Game of Life

Revision as of 07:52, 9 September 2013 by Jens Bendisposto (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This is a simple model of Conway's Game of Life. It was written for animation with ProB. One interesting aspect is that the simulation is unbounded, i.e., not restricted to some pre-determined area of the grid.

MACHINE gol
/* A simple B model of the Game of Life */
/* by Jens Bendisposto and Michael Leuschel */
ABSTRACT_CONSTANTS nc
PROPERTIES
  /* neighbour count function: */
  nc = %(a,b,alive).(a:INTEGER&b:INTEGER & alive <: INTEGER*INTEGER
                      | card({(xn,yn)| (xn,yn) : alive & neighbour(xn,yn,a,b)}))
VARIABLES alive
DEFINITIONS 
      neighbour(x,y,a,b) == (max({x-a,a-x}) : {0,1} & max({y-b,b-y}) : {0,1} & (x,y)/=(a,b));
INVARIANT
 alive <: INTEGER * INTEGER & alive /= {}
INITIALISATION 
	alive := {(2,1),(2,2),(2,3)} /* blinker */
OPERATIONS 
 step  =  alive := {(u1,v1) | (u1,v1):alive & nc(u1,v1,alive) : {2,3} } \/
                   {(u2,v2) |  #(a2,b2).((a2,b2):alive & neighbour(u2,v2,a2,b2)) & /* restrict enumeration to neighbours of alive */
                              (u2,v2)/:alive & nc(u2,v2,alive)=3 }
END

We believe this to be quite compact. In the future we hope to be able to remove the need to add the predicate #(a2,b2).((a2,b2):alive & neighbour(u2,v2,a2,b2)) by improving ProB's constraint solver for cardinality constraints on set comprehensions. You may want to compare this to an ASM specification found here and described on pages 39-40 in Egon Börger and Robert Stärk, Abstract State Machines, A Method for High-Level System Design and Analysis, Springer-Verlag 2003, (ISBN 3-540-00702-4).

If you want to visualize the simulation using ProB's Tk graphical viewer one needs to add a definition for the animation function. This leads to the following B model (where we have also added an alternate definition of the neighbourhood relationship):

MACHINE gol
/* A simple B model of the Game of Life */
/* by Jens Bendisposto and Michael Leuschel */
ABSTRACT_CONSTANTS nc
PROPERTIES
  /* neighbour count function: */
  nc = %(a,b,alive).(a:INTEGER&b:INTEGER & alive <: INTEGER*INTEGER
                      | card({(xn,yn)| (xn,yn) : alive & neighbour(xn,yn,a,b)}))
VARIABLES alive
DEFINITIONS 
      /* two alternate definitions of neighbour relationship; both work */
      neighbour1(x,y,a,b) == (max({x-a,a-x}) : {0,1} & max({y-b,b-y}) : {0,1} & (x,y)/=(a,b));
      neighbour(x,y,a,b) == ((x-a)**2 <= 1 & (y-b)**2 <=1 & (x,y)/=(a,b));
      /* some simple patterns : */
      blinker == {(2,1),(2,2),(2,3)} ; glider == {(1,2),(2,3),(3,1),(3,2),(3,3)} ;
      SET_PREF_CLPFD == TRUE;
      /* describing the animation function for the graphical visualization : */
      wmin == min(dom(alive)\/{1}); wmax == max(dom(alive)\/{1});
      hmin == min(ran(alive)\/{1}); hmax == max(ran(alive)\/{1});
      ANIMATION_FUNCTION_DEFAULT == ( (wmin..wmax)*(hmin..hmax)*{0}  );
      ANIMATION_FUNCTION == ( alive * {1} );
      ANIMATION_IMG0 == "images/sm_empty_box.gif";
      ANIMATION_IMG1 == "images/sm_gray_box.gif"
INVARIANT
 alive <: INTEGER * INTEGER & alive /= {}
INITIALISATION 
	alive := glider
OPERATIONS 
 step  =  alive := {(u1,v1) | (u1,v1):alive & nc(u1,v1,alive) : {2,3} } \/
                   {(u2,v2) |  #(a2,b2).((a2,b2):alive & neighbour(u2,v2,a2,b2)) & /* restrict enumeration to neighbours of alive */
                              (u2,v2)/:alive & nc(u2,v2,alive)=3 }
END

The following is a screenshot of ProB Tcl/Tk animating the above model:


ProB GameOfLife Screenshot.png