps,typing_membership(PT)) :-
1223 get_type_from_hyps(ElFunc,Hyps,Range,Hyps2), % !, % moving cut later proves on additional PO for test 2039
1224 % e.g. f(.) : A if ran(f) <: Range & Range <: A
1225 %rewrite_local_loop_check(A,check_member_of_set,Range,Hyps2,Hyps3),
1226 check_is_subset(Range,A,Hyps2,PT),!.
1227 check_member_of_set(A,El,Hyps,eq(ProofTree)) :-
1228 avl_fetch_worthwhile_equal_from_hyps(A,Hyps,Value,Hyps2),
1229 rewrite_local_loop_check(A,check_member_of_set,Value,Hyps2,Hyps3),
1230 check_member_of_set(Value,El,Hyps3,ProofTree).
1231 check_member_of_set(interval(L,U),El,Hyps,interval(PT)) :- !, check_in_interval(El,L,U,Hyps,PT).
1232 check_member_of_set('NATURAL1',El,Hyps,nat1(PT)) :- !, check_subset_interval('NATURAL1',El,El,Hyps,PT).
1233 check_member_of_set('NATURAL',El,Hyps,nat(PT)) :- !, check_subset_interval('NATURAL',El,El,Hyps,PT).
1234 check_member_of_set(union(A,B),El,Hyps,union(PTA,PTB)) :- !,
1235 (check_member_of_set(A,El,Hyps,PTA) -> true ; check_member_of_set(B,El,Hyps,PTB)).
1236 check_member_of_set(intersection(A,B),El,Hyps,intersection(PTA,PTB)) :- !,
1237 (check_member_of_set(A,El,Hyps,PTA) -> check_member_of_set(B,El,Hyps,PTB)).
1238 check_member_of_set(set_subtraction(A,B),El,Hyps,set_subtraction(PTA,PTB)) :- !,
1239 (check_member_of_set(A,El,Hyps,PTA) -> check_not_member_of_set(B,El,Hyps,PTB)).
1240 check_member_of_set(pow_subset(T1),El,Hyps,pow(PT)) :- !,
1241 check_is_subset(El,T1,Hyps,PT).
1242 check_member_of_set(fin_subset(T1),El,Hyps,fin(PT1,PT2)) :- !,
1243 check_is_subset(El,T1,Hyps,PT1),!,
1244 check_finite(El,Hyps,PT2).
1245 check_member_of_set(pow1_subset(T1),El,Hyps,pow1(PT)) :- !,
1246 check_not_empty_set(El,Hyps),!,
1247 check_is_subset(El,T1,Hyps,PT).
1248 check_member_of_set(fin1_subset(T1),El,Hyps,fin1(PT1,PT2)) :- !,
1249 check_not_empty_set(El,Hyps),!,
1250 check_is_subset(El,T1,Hyps,PT1),!,
1251 check_finite(El,Hyps,PT2).
1252 check_member_of_set(seq(T1),El,Hyps,seq(PT)) :- !,
1253 check_is_sequence(El,Hyps),
1254 check_is_subset(range(El),T1,Hyps,PT).
1255 check_member_of_set(seq1(T1),El,Hyps,seq1(PT)) :- !,
1256 check_is_non_empty_sequence(El,Hyps),
1257 check_is_subset(range(El),T1,Hyps,PT).
1258 check_member_of_set(cartesian_product(T1,T2),couple(El1,El2),Hyps,cart(PT1,PT2)) :- !,
1259 check_member_of_set(T1,El1,Hyps,PT1),
1260 check_member_of_set(T2,El2,Hyps,PT2).
1261 check_member_of_set(value(avl_set(AVL)),El,Hyps,PT) :-
1262 (avl_can_fetch(El,BVal) -> !,PT=avl_fetch(El),avl_fetch(BVal,AVL)
1263 ; avl_is_interval(AVL,Min,Max) -> !, PT=avl_interval(PT2),
1264 % useful is El is not a number, but e.g. an arithmetic expression
1265 % print(avl_interval(Min,Max,El)),nl,
1266 check_integer(El,check_member_of_set_avl_interval),
1267 check_in_interval(El,Min,Max,Hyps,PT2)
1268 ).
1269 check_member_of_set(A,El,Hyps,rewrite(PT)) :- rewrite_set_expression_exact(A,Hyps,A2,Hyps2),!,
1270 check_member_of_set(A2,El,Hyps2,PT).
1271 check_member_of_set(domain(Func),Index,Hyps,mem_domain(PT)) :-
1272 check_member_of_domain(Index,Func,Hyps,PT),!.
1273 check_member_of_set(Set,X,Hyps,value_set(PT)) :- try_get_set_of_possible_values(X,Hyps,XSet,Hyps2),
1274 check_is_subset(XSet,Set,Hyps2,PT),!.
1275 %check_member_of_set(Set,X,Hyps,eq(PT)) :- Set = '$'(_),
1276 % avl_fetch_equal_from_hyps(Set,Hyps,Set2,Hyps2), % maybe perform direct rewrite ancestor cycle check here
1277 % check_member_of_set(Set2,X,Hyps2,PT),!.
1278 check_member_of_set(Set,X,Hyps,trans(PT)) :-
1279 avl_fetch_binop_from_hyps(Set,superset,Hyps,SubSet,Hyps2), % X:B & B <: A => X:A
1280 check_member_of_set(SubSet,X,Hyps2,PT),!.
1281 check_member_of_set(Set2,max(Set1),Hyps,mem_max(PT)) :- !, check_is_subset(Set1,Set2,Hyps,PT).
1282 check_member_of_set(Set2,min(Set1),Hyps,mem_min(PT)) :- !, check_is_subset(Set1,Set2,Hyps,PT).
1283 %check_member_of_set(A,B,_H,_ProofTree) :- print(check_member_of_set_failed(A,B)),nl,fail.
1284
1285
1286 :- use_module(probsrc(kernel_reals),[construct_real/2]).
1287 % check if we can fetch an expression as a B value (second arg) in an AVL set
1288 avl_can_fetch(El,Res) :- number(El),!, Res=int(El).
1289 avl_can_fetch(boolean_true,pred_true).
1290 avl_can_fetch(boolean_false,pred_false).
1291 avl_can_fetch(real(Atom),R) :- construct_real(Atom,R).
1292 avl_can_fetch(string(S),string(S)) :- ground(S).
1293 avl_can_fetch(couple(A,B),(VA,VB)) :- avl_can_fetch(A,VA), avl_can_fetch(B,VB).
1294
1295 check_member_of_domain(El,reverse(Func2),Hyps,reverse(PT)) :- !,check_member_of_range(El,Func2,Hyps,PT).
1296 check_member_of_domain(Index,Func,Hyps,size_in_dom_seq) :- % x:seq1(T) => size(x) : dom(x)
1297 index_in_non_empty_sequence(Index,Func,Hyps),
1298 check_is_non_empty_sequence(Func,Hyps),!.
1299 % TO DO: f~(x) : dom(f) ??
1300 check_member_of_domain(El,union(A,B),Hyps,dom_of_union(PT)) :-
1301 check_member_of_union(domain(A),domain(B),El,Hyps,PT).
1302 check_member_of_domain(El,overwrite(A,B),Hyps,dom_of_overwrite(PT)) :-
1303 check_member_of_union(domain(A),domain(B),El,Hyps,PT).
1304 check_member_of_domain(El,direct_product(A,B),Hyps,dom_of_direct_product(PT)) :- % dom(A >< B) = dom(A) /\ dom (B)
1305 check_member_of_set(domain(A),El,Hyps,PT),
1306 check_member_of_set(domain(B),El,Hyps,PT).
1307 check_member_of_domain(El,Func,Hyps,dom_of_subset(PT)) :- % Func2 <: Func & El:dom(Func2) => El:dom(Func)
1308 % counter part of rule with superset for check_member_of_set
1309 (Op = equal ; Op = superset),
1310 avl_fetch_binop_from_hyps(Func,Op,Hyps,Func2,Hyps1),
1311 rewrite_local_loop_check(Func,check_member_of_domain,Func2,Hyps1,Hyps2),
1312 check_member_of_set(domain(Func2),El,Hyps2,PT).
1313 check_member_of_domain(El,comprehension_set(IDS,Body),Hyps,dom_of_lambda(PTs)) :-
1314 get_lambda_args_and_body(IDS,Body,_,_,Args,RestBodyList),
1315 %nl,print(lambda(Args,El,RestBodyList)),nl,
1316 generate_funapp_binding(Args,El,Subst),
1317 % we rename the local variables of the comprehension set; no need to call add_new_hyp_any_vars
1318 l_rename_and_prove_goals(RestBodyList,Subst,Hyps,PTs).
1319
1320 % we could do intersection, subtraction
1321
1322 % check if an element is an element of a union of two sets
1323 check_member_of_union(Set1,_,El,Hyps,PT) :- check_member_of_set(Set1,El,Hyps,PT),!.
1324 check_member_of_union(_,Set2,El,Hyps,PT) :- check_member_of_set(Set2,El,Hyps,PT),!.
1325 check_member_of_union(Set1,Set2,El,Hyps,union(PT1,PT2)) :-
1326 % x : A \/ B & A <: S1 & B <: S2 => x : S1 \/ S2
1327 avl_fetch_mem_from_hyps(El,Hyps,union(A,B),Hyps2), % TO DO: other conditions ?
1328 (check_is_subset(A,Set1,Hyps2,PT1) -> check_is_subset(B,Set2,Hyps2,PT2)
1329 ; check_is_subset(A,Set2,Hyps2,PT1) -> check_is_subset(B,Set1,Hyps2,PT2)).
1330
1331 generate_funapp_binding(['$'(X)],El,[rename(X,El)]).
1332 generate_funapp_binding(['$'(X),'$'(Y)],couple(El1,El2),[rename(X,El1),rename(Y,El2)]).
1333 generate_funapp_binding(['$'(X),'$'(Y),'$'(Z)],couple(couple(El1,El2),El3),[rename(X,El1),rename(Y,El2),rename(Z,El3)]).
1334 % TO DO: create substitution for more arguments and other parameters
1335
1336
1337 check_member_of_range(El,reverse(Func2),Hyps,reverse(PT)) :- !,check_member_of_domain(El,Func2,Hyps,PT).
1338 check_member_of_range('$'(ID),Func2,Hyps,PT) :-
1339 avl_fetch_worthwhile_equal_from_hyps('$'(ID),Hyps,Value,Hyps2),
1340 check_member_of_range(Value,Func2,Hyps2,PT).
1341 check_member_of_range(function(Func1,_),Func2,Hyps,func_app_in_range) :- % f(.) : ran(f)
1342 check_equal(Func1,Func2,Hyps,_).
1343
1344
1345 % subset transitivity for unary operators:
1346 subset_transitivity_rule(pow_subset(A),pow_subset(B),A,B).
1347
1348 subset_transitivity_rule(pow1_subset(A),pow1_subset(B),A,B).
1349 subset_transitivity_rule(pow1_subset(A),pow_subset(B),A,B).
1350
1351 subset_transitivity_rule(fin_subset(A),fin_subset(B),A,B).
1352 subset_transitivity_rule(fin_subset(A),pow_subset(B),A,B).
1353
1354 subset_transitivity_rule(fin1_subset(A),fin1_subset(B),A,B).
1355 subset_transitivity_rule(fin1_subset(A),fin_subset(B),A,B).
1356 subset_transitivity_rule(fin1_subset(A),pow1_subset(B),A,B).
1357 subset_transitivity_rule(fin1_subset(A),pow_subset(B),A,B).
1358
1359 subset_transitivity_rule(seq(A),seq(B),A,B).
1360 subset_transitivity_rule(seq(A),partial_function(typeset,B),A,B).
1361
1362 subset_transitivity_rule(seq1(A),seq1(B),A,B).
1363 subset_transitivity_rule(seq1(A),seq(B),A,B).
1364 subset_transitivity_rule(seq1(A),partial_function(typeset,B),A,B).
1365
1366 subset_transitivity_rule(iseq(A),iseq(B),A,B).
1367 subset_transitivity_rule(iseq(A),seq(B),A,B).
1368 subset_transitivity_rule(iseq(A),partial_function(typeset,B),A,B).
1369
1370 subset_transitivity_rule(iseq1(A),iseq1(B),A,B).
1371 subset_transitivity_rule(iseq1(A),iseq(B),A,B).
1372 subset_transitivity_rule(iseq1(A),seq1(B),A,B).
1373 subset_transitivity_rule(iseq1(A),seq(B),A,B).
1374 subset_transitivity_rule(iseq1(A),partial_function(typeset,B),A,B).
1375
1376 subset_transitivity_rule(perm(A),perm(B),A,B).
1377 subset_transitivity_rule(perm(A),iseq(B),A,B).
1378 subset_transitivity_rule(perm(A),seq(B),A,B).
1379 subset_transitivity_rule(perm(A),partial_function(typeset,B),A,B).
1380
1381
1382 subset_transitivity_rule(range(A),domain(reverse(B)),A,B).
1383 subset_transitivity_rule(range(A),range(B),A,B).
1384 subset_transitivity_rule(range(reverse(A)),domain(B),A,B).
1385 subset_transitivity_rule(domain(reverse(A)),range(B),A,B).
1386 subset_transitivity_rule(domain(A),domain(B),A,B). % dom(A) <: dom(B) if A <:B
1387 subset_transitivity_rule(domain(A),range(reverse(B)),A,B).
1388 subset_transitivity_rule(reverse(A),reverse(B),A,B).
1389 subset_transitivity_rule(rev(A),rev(B),A,B).
1390 subset_transitivity_rule(identity(A),identity(B),A,B).
1391
1392 % TO DO: add rules for binary operators
1393 subset_bin_transitivity_rule(partial_function(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1394 subset_bin_transitivity_rule(partial_injection(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1395 subset_bin_transitivity_rule(partial_surjection(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1396 subset_bin_transitivity_rule(partial_bijection(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1397 subset_bin_transitivity_rule(total_function(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1398 subset_bin_transitivity_rule(total_injection(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1399 subset_bin_transitivity_rule(total_surjection(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1400 subset_bin_transitivity_rule(total_bijection(A1,A2),partial_function(B1,B2),A1,A2,B1,B2).
1401 subset_bin_transitivity_rule(image(A1,A2),image(B1,B2),A1,A2,B1,B2). % A1[A2] <: B1[B2] if A1 <: B1 & A2 <: B2
1402 subset_bin_transitivity_rule(domain_restriction(A1,A2),domain_restriction(B1,B2),A1,A2,B1,B2). % A1 <| A2 <: B1 <| B2 if A1 <: B1 & A2 <: B2
1403 subset_bin_transitivity_rule(range_restriction(A1,A2),range_restriction(B1,B2),A1,A2,B1,B2).
1404 subset_bin_transitivity_rule(domain_subtraction(A1,A2),domain_subtraction(B1,B2),B1,A2,A1,B2). % A1 <<| A2 <: B1 <<| B2 if B1 <: A1 & A2 <: B2
1405 subset_bin_transitivity_rule(range_subtraction(A1,A2),range_subtraction(B1,B2),A1,B2,A2,B1). % A1 |>> A2 <: B1|>> B2 if A1 <: B1 & B2 <: A2
1406 % TO DO: add more
1407
1408 % TO DO: instead of is_set_of_sequences_type
1409 %subset_mixed_transitivity_rule(total_function(A1,A2),seq(B2),A2,B2) :- is_interval(A1).
1410
1411
1412 check_in_interval(El,Min,Max,Hyps,PT) :-
1413 check_subset_interval(interval(Min,Max),El,El,Hyps,PT). % calls check_sub_intervals(Min,Max,El,El,Hyps)
1414
1415 % check if an interval is a subset of the first argument
1416 check_subset_interval(union(A,B),L1,U1,Hyps,union(PT)) :- !,
1417 % TO DO: try and merge A,B : union(interval(1,10),set_extension([11]))
1418 (check_subset_interval(A,L1,U1,Hyps,PT) -> true ; check_subset_interval(B,L1,U1,Hyps,PT)).
1419 check_subset_interval(sorted_set_extension(L),L1,U1,Hyps,PT) :- !,
1420 check_subset_interval(set_extension(L),L1,U1,Hyps,PT).
1421 check_subset_interval(set_extension(L),L1,U1,Hyps,set_extension(Nr)) :- !,
1422 % TO DO: maybe merge L into an interval
1423 nth1(Nr,L,El), check_sub_intervals(L1,U1,El,El,Hyps),!.
1424 check_subset_interval(intersection(A,B),L1,U1,Hyps,inter(PTA,PTB)) :- !,
1425 % L1..U1 <: A /\ B if L1..U1 <: A & L1..U1 <: B
1426 (check_subset_interval(A,L1,U1,Hyps,PTA) -> check_subset_interval(B,L1,U1,Hyps,PTB)).
1427 check_subset_interval(interval(L2,U2),L1,U1,Hyps,interval) :-
1428 !,check_sub_intervals(L1,U1,L2,U2,Hyps).
1429 check_subset_interval('NATURAL',L1,_,Hyps,nat) :- !, check_leq(0,L1,Hyps).
1430 check_subset_interval('NATURAL1',L1,_,Hyps,nat1) :- !, check_leq(1,L1,Hyps).
1431 check_subset_interval(value(avl_set(A)),L1,U1,Hyps,avl(PT)) :- !,
1432 (number(L1), number(U1)
1433 -> PT=in(L1,U1),
1434 check_interval_in_custom_set(L1,U1,avl_set(A),no_wf_available)
1435 ; avl_min(A,int(L2)), avl_max(A,int(U2)), PT=min_max(L2,U2,PT2),
1436 check_subset_interval(interval(L2,U2),L1,U1,Hyps,PT2)
1437 ).
1438 check_subset_interval(A,L1,U1,Hyps,rewrite(PT)) :- rewrite_set_expression_exact(A,Hyps,A2,Hyps2),!,
1439 check_subset_interval(A2,L1,U1,Hyps2,PT).
1440 check_subset_interval(domain(Expr),Low,Up,Hyps,dom_seq1) :- % a special rule when using SEQ(1) rather than first(SEQ)
1441 (check_leq(1,Low,Hyps), check_leq(Up,size(Expr),Hyps) % 1..size(s) <: dom(s)
1442 -> check_is_sequence(Expr,Hyps)
1443 ; index_in_non_empty_sequence(Low,Expr,Hyps),
1444 index_in_non_empty_sequence(Up,Expr,Hyps) % 1..1 or size(s)..size(s) <: dom(s) if s:seq1(.)
1445 -> check_is_non_empty_sequence(Expr,Hyps)
1446 ).
1447 check_subset_interval(range(reverse(Expr)),Low,Up,Hyps,PT) :- !,
1448 check_subset_interval(domain(Expr),Low,Up,Hyps,PT).
1449 check_subset_interval(A,Low,Up,Hyps,eq(PT)) :-
1450 avl_fetch_worthwhile_equal_from_hyps(A,Hyps,A2,Hyps2),
1451 rewrite_local_loop_check(A,check_subset_interval,A2,Hyps2,Hyps3),
1452 check_subset_interval(A2,Low,Up,Hyps3,PT).
1453 %check_subset_interval(A,L1,U1,_,_) :- print(check_subset_interval_failed(A,L1,U1)),nl,fail.
1454
1455 % s:seq1(.) => 1:dom(s) & size(s):dom(s)
1456 index_in_non_empty_sequence(1,_,_).
1457 index_in_non_empty_sequence(card(E),E,_).
1458 index_in_non_empty_sequence(size(E),E,_).
1459 index_in_non_empty_sequence('$'(X),E,Hyps) :-
1460 avl_fetch_equal_from_hyps('$'(X),Hyps,Y,Hyps2),
1461 rewrite_local_loop_check(X,index_in_non_empty_sequence,Y,Hyps2,Hyps3),
1462 index_in_non_empty_sequence(Y,E,Hyps3).
1463
1464 % check if L1..U1 <: L2..U2
1465 check_sub_intervals(L1,L1,L2,U2,Hyps) :- (L1=L2 ; L1=U2),!,
1466 check_not_empty_set(interval(L2,U2),Hyps).
1467 check_sub_intervals(L1,U1,L2,U2,Hyps) :- % L1..U1 <: L2..U2 if L2 <= L1 & U1 <= U2
1468 check_leq(L2,L1,Hyps),!,
1469 check_leq(U1,U2,Hyps).
1470
1471
1472
1473 % some exact rewrite steps
1474 rewrite_set_expression_exact(domain(A),Hyps,Res,Hyps2) :- compute_exact_domain(A,Hyps,Dom,Hyps2),!,
1475 %print(rewrote(domain(A))),nl, print(Dom),nl,
1476 (A='$'(ID) -> not_occurs(Dom,ID) ; true), % prevent silly rewrites
1477 Res=Dom.
1478 rewrite_set_expression_exact(range(A),Hyps,Res,Hyps2) :- compute_exact_range(A,Hyps,Ran,Hyps2),!,
1479 %print(rewrote(range(A))),nl, print(Ran),nl,
1480 (A='$'(ID) -> not_occurs(Ran,ID) ; true), % prevent silly rewrites
1481 Res=Ran.
1482 rewrite_set_expression_exact(intersection(A,B),Hyps,Res,Hyps) :-
1483 (is_empty_set(A) -> Res=empty_set ; is_empty_set(B) -> Res=empty_set).
1484 rewrite_set_expression_exact(set_subtraction(A,B),Hyps,Res,Hyps) :-
1485 (is_empty_set(A) -> Res=empty_set ; is_empty_set(B) -> Res=A).
1486 rewrite_set_expression_exact(union(A,B),Hyps,Res,Hyps1) :-
1487 (check_equal(A,B,Hyps,Hyps1) -> Res=A
1488 ; Hyps1=Hyps, merge_set_extensions(union(A,B),List,[]),
1489 construct_set_extension(List,Hyps,Res)).
1490 rewrite_set_expression_exact(value(closure(P,T,B)),Hyps,Res,Hyps) :- nonvar(P),
1491 is_interval_closure(P,T,B,LOW,UP), number(LOW),number(UP),!,
1492 Res = interval(LOW,UP).
1493 rewrite_set_expression_exact(assertion_expression(_,_,Expr),Hyps,Expr,Hyps). % TO DO: add Predicate to Hyps ?
1494 % Note one can have equalities like f = f~~ (in FunLawsWithLambda.mch); hence important to pass Hyps for cycle detection
1495
1496 is_empty_set(empty_set).
1497 is_empty_set(empty_sequence).
1498 is_empty_set(value(X)) :- X==[].
1499
1500 merge_set_extensions(empty_set) --> [].
1501 merge_set_extensions(empty_sequence) --> [].
1502 merge_set_extensions(set_extension(L)) --> L.
1503 merge_set_extensions(sorted_set_extension(L)) --> L.
1504 merge_set_extensions(union(A,B)) --> merge_set_extensions(A), merge_set_extensions(B).
1505
1506 % check if AVL is a subset of the first argument
1507 check_subset_avl(union(A,B),AVL1,Hyps) :- !, % TO DO: try and merge A,B
1508 (check_subset_avl(A,AVL1,Hyps) -> true ; check_subset_avl(B,AVL1,Hyps)).
1509 check_subset_avl(intersection(A,B),AVL1,Hyps) :- !, % AVL <: A /\ B if AVL <: A & AVL <: B
1510 (check_subset_avl(A,AVL1,Hyps) -> check_subset_avl(B,AVL1,Hyps)).
1511 check_subset_avl(interval(L2,U2),AVL,_) :- number(L2),number(U2),!,
1512 check_avl_in_interval(AVL,L2,U2).
1513 check_subset_avl(value(avl_set(AVL2)),AVL1,_) :- !, check_avl_subset(AVL1,AVL2).
1514 check_subset_avl(seq(MAX),AVL,Hyps) :- maximal_set(MAX,Hyps), !, is_avl_set_of_sequences(AVL,seq).
1515 check_subset_avl(seq1(MAX),AVL,Hyps) :- maximal_set(MAX,Hyps), !, is_avl_set_of_sequences(AVL,seq1).
1516 check_subset_avl(seq(seq(MAX)),AVL,Hyps) :- maximal_set(MAX,Hyps),
1517 % comes from general concat
1518 custom_explicit_sets:is_one_element_avl(AVL,Element), % usually one value from try_get_set_of_possible_values
1519 is_sequence(Element,seq),
1520 expand_custom_set_to_list(Element,ListOfSeqs),
1521 maplist(is_subsequence,ListOfSeqs).
1522 check_subset_avl(A,AVL,Hyps) :- rewrite_set_expression_exact(A,Hyps,A2,Hyps2),!,
1523 check_subset_avl(A2,AVL,Hyps2).
1524 check_subset_avl(A,AVL,Hyps) :-
1525 avl_fetch_worthwhile_equal_from_hyps(A,Hyps,A2,Hyps2),
1526 rewrite_local_loop_check(A,check_subset_avl,A2,Hyps2,Hyps3),
1527 check_subset_avl(A2,AVL,Hyps3).
1528 %check_subset_avl(A,AVL,_) :- print(check_subset_avl_failed(A,AVL)),nl,fail.
1529
1530 is_subsequence((int(_Index),Sequence)) :- is_sequence(Sequence,seq).
1531
1532 is_sequence(avl_set(SeqAVL),_) :- is_avl_sequence(SeqAVL).
1533 is_sequence([],seq).
1534
1535 % check if all elements of the AVL are sequences
1536 is_avl_set_of_sequences(AVL,SeqType) :- avl_height(AVL,Height), Height<7,
1537 expand_custom_set_to_list(avl_set(AVL),ListOfSeqs),
1538 l_is_sequence(ListOfSeqs,SeqType).
1539 l_is_sequence([],_).
1540 l_is_sequence([S1|T],SeqType) :- is_sequence(S1,SeqType), l_is_sequence(T,SeqType).
1541
1542
1543 :- use_module(probsrc(b_global_sets),[b_global_set/1]).
1544 maximal_set('INTEGER',_). % integer_set('INTEGER') ?
1545 maximal_set(real_set,_).
1546 maximal_set(string_set,_).
1547 maximal_set(bool_set,_).
1548 maximal_set('typeset',_).
1549 maximal_set(cartesian_product(A,B),Hyps) :- maximal_set(A,Hyps), maximal_set(B,Hyps).
1550 maximal_set(relations(A,B),Hyps) :- maximal_set(A,Hyps), maximal_set(B,Hyps).
1551 maximal_set(pow_subset(A),Hyps) :- maximal_set(A,Hyps).
1552 maximal_set('$'(ID),Hyps) :- is_global_set_id(ID,Hyps).
1553 maximal_set(value(avl_set(AVL)),_) :-
1554 quick_definitely_maximal_set_avl(AVL).
1555 maximal_set(set_extension(A),Hyps) :- maximal_set_extension(A,Hyps).
1556 % sorted_set_extension is never maximal
1557 maximal_set(comprehension_set(_,truth),_).
1558 %maximal_set(X,_) :- print(max_fail(X)),nl,fail.
1559
1560 construct_set_extension([],_,Res) :- !, Res=empty_set.
1561 construct_set_extension(L,Hyps,Res) :- maximal_set_extension(L,Hyps),!, Res='typeset'.
1562 construct_set_extension(L,_,sorted_set_extension(SL)) :-
1563 %length(L,Len), format('Construct set_extension ~w~n',[Len]),
1564 sort(L,SL).
1565
1566 maximal_set_extension([boolean_true|T],_) :- !, member(boolean_false,T).
1567 maximal_set_extension([boolean_false|T],_) :- !, member(boolean_true,T).
1568 maximal_set_extension(['$'(ID)|T],Hyps) :-
1569 is_global_constant_id(ID,Hyps),
1570 sort(['$'(ID)|T],Sorted),
1571 maplist(is_glob_const_id(Hyps),Sorted), % all elements are global constants
1572 lookup_global_constant(ID,fd(_,GlobalSet)),
1573 enumerated_set(GlobalSet),b_global_set_cardinality(GlobalSet,Size),
1574 length(Sorted,Size).
1575 %maximal_set_extension(X,_) :- print(maximal_failed(X)),nl,fail.
1576
1577 is_glob_const_id(Hyps,'$'(ID)) :- is_global_constant_id(ID,Hyps).
1578
1579
1580 is_global_set_id(ID,Hyps) :-
1581 b_global_set(ID),
1582 \+ is_hyp_var(ID,Hyps). % global enumerated set visible
1583
1584 % often called with 0 or 1 in first position
1585 check_leq(I,I,_) :- !.
1586 check_leq(if_then_else(_,A1,A2),B,Hyp) :- !, % TODO?: treat if-then-else for B
1587 (check_leq(A1,B,Hyp) -> check_leq(A2,B,Hyp)).
1588 check_leq(N1,N2,_) :- number(N1), number(N2), !, N1 =< N2.
1589 check_leq(N1,N2,hyp_rec(AVL,_)) :-
1590 (avl_fetch(less_equal(N1,N2),AVL)
1591 -> true
1592 ; avl_fetch(equal(N1,N2),AVL)),!.
1593 check_leq(min(List),N2,Hyps) :- !,
1594 member(N1,List), check_leq(N1,N2,Hyps),!.
1595 check_leq(min_int,N2,Hyps) :- !, % we could look up the value of MININT; but largest possible value is -1
1596 MININT is -1,
1597 check_leq(MININT,N2,Hyps).
1598 check_leq(N1,max_int,Hyps) :- !, % we could look up the value of MAXINT; but smallest possible value is 1
1599 MAXINT = 1,
1600 check_leq(N1,MAXINT,Hyps).
1601 check_leq(N1,N2,Hyps) :-
1602 rewrite_integer(N2,Hyps,RN2,Hyps2),!,
1603 check_leq(N1,RN2,Hyps2).
1604 check_leq(add(N1,1),N2,Hyps) :-
1605 check_not_equal(N1,N2,Hyps),
1606 !, % N1+1 <= N2 if N1 <= N2 & N1 \= N2 ; happens quite often in array traversals
1607 check_leq(N1,N2,Hyps).
1608 check_leq(N1,minus(N2,1),Hyps) :- % variation of rule above
1609 check_not_equal(N1,N2,Hyps),
1610 !, % N1 <= N2-1 if N1 <= N2 & N1 \= N2 ; happens in array traversals
1611 check_leq(N1,N2,Hyps).
1612 check_leq(Nr,X,Hyps) :-
1613 \+ number(X),
1614 try_get_set_of_possible_values(X,Hyps,SetX,Hyps2),
1615 check_all_values_geq_val(SetX,Nr,Hyps2),!.
1616 check_leq(Nr,X,Hyps) :- number(Nr), !,
1617 check_leq_nr(Nr,X,Hyps).
1618 check_leq(N1,N2,Hyps) :- rewrite_integer(N1,Hyps,RN1,Hyps2),!,
1619 check_leq(RN1,N2,Hyps2).
1620 check_leq(Add,N2,Hyps) :- % A+N1 <= N2 <=> A <= N2-N1
1621 number(N2),
1622 add_with_number(Add,A,N1),!,
1623 N21 is N2-N1,
1624 check_leq(A,N21,Hyps).
1625 check_leq(Mul,N2,Hyps) :- % A*N1 <= N2 if A <= N2/N1 if N1>0 and N2 mod N1=0
1626 number(N2),
1627 mul_with_number(Mul,A,N1),
1628 % symmetrical case to check_leq_nr(N1,Mul,Hyps), with N1=-N2
1629 !,
1630 ( N1=0 -> check_leq(0,N2,Hyps)
1631 ; N1>0 -> N21 is N2 div N1, % A <= 1.5 means we have to have A <= 1;
1632 % A <= -1.5 means we have to have A <= -2 -3 div 2 =:= -2
1633 check_leq(A,N21,Hyps)
1634 ; cdiv(N2,N1,N21), % A >= 1.5 means we have to have A >= 2 ; cdiv
1635 check_leq(N21,A,Hyps)
1636 ).
1637 check_leq(div(A,N1),N2,Hyps) :- % A/N1 <= N2 <=> A <= (N1+1)*N2-1
1638 number(N1),number(N2), N1>0,
1639 !,
1640 N12 is (N2+1)*N1-1,
1641 check_leq(A,N12,Hyps).
1642 check_leq(div(A1,N1),A2,Hyps) :- number(N1), N1>0, % A/N1 <= A if N1>0 & A>=0
1643 check_equal(A1,A2,Hyps,Hyps1),!,
1644 check_leq(0,A1,Hyps1).
1645 check_leq(modulo(A1,A2),B,Hyps) :-
1646 \+ z_or_tla_minor_mode, % args to mod must be non-negative, modulo is between 0..A2-1
1647 ((number(A2),A21 is A2-1 -> check_leq(A21,B,Hyps)
1648 ; B=minus(B1,1) -> check_leq(A2,B1,Hyps)
1649 ; check_leq(A2,B,Hyps)
1650 ) -> true
1651 ; check_leq(A1,B,Hyps)).
1652 % TO DO: modulo as RHS
1653 check_leq(unary_minus(A),unary_minus(B),Hyps) :- !, % -A <= -B ---> A >= B
1654 check_leq(B,A,Hyps).
1655 check_leq(X,Nr,Hyps) :- \+ number(X),
1656 try_get_set_of_possible_values(X,Hyps,SetX,Hyps2),
1657 check_all_values_leq_val(SetX,Nr,Hyps2),!. % cut here; get set of possible values can give multiple solutions
1658 check_leq(Minus,N2,Hyps) :- minus_with_number(Minus,N1,Nr),
1659 Nr >= 0,!, % N1-Nr <= N2 if N1 <= N2
1660 % Both N1 and N2 are usually not numbers here
1661 check_leq(N1,N2,Hyps).
1662 check_leq(N1,Add,Hyps) :-
1663 add_with_number(Add,N2,Nr),Nr >= 0,!, % N1 <= N2+Nr if N1 <= N2
1664 % Both N1 and N2 are usually not numbers here
1665 check_leq(N1,N2,Hyps).
1666 check_leq(add(A,B),E,Hyps) :- decompose_floor(E,X,Y), % e.g. divide a number E by 2
1667 check_leq(A,X,Hyps), % TO DO: other combinations like A <= 0, B <= Nr; or we could try_get_set_of_possible_values
1668 check_leq(B,Y,Hyps).
1669 check_leq('$'(X),N2,Hyps) :-
1670 avl_fetch_binop_from_hyps('$'(X),less_equal,Hyps,Y,Hyps2),
1671 (number(N2),avl_fetch_not_equal('$'(X),Y,Hyps) % as we know X and Y we can use regular avl_fetch
1672 -> N21 is N2+1 % we have X<Y in the Hypotheses, we just require that Y <= N2+1
1673 ; N21=N2),
1674 check_leq(Y,N21,Hyps2).
1675 check_leq(Nr,'$'(X),Hyps) :-
1676 ( avl_fetch_equal_from_hyps('$'(X),Hyps,Y,Hyps2),
1677 rewrite_local_loop_check(X,check_leq,Y,Hyps2,Hyps3),
1678 check_leq(Nr,Y,Hyps3) -> true
1679 % ; avl_fetch_binop_from_hyps('$'(X),greater,Hyps,Y,Hyps2), N1 is Nr-1, check_leq(N1,Y,Hyps2) -> true
1680 ; avl_fetch_binop_from_hyps('$'(X),greater_equal,Hyps,Y,Hyps2),
1681 % note: Nr is not a number, hence probably not useful to check not_equal in Hyps, as we cannot compute Nr-1
1682 check_leq(Nr,Y,Hyps2)
1683 -> true
1684 ),
1685 !.
1686 %check_leq(A,B,_H) :- print(check_leq_failed(A,B)),nl, portray_hyps(_H),nl,fail.
1687
1688 % decompose an expression E into A and B so that A+B <= E
1689 decompose_floor(Nr,A,B) :- number(Nr),!,
1690 A is Nr div 2, B=A. % -11 div 2 -> -6, -1 div 2 = -1, 11 div 2 = 5
1691 decompose_floor(add(A,B),A,B). % TO DO: we could try other order
1692 decompose_floor(Mul,A,A) :- mul_with_number(Mul,A,Nr), Nr>=2. % we could divide Nr by 2
1693
1694 % ceiling division utility
1695 cdiv(N1,N2,Res) :-
1696 (N1 mod N2 =:= 0 -> Res is N1//N2
1697 ; Res is (N1 div N2)+1).
1698
1699 % Number <= Expression
1700 check_leq_nr(N1,Add,Hyps) :- % N1 <= A+N2 <=> N1-N2 <= A
1701 add_with_number(Add,A,N2), !,
1702 N12 is N1-N2,
1703 check_leq(N12,A,Hyps).
1704 check_leq_nr(Nr,add(N1,N2),Hyps) :- !, % 0 <= A+B if 0 <= A & 0 <= B
1705 % Both N1 and N2 are usually not numbers here
1706 cdiv(Nr,2,Nr2), % Note: cdiv(-3,2) = 1, cdiv(3,2)=2
1707 check_leq(Nr2,N1,Hyps),
1708 check_leq(Nr2,N2,Hyps).
1709 check_leq_nr(N1,minus(N2,B),Hyps) :- % N1 <= N2-B <=> B <= N2-N1
1710 number(N2), !,
1711 N21 is N2-N1,
1712 check_leq(B,N21,Hyps).
1713 check_leq_nr(N1,Mul,Hyps) :- % N1 <= A*N2 if N1/N2 <= A and N2>0
1714 mul_with_number(Mul,A,N2),
1715 !,
1716 ( N2=0 -> check_leq(N1,0,Hyps)
1717 ; N2>0 -> cdiv(N1,N2,N12), % cdiv
1718 % if 1.5 <= A --> 2 <= A ; if -1.5 <= A --> -1 <= A
1719 check_leq(N12,A,Hyps)
1720 ; N12 is N1 div N2,
1721 % if A <= 1.5 --> A <= 1 ; if -1.5 <= A --> -1 <= A
1722 % A <= -1.5 means we have to have A <= -2 -3 div 2 =:= -2
1723 check_leq(A,N12,Hyps)
1724 ).
1725 check_leq_nr(0,multiplication(A,B),Hyps) :- !, % 0 <= A*B if A and B have same parity
1726 (check_leq(0,A,Hyps) -> check_leq(0,B,Hyps)
1727 ; check_leq(A,0,Hyps) -> check_leq(B,0,Hyps)).
1728 check_leq_nr(N1,div(A,N2),Hyps) :- % N1 <= A/N2 <=> N1*N2 <= A
1729 number(N2), N2>0,
1730 !,
1731 N12 is N1*N2,
1732 check_leq(N12,A,Hyps).
1733 check_leq_nr(0,div(A,B),Hyps) :- !, % 0 <= A/B if A and B have same parity
1734 (check_leq(0,A,Hyps) -> check_leq(0,B,Hyps) % B \= 0 checked by other WD condition
1735 ; check_leq(A,0,Hyps) -> check_leq(B,0,Hyps)). % ditto
1736 check_leq_nr(Nr,'$'(X),Hyps) :-
1737 ( avl_fetch_equal_from_hyps('$'(X),Hyps,Y,Hyps2),
1738 rewrite_local_loop_check(X,check_leq,Y,Hyps2,Hyps3),
1739 check_leq(Nr,Y,Hyps3) -> true
1740 % ; avl_fetch_binop_from_hyps('$'(X),greater,Hyps,Y,Hyps2), N1 is Nr-1, check_leq(N1,Y,Hyps2) -> true
1741 ; avl_fetch_binop_from_hyps('$'(X),greater_equal,Hyps,Y,Hyps2),
1742 (avl_fetch_not_equal('$'(X),Y,Hyps2) % we have X < Y => sufficient to prove N-1 <= Y
1743 -> N1 is Nr-1, check_leq(N1,Y,Hyps2)
1744 ; check_leq(Nr,Y,Hyps2)
1745 )
1746 ),
1747 !.
1748 check_leq_nr(Nr,modulo(A,B),Hyps) :- \+ z_or_tla_minor_mode, % A and B must be non-negative, modulo is between 0..B-1
1749 (Nr =< 0 -> true % modulo always positive or 0
1750 ; % Nr <= A mod B if Nr <= A and A < B
1751 check_leq_nr(Nr,A,Hyps), % Nr <= A
1752 check_less(A,B,Hyps)). % and A < B so that modulo does not take effect
1753 check_leq_nr(Nr,size(Seq),Hyps) :- check_leq_nr_size(Nr,Seq,Hyps).
1754 check_leq_nr(1,power_of(A,_),Hyps) :- check_leq(1,A,Hyps). % Nr <= 1 <= x**y if x >= 1
1755 check_leq_nr(Nr,power_of(A,_),Hyps) :- number(Nr), Nr =< 0,
1756 check_leq(0,A,Hyps). % 0 <= x**y if x >= 0
1757 %check_leq_nr(A,B,_H) :- print(check_leq_nr_failed(A,B)),nl,fail.
1758
1759 check_less(A,B,Hyps) :-
1760 check_leq(A,B,Hyps),!,
1761 check_not_equal(A,B,Hyps).
1762
1763 :- use_module(probsrc(specfile),[z_or_tla_minor_mode/0]).
1764
1765
1766 check_leq_nr_size(Nr,restrict_front(_,RestrN),Hyps) :- !, % X <= size( Seq /|\ N) if X <= N as WD condition implies N : 0..size(Seq)
1767 check_leq_nr(Nr,RestrN,Hyps).
1768 check_leq_nr_size(1,Seq,Hyps) :- check_is_non_empty_sequence(Seq,Hyps).
1769
1770 add_with_number(add(A,B),X,Nr) :- (number(A) -> Nr=A, X=B ; number(B) -> Nr=B, X=A).
1771 add_with_number(minus(A,B),A,Nr) :- number(B), Nr is -B.
1772 mul_with_number(multiplication(A,B),X,Nr) :- (number(A) -> Nr=A, X=B ; number(B) -> Nr=B, X=A).
1773 mul_with_number(unary_minus(A),A,Nr) :- Nr is -1.
1774 minus_with_number(add(A,B),A,Nr) :- number(B), Nr is -B.
1775 minus_with_number(minus(A,Nr),A,Nr) :- number(Nr).
1776
1777 %get_possible_values('$'(X),Hyps,SetX,Hyps2) :-
1778 % avl_fetch_binop_from_hyps('$'(X),member,Hyps,SetX,Hyps2).
1779
1780 % a few rewrite rules for integer expressions
1781 % addition/multiplication is dealt with in other places (and is usually done symbolically)
1782 rewrite_integer(size(Seq),Hyps,Size,Hyps2) :- % can happen for sequence POs, like restrict_front,tail
1783 compute_card_of_set(Seq,Hyps,Size,Hyps2),!.
1784 rewrite_integer(card(Seq),Hyps,Size,Hyps2) :- !, rewrite_card_of_set(Seq,Hyps,Size,Hyps2).
1785 rewrite_integer(assertion_expression(_,_,Expr),Hyps,Expr,Hyps). % TO DO: add Predicate to Hyps?
1786 % the following may be done by ast_cleanup, but e.g., when applying functions no cleanup is run in l_rename_and_prove_goals
1787 rewrite_integer(add(A,B),Hyps,Res,Hyps2) :- compute_integer(A,Hyps,A1,Hyps1), number(A1),
1788 compute_integer(B,Hyps1,B1,Hyps2), number(B1),
1789 Res is A1+B1.
1790 rewrite_integer(unary_minus(A),Hyps,Res,Hyps2) :- compute_integer(A,Hyps,A1,Hyps2), number(A1),
1791 Res is -A1.
1792 rewrite_integer(minus(A,B),Hyps,Res,Hyps2) :- compute_integer(A,Hyps,A1,Hyps1), number(A1),
1793 compute_integer(B,Hyps1,B1,Hyps2), number(B1),
1794 Res is A1-B1.
1795 rewrite_integer(power_of(A,B),Hyps,Res,Hyps2) :- compute_integer(A,Hyps,A1,Hyps1), number(A1),
1796 compute_integer(B,Hyps1,B1,Hyps2), number(B1), B1 >=0,
1797 % check if not too large:
1798 (abs(A1) < 2 -> true
1799 ; A1=2 -> B1 =< 64
1800 ; A1 < 4294967296 -> B1 =< 2
1801 ; B1 =< 0
1802 ),
1803 Res is A1 ^ B1.
1804 rewrite_integer(modulo(A,B),Hyps,Res,Hyps2) :- compute_integer(A,Hyps,A1,Hyps1),number(A1),
1805 A1 >= 0,
1806 compute_integer(B,Hyps1,B1,Hyps2), number(B1), B1 >0,
1807 Res is A1 mod B1.
1808 rewrite_integer(division(A,B),Hyps,Res,Hyps2) :- compute_integer(A,Hyps,A1,Hyps1), number(A1),
1809 compute_integer(B,Hyps1,B1,Hyps2), number(B1), B1 \= 0,
1810 Res is A1 // B1. % Prolog division corresponds to B division
1811 rewrite_integer(integer(X),Hyps,X,Hyps) :- integer(X), write(wd_unnormalised_integer(X)),nl. % should not happen
1812 rewrite_integer(real(X),Hyps,Res,Hyps) :- atom(X), construct_real(X,term(floating(Res))).
1813 rewrite_integer(convert_int_floor(RX),Hyps,X,Hyps1) :-
1814 compute_integer(RX,Hyps,RX1,Hyps1), number(RX1), X is floor(RX1). %, print(rewr_floor(RX,X)),nl.
1815 rewrite_integer(convert_int_ceiling(RX),Hyps,X,Hyps1) :-
1816 compute_integer(RX,Hyps,RX1,Hyps1), number(RX1), X is ceiling(RX1).
1817 rewrite_integer(convert_real(A),Hyps,RX,Hyps1) :-
1818 compute_integer(A,Hyps,A1,Hyps1), integer(A1), RX is float(A1).
1819
1820 rewrite_card_of_set(Set,Hyps,Size,Hyps2) :-
1821 compute_card_of_set(Set,Hyps,Size,Hyps2),!.
1822 rewrite_card_of_set(interval(1,Up),Hyps,Size,Hyps) :- !, % useful if Up is a symbolic expression
1823 Size=Up.
1824 rewrite_card_of_set(Set,Hyps,Size,Hyps2) :- rewrite_set_expression_exact(Set,Hyps,S2,Hyps1),
1825 rewrite_card_of_set(S2,Hyps1,Size,Hyps2).
1826
1827 compute_integer(A,H,A,H) :- number(A),!.
1828 compute_integer(A,H,Res,H2) :- rewrite_integer(A,H,Res,H2).
1829
1830 :- use_module(probsrc(b_global_sets), [enumerated_set/1, b_global_set_cardinality/2]).
1831 compute_card_of_set(empty_set,Hyps,0,Hyps).
1832 compute_card_of_set(empty_sequence,Hyps,0,Hyps).
1833 compute_card_of_set(bool_set,Hyps,2,Hyps).
1834 compute_card_of_set(interval(L,U),Hyps,Size,Hyps) :- number(L), number(U), Size is U+1-L.
1835 compute_card_of_set(value(Val),Hyps,Size,Hyps) :- get_set_val_size(Val,Size).
1836 compute_card_of_set(sequence_extension(List),Hyps,Size,Hyps) :- length(List,Size).
1837 compute_card_of_set(set_extension([_]),Hyps,Size,Hyps) :- Size=1. % to do check if all elements definitely different
1838 compute_card_of_set(sorted_set_extension([_]),Hyps,Size,Hyps) :- Size=1. % ditto
1839 compute_card_of_set(rev(A),Hyps,Size,Hyps2) :- !, compute_card_of_set(A,Hyps,Size,Hyps2).
1840 compute_card_of_set(front(A),Hyps,Size,Hyps2) :- !, compute_card_of_set(tail(A),Hyps,Size,Hyps2).
1841 compute_card_of_set(tail(A),Hyps,Size,Hyps2) :- !,
1842 compute_card_of_set(A,Hyps,Size1,Hyps2), number(Size1), Size1>0,
1843 Size is Size1-1.
1844 compute_card_of_set(concat(A,B),Hyps,Size,Hyps2) :-
1845 compute_card_of_set(A,Hyps,SA,Hyps1),!,
1846 compute_card_of_set(B,Hyps1,SB,Hyps2),
1847 Size is SA+SB.
1848 compute_card_of_set('$'(ID),Hyps,Size,Hyps) :- is_enumerated_set(ID,Hyps),
1849 !,
1850 b_global_set_cardinality(ID,Size).
1851 compute_card_of_set('$'(ID),Hyps,Size,Hyps2) :-
1852 avl_fetch_equal_from_hyps('$'(ID),Hyps,X2,Hyps1),
1853 compute_card_of_set(X2,Hyps1,Size,Hyps2),!.
1854 compute_card_of_set('$'(ID),Hyps,Size,Hyps4) :- % e.g., f:1..10 --> BOOL --> card(f) = 10
1855 avl_fetch_binop_from_hyps('$'(ID),member,Hyps,FunctionType,Hyps1),
1856 is_partial_function_type(FunctionType,Hyps1,Hyps2),
1857 get_exact_domain_of_func_or_rel_type(FunctionType,Hyps2,Dom,Hyps3),
1858 compute_card_of_set(Dom,Hyps3,Size,Hyps4).
1859 %compute_card_of_set(S,_,_,_) :- print(card_fail(S)),nl,fail.
1860
1861 get_set_val_size([],0).
1862 get_set_val_size(avl_set(AVL),Size) :- avl_size(AVL,Size).
1863
1864
1865 check_all_values_geq_val(intersection(A,B),Nr,Hyps) :-
1866 (check_all_values_geq_val(A,Nr,Hyps) -> true ; check_all_values_geq_val(B,Nr,Hyps)).
1867 check_all_values_geq_val(union(A,B),Nr,Hyps) :-
1868 (check_all_values_geq_val(A,Nr,Hyps) -> check_all_values_geq_val(B,Nr,Hyps)).
1869 check_all_values_geq_val(set_subtraction(A,_),Nr,Hyps) :-
1870 check_all_values_geq_val(A,Nr,Hyps).
1871 check_all_values_geq_val(interval(From,_),Nr,Hyps) :- check_leq(Nr,From,Hyps).
1872 check_all_values_geq_val(value(avl_set(AVL)),Nr,Hyps) :- avl_min(AVL,int(Min)), check_leq(Nr,Min,Hyps).
1873 check_all_values_geq_val('NATURAL',Nr,Hyps) :- check_leq(Nr,0,Hyps).
1874 check_all_values_geq_val('NATURAL1',Nr,Hyps) :- check_leq(Nr,1,Hyps).
1875 check_all_values_geq_val(domain(Func),Nr,Hyps) :-
1876 get_domain_or_superset(Func,Hyps,DomFunc,Hyps2),
1877 check_all_values_geq_val(DomFunc,Nr,Hyps2).
1878 check_all_values_geq_val(range(Func),Nr,Hyps) :-
1879 get_range_or_superset(Func,Hyps,RanFunc,Hyps2),
1880 check_all_values_geq_val(RanFunc,Nr,Hyps2).
1881 check_all_values_geq_val(sorted_set_extension(L),Nr,Hyps) :- !, check_all_values_geq_val(set_extension(L),Nr,Hyps).
1882 check_all_values_geq_val(set_extension(L),Nr,Hyps) :-
1883 (member(Val,L), \+ check_leq(Nr,Val,Hyps) -> fail ; true).
1884 check_all_values_geq_val('$'(X),Nr,Hyps) :-
1885 avl_fetch_equal_from_hyps('$'(X),Hyps,Y,Hyps2),
1886 rewrite_local_loop_check(X,check_all_values_geq_val,Y,Hyps2,Hyps3),
1887 check_all_values_geq_val(Y,Nr,Hyps3).
1888 %check_all_values_geq_val(A,B,_) :- print(check_all_values_geq_val_failed(A,B)),nl,fail.
1889
1890 check_all_values_neq_nr(intersection(A,B),Nr,Hyps) :-
1891 (check_all_values_neq_nr(A,Nr,Hyps) -> true ; check_all_values_neq_nr(B,Nr,Hyps)).
1892 check_all_values_neq_nr(union(A,B),Nr,Hyps) :-
1893 (check_all_values_neq_nr(A,Nr,Hyps) -> check_all_values_neq_nr(B,Nr,Hyps)).
1894 check_all_values_neq_nr(set_subtraction(A,_),Nr,Hyps) :-
1895 check_all_values_neq_nr(A,Nr,Hyps).
1896 check_all_values_neq_nr(interval(From,_),Nr,Hyps) :- number(From),F1 is From-1, check_leq(Nr,F1,Hyps).
1897 check_all_values_neq_nr(interval(_,To),Nr,Hyps) :- number(To),T1 is To+1, check_leq(T1,Nr,Hyps).
1898 check_all_values_neq_nr('NATURAL',Nr,Hyps) :- check_leq(Nr,-1,Hyps).
1899 check_all_values_neq_nr('NATURAL1',Nr,Hyps) :- check_leq(Nr,0,Hyps).
1900 check_all_values_neq_nr(sorted_set_extension(L),Nr,Hyps) :- !, check_all_values_neq_nr(set_extension(L),Nr,Hyps).
1901 check_all_values_neq_nr(set_extension(L),Nr,Hyps) :-
1902 (member(Val,L), \+ check_not_equal(Val,Nr,Hyps) -> fail ; true).
1903 check_all_values_neq_nr('$'(X),Nr,Hyps) :-
1904 avl_fetch_equal_from_hyps('$'(X),Hyps,Y,Hyps2),
1905 rewrite_local_loop_check(X,check_all_values_neq_nr,Y,Hyps2,Hyps3),
1906 check_all_values_neq_nr(Y,Nr,Hyps3).
1907 %check_all_values_neq_nr(A,B,_) :- print(check_all_values_neq_nr_failed(A,B)),nl,fail.
1908
1909
1910 check_all_values_leq_val(intersection(A,B),Nr,Hyps) :-
1911 (check_all_values_leq_val(A,Nr,Hyps) -> true ; check_all_values_leq_val(B,Nr,Hyps)).
1912 check_all_values_leq_val(union(A,B),Nr,Hyps) :-
1913 (check_all_values_leq_val(A,Nr,Hyps) -> check_all_values_leq_val(B,Nr,Hyps)).
1914 check_all_values_leq_val(set_subtraction(A,_),Nr,Hyps) :-
1915 check_all_values_leq_val(A,Nr,Hyps).
1916 check_all_values_leq_val(interval(_,To),Nr,Hyps) :- check_leq(To,Nr,Hyps).
1917 check_all_values_leq_val(value(avl_set(AVL)),Nr,Hyps) :- avl_max(AVL,int(Max)), check_leq(Max,Nr,Hyps).
1918 check_all_values_leq_val(domain(Func),Nr,Hyps) :-
1919 get_domain_or_superset(Func,Hyps,DomFunc,Hyps2),
1920 check_all_values_leq_val(DomFunc,Nr,Hyps2).
1921 check_all_values_leq_val(range(Func),Nr,Hyps) :-
1922 get_range_or_superset(Func,Hyps,RanFunc,Hyps2),
1923 check_all_values_leq_val(RanFunc,Nr,Hyps2).
1924 check_all_values_leq_val(sorted_set_extension(L),Nr,Hyps) :- !, check_all_values_leq_val(set_extension(L),Nr,Hyps).
1925 check_all_values_leq_val(set_extension(L),Nr,Hyps) :-
1926 (member(Val,L), \+ check_leq(Val,Nr,Hyps) -> fail ; true).
1927 check_all_values_leq_val('$'(X),Nr,Hyps) :-
1928 avl_fetch_equal_from_hyps('$'(X),Hyps,Y,Hyps2),
1929 rewrite_local_loop_check(X,check_all_values_leq_val,Y,Hyps2,Hyps3),
1930 check_all_values_leq_val(Y,Nr,Hyps3).
1931 %check_all_values_leq_val(A,B,_) :- print(check_all_values_leq_val(A,B)),nl,fail.
1932
1933 % check if two expressions are definitely different
1934 % usually called for check_not_equal 0 or empty_set
1935 check_not_equal(A,B,Hyp) :-
1936 is_explicit_value(A,AV,Hyp), is_explicit_value(B,BV,Hyp), !, AV \= BV.
1937 check_not_equal(X,Y,Hyp) :- sym_unify(X,Y,if_then_else(_,A1,A2),B),!,
1938 (check_not_equal(A1,B,Hyp) -> check_not_equal(A2,B,Hyp)).
1939 check_not_equal(N1,N2,Hyps) :-
1940 avl_fetch_not_equal(N1,N2,Hyps),!.
1941 check_not_equal(couple(A1,A2),couple(B1,B2),Hyps) :- !,
1942 (check_not_equal(A1,B1,Hyps) -> true ; check_not_equal(A2,B2,Hyps)).
1943 check_not_equal(X,B,Hyps) :- number(B),
1944 try_get_set_of_possible_values(X,Hyps,SetX,Hyps2),
1945 check_all_values_neq_nr(SetX,B,Hyps2),!.
1946 % TO DO: compute also things like domain(...) for :wd s:perm(1..10) & x:dom(s) & res = 10/x
1947 check_not_equal(X,Y,Hyps) :- sym_unify(X,Y,unary_minus(A),B),number(B),!, BM is -B,
1948 check_not_equal(A,BM,Hyps).
1949 check_not_equal(X,Y,Hyps) :- sym_unify(X,Y,multiplication(A,B),0),!, % A*B /= 0 if A/=0 & B/=0
1950 check_not_equal(A,0,Hyps),check_not_equal(B,0,Hyps).
1951 check_not_equal(X,Y,Hyps) :- sym_unify(X,Y,power_of(A,_),0),!, % A**B /= 0 if A/=0
1952 check_not_equal(A,0,Hyps).
1953 check_not_equal(X,Y,Hyps) :- sym_unify(X,Y,Add,B),
1954 add_with_number(Add,A,Nr),!,
1955 (Nr>0 -> check_leq(B,A,Hyps) % A >= B => A+Nr > B => A+Nr /= B
1956 ; Nr=0 -> check_not_equal(A,B,Hyps)
1957 ; check_leq(A,B,Hyps)
1958 ).
1959 check_not_equal(X,Y,Hyps) :- sym_unify(X,Y,A,B),number(B),!,
1960 B1 is B+1,
1961 (check_leq(B1,A,Hyps) -> true % B < A
1962 ; B2 is B-1,
1963 check_leq(A,B2,Hyps)). % A < B
1964 check_not_equal(XX,YY,Hyps) :- sym_unify(XX,YY,'$'(A),B),
1965 avl_fetch_binop_from_hyps('$'(A),less_equal,Hyps,Y,Hyps2),
1966 (number(B) -> (B1 is B-1, check_leq(Y,B1,Hyps2) -> true)
1967 ; avl_fetch_not_equal('$'(A),Y,Hyps) % we have $(A) < Y => prove Y <= B
1968 -> check_leq(Y,B,Hyps2) % we can prove x<y & y<=z => x<z but we cannot yet prove x<=y & y<z => x<z
1969 ).
1970 check_not_equal(XX,YY,Hyps) :- sym_unify(XX,YY,'$'(A),B),
1971 avl_fetch_binop_from_hyps('$'(A),greater_equal,Hyps,Y,Hyps2),
1972 (number(B) -> (B1 is B+1, check_leq(B1,Y,Hyps2) -> true)
1973 ; avl_fetch_not_equal('$'(A),Y,Hyps) % we have $(A) < Y => prove Y <= B
1974 -> check_leq(B,Y,Hyps2) % see comments above
1975 ).
1976 check_not_equal(A,empty_set,Hyp) :- !, check_not_empty_set(A,Hyp).
1977 check_not_equal(empty_set,A,Hyp) :- !, check_not_empty_set(A,Hyp).
1978 check_not_equal(value(avl_set(A)),value(avl_set(B)),_) :- nonvar(A), nonvar(B),!, % nonvar should always be true
1979 \+ equal_avl_tree(A,B).
1980 check_not_equal(A,B,Hyps) :-
1981 (A=set_extension(LA) -> check_not_equal_set_extension(B,LA,Hyps)
1982 ; B=set_extension(LB) -> check_not_equal_set_extension(A,LB,Hyps)).
1983 check_not_equal(A,B,Hyps) :-
1984 avl_fetch_worthwhile_equal_from_hyps(A,Hyps,Value,Hyps2),!,
1985 check_not_equal(Value,B,Hyps2).
1986 check_not_equal(A,B,Hyps) :-
1987 avl_fetch_worthwhile_equal_from_hyps(B,Hyps,Value,Hyps2),!,
1988 check_not_equal(A,Value,Hyps2).
1989 %check_not_equal(A,B,Hyps) :- print(check_not_equal_failed(A,B)),nl,portray_hyps(Hyps),nl,fail.
1990
1991 check_not_equal_set_extension(set_extension([B|TB]),[A|TA],Hyps) :- (TA=[];TB=[]),!,
1992 check_not_equal(A,B,Hyps). % TO DO: we can generalize this treatment to find one element in one set not in the other
1993 check_not_equal_set_extension(value(avl_set(AVL)),LA,Hyps) :- length(LA,MaxSizeA),
1994 (avl_size(AVL,Sze),Sze>MaxSizeA -> true % AVL has at least one element more
1995 ; is_one_element_avl(AVL,B), LA=[A|_], check_not_equal(A,B,Hyps)).
1996
1997 avl_fetch_not_equal(N1,N2,hyp_rec(AVL,_)) :-
1998 (avl_fetch(not_equal(N1,N2),AVL) -> true
1999 ; avl_fetch(not_equal(N2,N1),AVL)). % we do not store both directions for not_equal
2000
2001 % unify two variables with other two variables; useful for symmetric rules
2002 sym_unify(A,B,A,B).
2003 sym_unify(A,B,B,A).
2004
2005 % TO DO: get equalities; maybe we should harmonise this for all rules
2006 % we could add rules about min_int, max_int
2007
2008
2009 check_not_empty_set(A,Hyps) :- avl_fetch_from_hyps(not_equal(A,empty_set),Hyps),!.
2010 check_not_empty_set(A,Hyps) :- %Note: size(A) should be changed to card(A) in normalization
2011 (CardA = card(A) ; CardA = size(A)),
2012 avl_fetch_binop_from_hyps(CardA,greater_equal,Hyps,Nr,Hyps2), %Nr \= 0,
2013 check_leq(1,Nr,Hyps2),!. % cut here, relevant for test 2043
2014 check_not_empty_set(set_extension([_|_]),_Hyps).
2015 check_not_empty_set(sorted_set_extension([_|_]),_Hyps).
2016 check_not_empty_set(sequence_extension([_|_]),_Hyps).
2017 check_not_empty_set(cartesian_product(A,B),Hyps) :- (check_not_empty_set(A,Hyps) -> check_not_empty_set(B,Hyps)).
2018 check_not_empty_set(interval(A,B),Hyps) :- check_leq(A,B,Hyps).
2019 check_not_empty_set(value(avl_set(AVL)),_) :- AVL \= empty.
2020 check_not_empty_set(union(A,B),Hyp) :- !, (check_not_empty_set(A,Hyp) -> true ; check_not_empty_set(B,Hyp)).
2021 check_not_empty_set(overwrite(A,B),Hyp) :- !, (check_not_empty_set(A,Hyp) -> true ; check_not_empty_set(B,Hyp)).
2022 check_not_empty_set(domain(A),Hyp) :- !, check_not_empty_set(A,Hyp).
2023 check_not_empty_set(range(A),Hyp) :- !, check_not_empty_set(A,Hyp).
2024 check_not_empty_set(identity(A),Hyp) :- !, check_not_empty_set(A,Hyp).
2025 check_not_empty_set(image(R,interval(L,U)),Hyp) :- !,
2026 check_not_empty_set(interval(L,U),Hyp),
2027 (check_member_of_set(domain(R),L,Hyp,_) -> true
2028 ; check_member_of_set(domain(R),U,Hyp,_)
2029 ).
2030 check_not_empty_set(reverse(A),Hyp) :- !, check_not_empty_set(A,Hyp).
2031 check_not_empty_set(rev(A),Hyp) :- !, check_not_empty_set(A,Hyp).
2032 check_not_empty_set(concat(A,B),Hyp) :- !, (check_not_empty_set(A,Hyp) -> true ; check_not_empty_set(B,Hyp)).
2033 check_not_empty_set(bool_set,_Hyp) :- !.
2034 check_not_empty_set(float_set,_Hyp) :- !.
2035 check_not_empty_set(real_set,_Hyp) :- !.
2036 check_not_empty_set(string_set,_Hyp) :- !.
2037 check_not_empty_set('NATURAL1',_Hyp) :- !.
2038 check_not_empty_set('NATURAL',_Hyp) :- !.
2039 check_not_empty_set(typeset,_Hyp) :- !. % all basic sets are non empty in B and Event-B
2040 check_not_empty_set(Expr,Hyps) :-
2041 is_lambda_function_with_domain(Expr,Domain),!,
2042 check_not_empty_set(Domain,Hyps).
2043 check_not_empty_set('$'(ID),Hyps) :-
2044 enumerated_set(ID),
2045 \+ is_hyp_var(ID,Hyps),!. % global enumerated set visible
2046 check_not_empty_set(Eq,Hyps) :-
2047 (Eq='$'(_) ; Eq=interval(_,_)),
2048 avl_fetch_equal_from_hyps(Eq,Hyps,Value,Hyps2),
2049 rewrite_local_loop_check(Eq,check_not_empty_set,Value,Hyps2,Hyps3),
2050 check_not_empty_set(Value,Hyps3),!.
2051 check_not_empty_set(Seq,Hyp) :- infer_sequence_type_of_expr(Seq,Hyp,seq1),!.
2052 check_not_empty_set(Func,Hyps) :- Func = '$'(_),
2053 avl_fetch_binop_from_hyps(Func,member,Hyps,FunctionType,Hyps2), % Func : . --> .
2054 check_not_empty_elements(FunctionType,Hyps2),!.
2055 check_not_empty_set(function(Func2,_),Hyps) :-
2056 get_range_or_superset(Func2,Hyps,Range,Hyps2),
2057 check_not_empty_elements(Range,Hyps2),!.
2058 check_not_empty_set(tail(A),Hyps) :- rewrite_card_of_set(A,Hyps,CardA,Hyps1),!,
2059 check_leq(2,CardA,Hyps1).
2060 check_not_empty_set(front(A),Hyps) :- rewrite_card_of_set(A,Hyps,CardA,Hyps1),!,
2061 check_leq(2,CardA,Hyps1).
2062 check_not_empty_set(A,Hyps) :-
2063 ( Lookup = A, Operator = superset
2064 ;
2065 (Lookup=domain(A) ; Lookup=range(A)),
2066 (Operator = superset ; Operator = equal)
2067 ),
2068 avl_fetch_binop_from_hyps(Lookup,Operator,Hyps,B,Hyps2), % B /= {} & B <: A => A /= {}
2069 rewrite_local_loop_check(A,check_not_empty_set,B,Hyps2,Hyps3),
2070 check_not_empty_set(B,Hyps3),!.
2071 % TO DO: rule for dom(r)<:A and r not empty implies A not empty; problem: we need lookup for A=dom(r), or dom(r)<:A, could be of form: r:A+->B
2072 % check_not_empty_set(A,_) :- print(check_not_empty_set_failed(A)),nl,fail.
2073 % TO DO: more rules for sequence operators; infer_sequence_type_of_expr does not look at values of ids
2074
2075
2076 % check if elements of a function type or set are guaranteed to be not empty
2077
2078 check_not_empty_elements(fin1_subset(_),_).
2079 check_not_empty_elements(pow1_subset(_),_).
2080 check_not_empty_elements(seq1(_),_).
2081 check_not_empty_elements(iseq1(_),_).
2082 check_not_empty_elements(perm(A),Hyps) :- check_not_empty_set(A,Hyps).
2083 check_not_empty_elements(total_function(A,_),Hyps) :- check_not_empty_set(A,Hyps).
2084 check_not_empty_elements(total_injection(A,_),Hyps) :- check_not_empty_set(A,Hyps).
2085 check_not_empty_elements(total_surjection(A,B),Hyps) :-
2086 (check_not_empty_set(A,Hyps) -> true ; check_not_empty_set(B,Hyps)).
2087 check_not_empty_elements(total_bijection(A,B),Hyps) :-
2088 (check_not_empty_set(A,Hyps) -> true ; check_not_empty_set(B,Hyps)).
2089 check_not_empty_elements(total_relation(A,_),Hyps) :- check_not_empty_set(A,Hyps).
2090 check_not_empty_elements(total_surjection_relation(A,_),Hyps) :- check_not_empty_set(A,Hyps).
2091 check_not_empty_elements(partial_surjection(_,B),Hyps) :- check_not_empty_set(B,Hyps).
2092 check_not_empty_elements(partial_bijection(_,B),Hyps) :- check_not_empty_set(B,Hyps).
2093 check_not_empty_elements(surjection_relation(_,B),Hyps) :- check_not_empty_set(B,Hyps).
2094 % more cases, set_extension,...
2095
2096 :- use_module(probsrc(b_global_sets),[enumerated_set/1]).
2097 % check if an expression is definitely finite
2098 check_finite(bool_set,_,bool_set) :- !.
2099 check_finite(empty_set,_,empty_set) :- !.
2100 check_finite(empty_sequence,_,empty_sequence) :- !.
2101 check_finite(float_set,_,float_set) :- !.
2102 % check_finite(integer_set(X),_,bool_set) :- !. INT, NAT, NAT1 are translated to intervals
2103 check_finite(set_extension(_),_,set_extension) :- !.
2104 check_finite(sorted_set_extension(_),_,set_extension) :- !.
2105 check_finite(sequence_extension(_),_,seq_extension) :- !.
2106 check_finite(fin_subset(X),Hyps,fin(PT)) :- !, check_finite(X,Hyps,PT).
2107 check_finite(fin1_subset(X),Hyps,fin1(PT)) :- !, check_finite(X,Hyps,PT).
2108 check_finite(pow_subset(X),Hyps,pow(PT)) :- !, check_finite(X,Hyps,PT).
2109 check_finite(pow1_subset(X),Hyps,pow1(PT)) :- !, check_finite(X,Hyps,PT).
2110 check_finite(iseq(X),Hyps,iseq(PT)) :- !, check_finite(X,Hyps,PT).
2111 check_finite(iseq1(X),Hyps,iseq1(PT)) :- !, check_finite(X,Hyps,PT).
2112 check_finite(mu(Set),Hyps,mu) :- !, has_finite_elements(Set,Hyps).
2113 check_finite(perm(X),Hyps,perm(PT)) :- !, check_finite(X,Hyps,PT).
2114 check_finite(Set,Hyps,hyp) :-
2115 avl_fetch_from_hyps(finite(Set),Hyps),!.
2116 check_finite(domain(A),Hyp,dom(PT)) :- !,
2117 (check_finite(A,Hyp,PT) -> true ; finite_domain(A,Hyp,PT)).
2118 check_finite(range(A),Hyp,ran(PT)) :- !,
2119 (check_finite(A,Hyp,PT) -> true ; finite_range(A,Hyp,PT)).
2120 check_finite(reverse(A),Hyp,rev(PT)) :- !, check_finite(A,Hyp,PT).
2121 check_finite(identity(A),Hyp,id(PT)) :- !,check_finite(A,Hyp,PT). % finite(id(A)) if finite(A)
2122 check_finite(function(Func,_),Hyps,function_finite_elements) :- !,
2123 get_range_or_superset(Func,Hyps,RanFunc,Hyps2),
2124 has_finite_elements(RanFunc,Hyps2).
2125 check_finite(image(Func,B),Hyp,image(PT)) :- !,
2126 (check_finite(Func,Hyp,PT) -> true % finite(Func[.]) <= finite(Func)
2127 ; check_finite(B,Hyp,PTB)
2128 -> PT = pfun(PTB), check_is_partial_function(Func,Hyp) % finite(Func[B]) <= finite(B) & Func : TD +-> TR
2129 ).
2130 check_finite(union(A,B),Hyp,union(PTA,PTB)) :- !, (check_finite(A,Hyp,PTA) -> check_finite(B,Hyp,PTB)).
2131 check_finite(if_then_else(_,A,B),Hyps,if(PTA,PTB)) :- !, (check_finite(A,Hyps,PTA) -> check_finite(B,Hyps,PTB)).
2132 check_finite(intersection(A,B),Hyps,intersection(D,PT)) :- !,
2133 (D=left,check_finite(A,Hyps,PT) -> true ; D=right,check_finite(B,Hyps,PT)).
2134 check_finite(cartesian_product(A,B),Hyp,PT) :-
2135 (check_finite(A,Hyp,PT) -> (is_empty_set(A) -> true ; check_finite(B,Hyp,_))
2136 ; is_empty_set(B), PT=cart_empty_set).
2137 check_finite(Rel,Hyp,rel(PTA,PTB)) :- is_relations_type(Rel,A,B),!,
2138 (check_finite(A,Hyp,PTA) -> check_finite(B,Hyp,PTB)). % add other relations
2139 check_finite(direct_product(A,B),Hyp,direct_product(PTA,PTB)) :- !,
2140 (check_finite(A,Hyp,PTA) -> check_finite(B,Hyp,PTB)).
2141 check_finite(parallel_product(A,B),Hyp,parallel_product(PTA,PTB)) :- !,
2142 (check_finite(A,Hyp,PTA) -> check_finite(B,Hyp,PTB)).
2143 check_finite(overwrite(A,B),Hyp,overwrite(PTA,PTB)) :- !, (check_finite(A,Hyp,PTA) -> check_finite(B,Hyp,PTB)).
2144 check_finite(set_subtraction(A,_),Hyps,set_subtraction(PT)) :- !, check_finite(A,Hyps,PT).
2145 check_finite(domain_restriction(A,BRel),Hyp,domain_restriction(PT)) :- !,
2146 (check_finite(BRel,Hyp,PT) -> true
2147 ; check_is_partial_function(BRel,Hyp), check_finite(A,Hyp,PT)
2148 ; finite_range(BRel,Hyp,_) -> check_finite(A,Hyp,PT) % finite(a <| brel) if finite(a) & finite(ran(brel))
2149 ).
2150 check_finite(domain_subtraction(_,B),Hyp,domain_subtraction(PT)) :- !, check_finite(B,Hyp,PT).
2151 check_finite(range_restriction(ARel,B),Hyp,range_restriction(PT)) :- !,
2152 (check_finite(ARel,Hyp,PT) -> true
2153 ; check_is_injective(ARel,Hyp) -> check_finite(B,Hyp,PT)
2154 ; finite_domain(ARel,Hyp,_) -> check_finite(B,Hyp,PT) % finite(arel |> b) if finite(b) & finite(dom(arel))
2155 ).
2156 check_finite(image(A,B),Hyp,image(PT)) :- % A[B] is finite if A is finite or if B is finite and A a function
2157 (check_finite(A,Hyp,PT) -> true ; check_is_partial_function(A,Hyp), check_finite(B,Hyp,PT)).
2158 check_finite(range_subtraction(A,_),Hyp,range_subtraction(PT)) :- check_finite(A,Hyp,PT).
2159 check_finite(interval(_,_),_,interval) :- !.
2160 check_finite(value(X),_,avl_set) :- nonvar(X),X=avl_set(_),!.
2161 check_finite('$'(ID),Hyps,finite_type) :-
2162 get_hyp_var_type(ID,Hyps,Type), %print(chk_fin(ID,Type)),nl,
2163 (is_finite_type_for_wd(Type,Hyps) -> true
2164 ; Type = set(couple(DomType,_)), % in principle an infinite relation type
2165 is_finite_type_for_wd(DomType,Hyps), % we have something like set(couple(boolean,integer))
2166 % note: we treat this here in addition to the case is_partial_function below, as
2167 % sometimes we loose the typing information in the term, e.g., in comprehension_set
2168 avl_fetch_equal_from_hyps('$'(ID),Hyps,Func,_),
2169 is_lambda_function(Func) % we have a function, it is finite if the domain is finite
2170 ),!.
2171 check_finite('$'(ID),Hyps,enumerated_set) :-
2172 enumerated_set(ID),
2173 \+ is_hyp_var(ID,Hyps),!. % global enumerated set visible
2174 %check_finite('$'(ID),Hyp,partition) :-
2175 % avl_fetch_binop_from_hyps('$'(ID),partition,Hyp,Values,Hyp2), % is now normalized
2176 % not_occurs(Values,ID),
2177 % l_check_finite(Values,Hyp2),!.
2178 check_finite('$'(ID),Hyps,rewrite(Operator,PT)) :-
2179 (Operator = equal ; Operator = subset), % for subset_strict we also have subset in Hyp
2180 avl_fetch_binop_from_hyps('$'(ID),Operator,Hyps,Set2,Hyps2),
2181 not_occurs(Set2,ID), % avoid silly, cyclic rewrites $x -> reverse(reverse($x)) (FunLawsStrings.mch)
2182 % however, in SetLawsNatural this prevents proving 2 POs due to SS <: min(SS)..max(SS)
2183 rewrite_local_loop_check(ID,check_finite,Set2,Hyps2,Hyps3),
2184 check_finite(Set2,Hyps3,PT),!.
2185 check_finite(Set,Hyp,finite_elements) :- id_or_record_field(Set),
2186 avl_fetch_mem_or_struct(Set,Hyp,Set2,Hyp2),
2187 Set2 \= Set,
2188 has_finite_elements(Set2,Hyp2).
2189 check_finite(Func,Hyp,pfun(PTA,PTB)) :- is_partial_function(Func,A,B),!,
2190 % a set of partial functions from A to B is finite if both A and B are finite
2191 (check_finite(A,Hyp,PTA) -> check_finite(B,Hyp,PTB)),!.
2192 check_finite(Seq,Hyp,seq_type) :- infer_sequence_type_of_expr(Seq,Hyp,_),!. % a sequence is always finite
2193 check_finite(comprehension_set(Paras,Body),Hyp,comprehension_set) :-
2194 finite_comprehension_set(Paras,Body,Hyp),!.
2195 check_finite(struct(rec(Fields)),Hyp,struct) :- maplist(check_finite_field(Hyp),Fields).
2196 check_finite(general_union(SetOfSets),Hyp,general_union) :-
2197 check_all_finite(SetOfSets,Hyp).
2198 check_finite(general_intersection(SetOfSets),Hyp,general_intersection(PT)) :-
2199 check_some_finite(SetOfSets,Hyp,PT).
2200 % TODO: is_lambda_function_with_domain; improve some proof trees above in style of intersection
2201 %check_finite(F,Hyps,_) :- print(check_finite_failed(F)),nl,portray_hyps(Hyps),nl,fail.
2202
2203 check_finite_field(Hyp,field(_,Set)) :- check_finite(Set,Hyp,_PT).
2204
2205 % we could write a check_all meta_predicate
2206 % check if we have a finite set of finite sets; used to determine if union(Sets) is finite
2207 check_all_finite(empty_set,_).
2208 check_all_finite(empty_sequence,_).
2209 check_all_finite(value(avl_set(_AVL)),_Hyp) :- % currently avl_set can only contain finite values for normalisation
2210 true.
2211 check_all_finite(intersection(A,B),Hyps) :-
2212 (check_all_finite(A,Hyps) -> true ; check_all_finite(B,Hyps)).
2213 check_all_finite(union(A,B),Hyps) :-
2214 (check_all_finite(A,Hyps) -> check_all_finite(B,Hyps)).
2215 check_all_finite(sorted_set_extension(L),Hyps) :- !, check_all_finite(set_extension(L),Hyps).
2216 check_all_finite(set_extension(L),Hyps) :-
2217 (member(Val,L), \+ check_finite(Val,Hyps,_) -> fail % CHECK
2218 ; true).
2219 check_all_finite('$'(ID),Hyps) :-
2220 (Operator = equal ; Operator = subset), % for subset_strict we also have subset in Hyp
2221 avl_fetch_binop_from_hyps('$'(ID),Operator,Hyps,Set2,Hyps2),
2222 not_occurs(Set2,ID), % avoid silly, cyclic rewrites
2223 rewrite_local_loop_check(ID,check_finite,Set2,Hyps2,Hyps3),
2224 check_all_finite(Set2,Hyps3),!.
2225 check_all_finite(Op,Hyps) :- pow_subset_operator(Op,Set),!,
2226 % if Set is finite then all subsets of it are finite and there are only finitely many
2227 check_finite(Set,Hyps,_PT).
2228 check_all_finite(Op,Hyps) :- iseq_operator(Op,Set),!,
2229 % if Set is finite then all injective sequences of it are finite and there are only finitely many
2230 check_finite(Set,Hyps,_PT).
2231
2232 % check if some set of a set of sets is finite:
2233 check_some_finite(sorted_set_extension(L),Hyps,PT) :- !, check_some_finite(set_extension(L),Hyps,PT).
2234 check_some_finite(set_extension(L),Hyps,set_extension(PT)) :-
2235 (member(Val,L), check_finite(Val,Hyps,PT) -> true).
2236 check_some_finite('$'(ID),Hyps,rewrite_id(ID,PT)) :-
2237 (Operator = equal ; Operator = superset), % Note: superset not subset as for check_all_finite
2238 avl_fetch_binop_from_hyps('$'(ID),Operator,Hyps,Set2,Hyps2),
2239 not_occurs(Set2,ID), % avoid silly, cyclic rewrites
2240 rewrite_local_loop_check(ID,check_finite,Set2,Hyps2,Hyps3),
2241 check_some_finite(Set2,Hyps3,PT),!.
2242 %check_some_finite(intersection(A,B),Hyps) :- fail. % Note: the intersection could be empty!
2243 check_some_finite(union(A,B),Hyps,union(PT)) :-
2244 (check_some_finite(A,Hyps,PT) -> true ; check_some_finite(B,Hyps,PT)).
2245 % for pow_subset_operator iseq_operator we would still need to check that the sets are not empty
2246 % we cannot currently :prove x<:POW1(INT) & inter({NATURAL}\/x) : FIN(inter({NATURAL}\/x))
2247
2248
2249 pow_subset_operator(fin_subset(X),X).
2250 pow_subset_operator(fin1_subset(X),X).
2251 pow_subset_operator(pow_subset(X),X).
2252 pow_subset_operator(pow1_subset(X),X).
2253 iseq_operator(perm(Set),Set).
2254 iseq_operator(iseq(Set),Set).
2255 iseq_operator(iseq1(Set),Set).
2256
2257 % Note: lambdas already treated in is_partial_function check above
2258 finite_comprehension_set(Paras,Body,Hyp) :-
2259 % first exclude the parameters which can be proven finite on their own
2260 % now deal with the rest; we do not pass AllParas as second arg; as all references to excluded IDs is ok (only finitely many values possible)
2261 finite_comprehension_set_rest(Paras,Body,Hyp,[],Rest),
2262 Rest \= Paras,
2263 finite_comprehension_set_rest(Rest,Body,Hyp,[],[]). % do a second pass, e.g., for {x,y|x:{y,y+1} & y:1..2 & x:INTEGER}
2264
2265 finite_comprehension_set_rest([],_,_,_,[]).
2266 % finite_comprehension_set(['$'(ID)|TID],Body,Hyp) :- finite_type !
2267 finite_comprehension_set_rest([ParaID1|TID],Body,Hyp,UnProven,Rest) :-
2268 get_parameter_superset_in_body(ParaExpr,[ParaID1|TID],Body,Values),
2269 l_not_occurs(Values,UnProven), % do not rely on not yet finitely proven paras; e.g. for {x,y|x:INTEGER & y=x}
2270 match_parameter(ParaExpr,ParaID1),
2271 check_finite(Values,Hyp,_PT),!,
2272 finite_comprehension_set_rest(TID,Body,Hyp,UnProven,Rest).
2273 finite_comprehension_set_rest([ParaID1|TID],Body,Hyp,UnProven,[ParaID1|Rest]) :-
2274 finite_comprehension_set_rest(TID,Body,Hyp,[ParaID1|UnProven],Rest).
2275
2276 % match_parameter(Expr,ID) -> ID occurs in Expr and finite number of values for Expr implies finite values for ID
2277 match_parameter(ParaID,ParaID).
2278 match_parameter(couple(ParaID,_),ParaID). % x|->y : Values finite implies finitely many values for x
2279 match_parameter(couple(_,ParaID),ParaID).
2280 match_parameter(set_extension(Ext),ParaID) :-
2281 member(El,Ext), match_parameter(El,ParaID). % {x,..} : Values finite implies finitely many values for x
2282 match_parameter(sorted_set_extension(Ext),ParaID) :- match_parameter(set_extension(Ext),ParaID).
2283 match_parameter(sequence_extension(Ext),ParaID) :- member(ParaID,Ext).
2284 match_parameter(rev(RF),ParaID) :- match_parameter(RF,ParaID).
2285 match_parameter(reverse(RF),ParaID) :- match_parameter(RF,ParaID).
2286 match_parameter(unary_minus(RF),ParaID) :- match_parameter(RF,ParaID).
2287 match_parameter(concat(RF1,RF2),ParaID) :- (match_parameter(RF1,ParaID) -> true ; match_parameter(RF2,ParaID)).
2288 match_parameter(union(RF1,RF2),ParaID) :- (match_parameter(RF1,ParaID) -> true ; match_parameter(RF2,ParaID)).
2289 match_parameter(overwrite(_,RF),ParaID) :- match_parameter(RF,ParaID). % f <+ RF = (... <<| f ) \/ RF
2290 match_parameter(Add,ParaID) :- add_with_number(Add,A,_Number), match_parameter(A,ParaID).
2291 match_parameter(Mul,ParaID) :- mul_with_number(Mul,A,Number), Number \= 0, match_parameter(A,ParaID).
2292 % TO DO: more injective functions where a solution determines the ParaID, identity? direct_product, ...
2293 % cartesian_product : only if other set not empty
2294
2295 get_parameter_superset_in_body(ParaID,AllParas,Body,Values) :-
2296 ( member_in_norm_conjunction(Body,member(ParaID,Values))
2297 ; member_in_norm_conjunction(Body,subset(ParaID,Values)) % there are only finitely many subsets of a finite set
2298 ; member_in_norm_conjunction(Body,subset_strict(ParaID,Values))
2299 ; member_in_norm_conjunction(Body,equal(X,Y)),
2300 sym_unify(X,Y,ParaID,Value), Values=set_extension([Value]) ),
2301 l_not_occurs(Values,AllParas). % as an alternative: check for finite_type of set elements; e.g., detect ID=bool(...)
2302
2303
2304 :- use_module(probsrc(bsyntaxtree),[is_set_type/2]).
2305 %we suppose this has already failed: finite_domain(A,Hyp) :- check_finite(A,Hyp,PT).
2306 finite_domain('$'(ID),Hyps,finite_type) :-
2307 get_hyp_var_type(ID,Hyps,Type),
2308 is_set_type(Type,couple(DomType,_)),
2309 is_finite_type_for_wd(DomType,Hyps),!.
2310 finite_domain(domain_restriction(A,Rel),Hyps,domain_restriction(PT)) :- !,
2311 (check_finite(A,Hyps,PT) -> true ; finite_domain(Rel,Hyps,PT)).
2312 finite_domain(A,Hyp,PT) :- get_domain_or_superset(A,Hyp,DA,Hyp2),!, check_finite(DA,Hyp2,PT).
2313
2314 finite_range('$'(ID),Hyps,finite_type) :-
2315 get_hyp_var_type(ID,Hyps,Type),
2316 is_set_type(Type,couple(_,RanType)),
2317 is_finite_type_for_wd(RanType,Hyps),!.
2318 finite_range(A,Hyp,PT) :- get_range_or_superset(A,Hyp,RA,Hyp2),!, check_finite(RA,Hyp2,PT).
2319
2320 l_check_finite([],_).
2321 l_check_finite([H|T],Hyp) :- (check_finite(H,Hyp,_) -> l_check_finite(T,Hyp)).
2322
2323 % is a set containing only finite sets
2324 has_finite_elements(fin_subset(_),_) :- !.
2325 has_finite_elements(fin1_subset(_),_) :- !.
2326 has_finite_elements(pow_subset(X),Hyps) :- !, check_finite(X,Hyps,_).
2327 has_finite_elements(pow1_subset(X),Hyps) :- !, check_finite(X,Hyps,_).
2328 has_finite_elements(seq(_),_) :- !. % every sequence is always finite (of finite length)
2329 has_finite_elements(seq1(_),_) :- !.
2330 has_finite_elements(iseq(_),_) :- !.
2331 has_finite_elements(iseq1(_),_) :- !.
2332 has_finite_elements(perm(_),_) :- !.
2333 has_finite_elements(union(A,B),Hyps) :- !, has_finite_elements(A,Hyps), has_finite_elements(B,Hyps).
2334 has_finite_elements(intersection(A,B),Hyps) :- !, (has_finite_elements(A,Hyps) -> true ; has_finite_elements(B,Hyps)).
2335 has_finite_elements(set_subtraction(A,_),Hyps) :- !, has_finite_elements(A,Hyps).
2336 has_finite_elements(sorted_set_extension(L),Hyps) :- !, l_check_finite(L,Hyps).
2337 has_finite_elements(set_extension(L),Hyps) :- !, l_check_finite(L,Hyps).
2338 has_finite_elements(S,_) :- is_empty_set(S),!. % has no elements
2339 has_finite_elements(Func,Hyps) :- is_partial_function(Func,A,B),!,
2340 (check_finite(A,Hyps,_) -> true ; is_injective(Func), check_finite(B,Hyps,_)).
2341 has_finite_elements(Rel,Hyps) :- is_relations_type(Rel,A,B),!,check_finite(A,Hyps,_),check_finite(B,Hyps,_).
2342 %has_finite_elements(F,Hs) :- print(has_finite_elements_failed(F)),nl, portray_hyps(Hs),fail.
2343
2344
2345 is_relations_type(relations(A,B),A,B).
2346 is_relations_type(surjection_relation(A,B),A,B).
2347 is_relations_type(total_relation(A,B),A,B).
2348 is_relations_type(total_surjection_relation(A,B),A,B).
2349
2350 % TO DO: more rules for functions
2351 % ------------------------------
2352
2353 :- use_module(probsrc(avl_tools),[avl_fetch_bin/4]).
2354
2355 % fetch member(Ground,Free) construct
2356 %avl_fetch_mem(Key, AVL ,Res) :- avl_fetch_bin(Key, member, AVL ,Res).
2357 %avl_fetch_equal(Key, AVL ,Res) :- avl_fetch_bin(Key, equal, AVL ,Res).
2358
2359
2360 avl_fetch_mem_from_hyps(ID,Hyps,Value,Hyps2) :-
2361 avl_fetch_binop_from_hyps(ID,member,Hyps,Value,Hyps2).
2362
2363 avl_fetch_worthwhile_mem_from_hyps(ID,Hyps,Value,Hyps2) :-
2364 avl_fetch_binop_from_hyps(ID,member,Hyps,Value,Hyps2),
2365 \+ maximal_set(Value,Hyps).
2366
2367 avl_fetch_equal_from_hyps(ID,Hyps,Value,Hyps2) :-
2368 avl_fetch_binop_from_hyps(ID,equal,Hyps,Value,Hyps2).
2369
2370 avl_fetch_worthwhile_equal_from_hyps(ID,Hyps,Value,Hyps2) :-
2371 worth_rewriting_with_equal(ID),
2372 avl_fetch_binop_from_hyps(ID,equal,Hyps,Value,Hyps2),
2373 quick_not_occurs_check(ID,Value).
2374
2375 % fetch member predicate or indirect member via record fields
2376 avl_fetch_mem_or_struct(Func,Hyps,Function,Hyps1) :-
2377 get_type_from_hyps(Func,Hyps,Function,Hyps1).
2378 avl_fetch_mem_or_struct(record_field(Rec,Field),Hyps,FieldType,Hyps2) :-
2379 get_record_type_fields(Rec,Fields,Hyps,Hyps2),
2380 (member(field(Field,FieldType),Fields) -> true).
2381
2382 % find record type and extract fields for a given expression
2383 get_record_type_fields(function(Func,_),Fields,Hyps,Hyps2) :-
2384 get_range_or_superset(Func,Hyps,Range,Hyps1),
2385 check_equal_pattern(Range,struct(rec(Fields)),Hyps1,Hyps2).
2386 get_record_type_fields(Rec,Fields,Hyps,Hyps2) :-
2387 get_type_from_hyps(Rec,Hyps,RecType,Hyps1),
2388 check_equal_pattern(RecType,struct(rec(Fields)),Hyps1,Hyps2).
2389
2390 % get type from hyps x:XType or x:ran(F) with F : A->B
2391 get_type_from_hyps(X,Hyps,XType,Hyps2) :-
2392 avl_fetch_mem_from_hyps(X,Hyps,XSet,Hyps1),
2393 get_type2(XSet,Hyps1,XType,Hyps2).
2394 get_type_from_hyps(function(Func2,_),Hyps,Range,Hyps2) :-
2395 % f : _ +-> ( _ >-> _ ) => f(_) : _ >-> _
2396 get_range_or_superset(Func2,Hyps,Range,Hyps2).
2397 get_type_from_hyps(second_of_pair(X),Hyps,Type,Hyps2) :- %prj2
2398 get_type_from_hyps(X,Hyps,XType,Hyps1),
2399 check_equal_pattern(XType,cartesian_product(_,Type),Hyps1,Hyps2).
2400 get_type_from_hyps(first_of_pair(X),Hyps,Type,Hyps2) :- %prj1
2401 get_type_from_hyps(X,Hyps,XType,Hyps1),
2402 check_equal_pattern(XType,cartesian_product(Type,_),Hyps1,Hyps2).
2403 get_type_from_hyps(assertion_expression(_,_,X),Hyps,XType,Hyps1) :-
2404 get_type_from_hyps(X,Hyps,XType,Hyps1).
2405
2406 get_type2(domain(Func),Hyps,XType,Hyps2) :- !,
2407 get_domain_or_superset(Func,Hyps,XType,Hyps2).
2408 get_type2(range(Func),Hyps,XType,Hyps2) :- !,
2409 get_range_or_superset(Func,Hyps,XType,Hyps2).
2410 get_type2(Type,Hyps,Type,Hyps).
2411
2412 id_or_record_field('$'(_)).
2413 id_or_record_field(record_field(_,_)).
2414
2415 % perform occurs check if first arg is an identifier:
2416 quick_not_occurs_check('$'(ID),Value) :- !, not_occurs(Value,ID).
2417 quick_not_occurs_check(_,_).
2418
2419 % worth rewriting with equality hyps
2420 worth_rewriting_with_equal('$'(_)).
2421 worth_rewriting_with_equal(record_field('$'(_),_)).
2422 worth_rewriting_with_equal(couple(_,_)).
2423 worth_rewriting_with_equal(size(_)).
2424 worth_rewriting_with_equal(card(_)).
2425 worth_rewriting_with_equal(function(_,_)).
2426
2427 % utility to fetch fully ground term from hyp avl
2428 avl_fetch_from_hyps(Term,hyp_rec(AVL,_)) :- avl_fetch(Term,AVL).
2429
2430 % a version without loop check; can be used if processing is finished afterwards
2431 avl_fetch_binop_from_hyps_no_loop_check(ID,BinOp,hyp_rec(AVL,_),Value) :-
2432 avl_fetch_bin(ID,BinOp,AVL,Value).
2433
2434 % lookup a hypothesis ID BinOp Value in logarithmic time; ID and BinOp must be known
2435 avl_fetch_binop_from_hyps(ID,BinOp,hyp_rec(AVL,HInfos),Value,hyp_rec(AVL,HInfos2)) :-
2436 avl_fetch_bin(ID,BinOp,AVL,Value),
2437 (avl_fetch(prevent_cycle_count,HInfos,CycleCount) % avoid cycles x=y, y=x
2438 -> (CycleCount < 5 -> true ; % print(prevented_cycle(ID,CycleCount)),nl,
2439 % in test 2018: :wd target = [2,1,1,2,1] & n=size(target) & i:1..n & target(i)=res requires cycle count < 5
2440 !, fail),
2441 C1 is CycleCount+1
2442 ; C1 is 1
2443 ),
2444 avl_store(prevent_cycle_count,HInfos,C1,HInfos2).
2445 % detect local loops; should not be used where Hyps are passed to unrelated goals or one has to reset_local_loop_check
2446 rewrite_local_loop_check(_,_,Value,HI,HI1) :- useful_value(Value),!,HI1=HI.
2447 rewrite_local_loop_check(Term,ProverPredicate,_,Hyps,_) :- var(Hyps),!,
2448 add_internal_error('Var hyps: ',rewrite_local_loop_check(Term,ProverPredicate,_,Hyps,_)),fail.
2449 rewrite_local_loop_check(Term,ProverPredicate,_,hyp_rec(AVL,HInfos),hyp_rec(AVL,HInfos1)) :- !,
2450 (Term='$'(ID) -> true ; ID=Term),
2451 %(avl_fetch(rewritten(Term,ProverPredicate),HInfos) -> print(loop(Term,ProverPredicate)),nl,fail ; true),
2452 \+ avl_fetch(rewritten(ID,ProverPredicate),HInfos),
2453 avl_store(rewritten(ID,ProverPredicate),HInfos,true,HInfos1).
2454 % :wd a : 1 .. sz --> INTEGER & sz=5 & p : perm(dom(a)) & i : 1 .. sz - 1 & res= p(i) % sz rewritten multiple times
2455 % :wd f: BOOL --> 1..10 & g : 0..20 --> BOOL & bb:BOOL & (f;g)(bb)=res
2456
2457 %reset_local_loop_check()
2458
2459 % values where there is no risk of looping when rewriting to:
2460 useful_value(Value) :- number(Value).
2461 useful_value(interval(A,B)) :- number(A), number(B).
2462 useful_value(value(_)).
2463
2464
2465 % rename and prove a list of goals
2466 l_rename_and_prove_goals([],_,_,[]).
2467 l_rename_and_prove_goals([H|T],Subst,Hyps,[PTH|PTT]) :-
2468 rename_norm_term(H,Subst,RH),!,
2469 prove_po(RH,Hyps,PTH),!, % TO DO: use version of prove_po that does not print info
2470 l_rename_and_prove_goals(T,Subst,Hyps,PTT).
2471
2472
2473 % small utility for sanity checking
2474 check_integer(A,PP) :- not_integer(A),!, add_error(PP,'Not an integer: ',A),fail.
2475 check_integer(_,_).
2476 not_integer(empty_set).
2477 not_integer(empty_sequence).
2478 not_integer(interval(_,_)).
2479 not_integer(couple(_,_)).
2480 not_integer(union(_,_)).
2481 not_integer(intersection(_,_)).
2482 not_integer(domain(_)).
2483 not_integer(range(_)).
2484 % TO DO: extend
2485
2486
2487 % ----------------
2488
2489 % small REPL to inspect hyps
2490 :- public hyp_repl/1.
2491 hyp_repl(Hyps) :- hyp_repl_prompt(Hyps),read(Term), !, hyp_repl(Term,Hyps).
2492 hyp_repl(_).
2493
2494 hyp_repl(end_of_file,_).
2495 hyp_repl(quit,_).
2496 hyp_repl(exit,_).
2497 hyp_repl(help,Hyps) :- write('Use quit to exit, print to portray_hyps, or type an identifier to lookup in hyps'),nl,
2498 hyp_repl(Hyps).
2499 hyp_repl(print,Hyps) :- portray_hyps(Hyps), hyp_repl(Hyps).
2500 hyp_repl(ID,Hyps) :- avl_fetch_equal_from_hyps($(ID),Hyps,Value,_),
2501 format('Value for ~w:~n ~w~n',[ID,Value]),
2502 hyp_repl(Hyps).
2503
2504 hyp_repl_prompt(hyp_rec(AVL,HInfos)) :-
2505 avl_size(AVL,Size),
2506 avl_size(HInfos,ISize),!,
2507 format('hyp_rec(#~w,#~w) >>>',[Size,ISize]).
2508 hyp_repl_prompt(_) :- write('ILLEGAL HYP_REC >>>').