
Optimierung von Chart Parsing für
Baumgrammatiken durch zusätzliche

Faktorisierung
Optimization of chart parsing for tree grammars through additional factorization

Julia Block
Harffstraße 129a, 40591 Düsseldorf

Matrikelnummer: 2623993

Bachelorarbeit

Date of issue: 21. September 2022
Date of submission: 21. Dezember 2022
Reviewers: Prof. Dr. Michael Leuschel

Prof. Dr. Laura Kallmeyer
Supervisors: Prof. Dr. Laura Kallmeyer

Dr. Simon Petitjean
David Arps

Abstract

This paper proposes an extension to improve a chart parsing environment supporting
tree-based grammars by introducing equivalence classes into the parser. Using a theory
of grammar that is focusing on the interaction of syntax, semantics and pragmatics, syn-
tactic templates are build that lay the basis for the tree-based grammar. To be accessible
for parsing, the grammar is formalized as syntactic elementary trees, which in bigger
grammars has trees which share some subtree structures below certain nodes. Structure
sharing is not realized during the parse, for that purpose equivalence classes are intro-
duced. The classes are packing multiple nodes and trees used to identify parse steps,
minimizing the chart size and parse time. As implied by the name, equivalence classes
store nodes that have a predefined equivalence relation to one another. They need to
share the same syntactic structure and attributes used to identify the node to be stored in
the same class, summarizing all necessary information for parsing. To complement the
implementation of these classes, an example grammar is given comparing a parse with
and without a factorized grammar.

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Contents

List of Figures iii

List of Tables iii

1 Introduction 1

2 Introducing basic theories 3

2.1 RRG: Role and Reference Grammar . 3

2.2 TWG: Tree Wrapping Grammar for RRG . 3

2.3 Structure sharing . 6

3 The parsing environment: TuLiPA 7

3.1 Parsing algorithm . 8

3.1.1 Parsing techniques . 8

3.1.2 Parse items . 9

3.1.3 Deduction rules . 10

3.1.4 Parse path . 12

3.2 Example chart . 12

3.3 Expected benefits of factorizing . 13

4 Implementing equivalence classes 14

4.1 The equivalence algorithm . 14

4.1.1 TOP and BOT classes . 15

4.1.2 Attributes that are compared . 15

4.1.3 Implementation strategy . 18

4.2 Necessary changes to the parser . 20

4.2.1 New parse items . 20

4.2.2 New deduction rules . 20

4.3 Example chart comparison . 23

5 Evaluation 26

5.1 Toy Grammar . 27

5.2 Toy grammar equivalence classes . 27

5.3 Chart comparison . 30

i

6 Conclusion 31

Erklärung 32

References 33

ii

List of Figures

1 RRG layered structure of the clause (LSC) . 4

2 Simple example of wrapping subtitution . 5

3 Simple example of substitution and sister adjunction for Obelix always snored 6

4 Example of subtree sharing and local ambiguity packing 7

5 Example of wrapping substitution for dabc . 12

6 Simple example of substitution and sister adjunction for Obelix always snored 13

7 UML diagram of top and bottom equivalence classes 16

8 Initial and auxiliary tree to be sorted into classes 18

9 Classes and methods involved in factorizing . 19

10 Equivalence class sorting path . 20

11 Part of the classes used for parsing RRG in TuLiPA. 23

12 Elementary trees for the chart example . 24

13 TOP and BOT equivalence classes for the chart example 24

14 Trees for parsing Toy Grammar example "What did Obelix want to eat?" . . . 28

List of Tables

1 Parsing "Obelix always snored" . 14

2 Criteria for equivalence class sorting . 17

3 Equivalence classes for example trees . 18

4 Parsing "Mary always laughs" without equivalence classes 25

5 Parsing "Mary always laughs" with equivalence classes 26

6 Equivalence classes for toy grammar . 28

7 Comparison of charts . 30

iii

1 Introduction

The Tuebingen Linguistic Parsing Architecture (TuLiPA, Kallmeyer et al., 2008) is a pars-
ing environment that can be used for parsing and developing tree-based grammars. Hav-
ing this common framework for natural language processing simplifies sharing resources
and comparing formalisms. Currently it uses a parsing schema utilizing single nodes of
syntactic trees as pointers to separate parsing steps. As explained further in this thesis,
parsing based on nodes can become expensive and time consuming when using large
grammars, as structure sharing between trees is not realized. To improve the parser,
there are several points to look at, mainly concerning the moment of applying an im-
provement idea, which can be before or during parsing. Refining during the parse can
for example include changing the parsing algorithm. It is however more plausible to first
try to improve the input grammar used for parsing.

When trying to improve a grammar, factorization is one of the first techniques that come
to mind. Although there are various aspects and implementations, factorization with
respect to the parsing domain usually tries to reduce or minimize the grammar that is
worked with, therefore optimizing parsing techniques used. This paper puts the focus
on grammars formalized as trees and how to reduce the parsing time and size of a chart
parser by eliminating redundant parse items. The grammar setting the basis for this pro-
posal is Role and Reference Grammar first introduced by Valin (1993), although it is more
commonly known from the book written later (Robert D. Van Valin Jr., 2005). This lin-
guistic theory is heavily based on typological concerns, linking the syntax to semantics
and pragmatics. The theory provides syntactic templates, but in order to specify how
these templates can be combined to form larger structures and be used in computational
analyses, a formalization of RRG is needed. Kallmeyer, Osswald, and Van Valin (2013)
proposed a formalization as elementary trees with a Tree Wrapping Grammar (TWG),
building on the idea of Tree Adjoining Grammars (TAG Joshi and Schabes, 1997). This
tree rewriting system focuses on the composition of elementary templates in RRG, intro-
ducing two basic operations to realize argument insertion, long-distance dependencies
and adjunction to non-binary trees. Arps (2018) implemented the proposed chart pars-
ing algorithm for RRG presented in Kallmeyer (2017a) as a part of the TuLiPA frame-
work, which is very suited for that extension considering the similarities between RRG
and TAG. This part of the code outlines the domain of this proposed factorization and
where it is applicable. The focus lies on factorizing the elementary trees before parsing is
conducted by realizing ideas of structure sharing from Tomita (1987). The theory packs
nodes together which share the same structure below, meaning all daughter nodes are
equal and the yield is the same. This lays the base for introducing equivalent classes
for subtree structure sharing which fit criteria that is decided upon beforehand, meaning
when two nodes share the same structure and additional attributes they are stored in the
same equivalent class.

In this paper the basic theories needed for this proposal are introduced first in section 2,
namely RRG and TWG, and the idea of subtree sharing is explained. Section 3 gives an
overview of the parsing environment TuLiPA as well as an example of the chart parsing
algorithm used. The motivation and expected benefits of introducing equivalent classes
into the parser are discussed, the classes and implementation is then detailed in the fol-

1

lowing section 4. The paper follows with an evaluation comparing parses of two example
grammars and concluding with a summary and an outlook of possible future improve-
ments.

The code for this thesis can be found at the TuLiPA GitHub Repository:
https://github.com/spetitjean/TuLiPA-frames/tree/factorizing_RRG,
working on the branch factorizing_RRG.

2

https://github.com/spetitjean/TuLiPA-frames/tree/factorizing_RRG

2 Introducing basic theories

This section gives a brief introduction to the grammar theory summarized in Robert D.
Van Valin Jr. (2005), with focus on the formalization as elementary trees proposed in
Kallmeyer et al. (2013). This formalization is used in the parser this proposed factoriza-
tion tries to improve.

2.1 RRG: Role and Reference Grammar

The grammar theory of Role and Reference Grammar (Robert D. Van Valin Jr., 2005) pro-
poses that any grammatical structure in a sentence can only be fully understood if its
semantic and communicative functions are taken into account, because all syntax is rela-
tively motivated by semantic and pragmatic factors (Robert D Van Valin et al., 1997). A
key point to RRG is the concept of the layered structure of the clause (LSC), which reflects
the distinction between arguments, predicates and non-arguments.

The predicate is the starting point, being solely encapsulated by the nucleus layer. The core
layer then has the nucleus plus all the arguments of the predicate, sometimes there is
an additional pre-core slot (PRCS) for wh-words in languages like English. The periphery
modifies the core with adjunct temporal and locative modifiers. Some languages also
have a left-detached position (LDP), which is the position of the pre-clausal element in a left-
dislocation construction. Each layer can be modified by an operator, which can include
tense, aspect or modality. In most sentences the predicate is a verb, as seen in Figure 1
taken from Valin (1993, page 67), which shows the layers of a clause with an example.
Give is the dominating predicate, having two mandatory core arguments, John and to
Mary. The wh-extraction of the object is realized in a pre-core slot. The locative modifier
in the periphery in the library is attached at the core, and yesterday is modifying the whole
sentence in clause initial position.

The logical structure (LS) of a verb is determined by the group it is assigned to. A set
of syntactic and semantic tests decide the group membership of a predicate in a specific
sentence. Semantic roles play a big part in the RRG theory, but since frame semantics are
not yet included in this proposal of a factorized grammar they are not discussed in this
thesis. For further reading consider Valin (1993).

2.2 TWG: Tree Wrapping Grammar for RRG

Tree Wrapping Grammar (TWG) is first introduced in "Tree Wrapping for Role and Ref-
erence Grammar" (Kallmeyer, Osswald, and Van Valin, 2013) as a tree rewriting system
building on ideas from Tree Adjoining Grammars (TAG) (Joshi and Schabes, 1997). It
formalizes RRG further by adding operations to combine the trees described in the pre-
vious section, so that the grammar can be used in a parsing schema. TAG and therefore
also TWG consists of syntactic elementary trees, which can be loosely sorted into initial and
auxiliary elementary trees. All elementary trees have a tree structure in which every node
represents a syntactic group, e.g. a node with the label „V“ represents the Verb group.
Going forth the notation from Joshi and Schabes (1997) is used to denote nodes, meaning

3

Figure 1: RRG layered structure of the clause (LSC)

interior nodes are all nodes that have daughters and frontier nodes have no daughters.

Initial trees have non-terminal labels on all interior nodes and either terminal labels or a
substitution marker on the frontier nodes, which are commonly called leafs. The substitu-
tion marker is often an arrow pointing down ↓ next to the label. Lexicalized TAG (LTAG)
(Joshi and Schabes, 1997) uses lexicalized trees that have one anchor node which holds
the lexical item the tree is associated with. Here the first difference to LTAG is visible,
TWG doesn’t assume all initial trees are lexicalized. The grammar can also hold tree tem-
plates that describe the structure of a sentence without being anchored by a lexical item.
Auxiliary trees have the same basic structure as the initial trees, but in addition hold a
frontier foot node with a non-terminal label. This node is commonly marked with a star,
and is a projection of the root, meaning it has the same label. This foot node later plays
a vital part in combining the auxiliary tree with another tree, when using one of TWG’s
proposed operations. During the parsing process, trees can be combined with different
operations to make derived trees. There are two operations in LTAG: substitution and
adjunction.

Substitution replaces a marked substitution node in tree a with tree b, provided the root
of b has the same label as the substitution node and fits all other imposed criteria, e.g.
modality or tense. For every syntactic argument of the predicate, the tree would have a
substitution node as a placeholder in the core layer. This is also where the a difference
between LTAG and TWG comes up, as LTAG treats clausal complements by adjunction
instead of substitution.

4

Adjoining is used to add modifiers and non mandatory arguments by replacing an inte-
rior node with an auxiliary tree. Since the root and the marked foot node of an auxiliary
tree must have the same label, they split the interior node they replace and every daugh-
ter of that node is added below the foot node.

TWG proposes two new operations to deal with argument insertion and adjunction,
(wrapping) substitution and sister adjunction. For long-distance dependencies wrapping
substitution is used to treat more complex causal complements, as shown in the follow-
ing wh-extraction examples inspired by Arps (2018):

a) Who always ate boar?

b) What did Obelix want to eat?

What is the object of eat but is put in clausal-initial position in b. Even though there are
clauses between the extracted argument and the predicate, their associated relationship
stays the same. To realize that in the formalization, what should be added to the eat tree as
an argument. An example composition of b can be seen in Figure 2. The complement tree
eat is split and a subtree is added to the target tree want’s substitution node CO ↓ while
the upper part is added above the target trees root CL. The splitting point is marked with
a dotted edge (d-edge) from root to a daughter. That daughter is called d-daughter and
replaces the substitution node. In this case CO from the eat tree is the d-daughter.

Figure 2: Simple example of wrapping subtitution

Modifiers and functional elements are not counted as arguments and therefore can not
be added by substitution, often they are taken to be a periphery of the category they
modify. Periphery trees are anchored by periphery elements and their root determines
the category they can modify. These trees are added via sister adjunction at any position
as new daughters to the modified category. In this example, the tense modifier did is
sister adjoined at the core of the want tree. Trees that are marked for sister adjunction
commonly have a star mark ∗ next to their root node. Sister adjunction of functional

5

elements happens the same way, but these elements can usually not be added at any
position under the target node and instead are restricted to only leftmost or rightmost
sister adjunction. An example for sister adjunction inspired by Kallmeyer et al. (2013)
can be seen in Figure 3.

Figure 3: Simple example of substitution and sister adjunction for Obelix always snored

Constraints can be added to nodes, restricting the operations that can be done with it,
e.g. no sister adjunction is allowed or only open to specific operators. One way to do
this is by adding feature structures to each node, for instance to ensure verb agreement.
Usually TWG has specific attribute constraints like number agreement or case marking.
Feature structures are discussed in detail in Kallmeyer and Osswald (2017), since this
proposal is not using feature structures this part is omitted here. However, introducing
feature structures into single trees would bring an even better improvement to the parser,
as mentioned again in the conclusion of this paper.

In terms of the outcome, rather than generating strings like most other context-free gram-
mars, TWG generates trees. Therefore the string language of TWG is the yields of all trees
that can be derived from the present elementary trees.

2.3 Structure sharing

Elementary trees are based on a large but limited number of syntactic templates and
node labels. Even when working with a small grammar, many elementary trees have at
least some subtree parts that share the exact same structure. The idea of subtree sharing
and local ambiguity packing is taken from Tomita (1987), the goal is to avoid computing
partial-results more than once. This can be very time and cost consuming while parsing,
especially using a larger grammar that represents a full language, and would cause the
number of parse trees produced to grow exponentially. To have a more efficient represen-
tation, Tomita proposes two not completely new ideas, subtree sharing and local ambiguity
packing. The idea of subtree sharing in a parser is to group all subtrees from the original
elementary trees that share the same structure, depending on the criteria chosen before-
hand, so the parser doesn’t have to go through the same subtrees more than once. Section

6

4.1.2 gives deeper insight at possible criteria and detail which ones where chosen for this
proposal. Using local ambiguity packing, all nodes of the same category that span the
same input are put into a packed node. When combining these two techniques, the out-
come is a compact graph of all elementary trees connected and grouped to downsize
them, as seen in Figure 4. The example is taken from Kallmeyer (2017b).

(a) Before (b) After

Figure 4: Example of subtree sharing and local ambiguity packing

This idea of structure sharing is laying the base for introducing factorized trees into the
parser, taking the form of equivalence classes. These classes, as the name suggests, hold
objects that are equal when comparing a set of attributes. In this proposal, the objects
held by an equivalence class are nodes from elementary trees. Using Tomita’s principle
of subtree sharing, nodes sharing the same structure are put into the same class. This
structure includes the daughters and left sisters of the node, as well as other attributes
that are detailed in a later section. The view encapsulated by equivalence classes is al-
ways directed below or additionally to the left of the node, mothers or right sisters are
not included in the criteria. This is due to the bottom-up left to right nature of the pars-
ing algorithm explained in the following section. For a correct representation of the tree
structure, the order of daughter nodes has to be maintained. The data structure holding
information about the daughters and left sisters of a class is therefore an ordered collec-
tion with duplicates, as sister nodes can have equal classes.

3 The parsing environment: TuLiPA

The Tuebingen Linguistic Parsing Architecture (TuLiPA Kallmeyer et al., 2008) is an open-
source parsing environment used to parse several mildly context-sensitive formalisms,
including TWG. TuLiPA is implemented in Java and was originally parsing with all input
grammars converted into a Range Concatenation Grammar (RCG). Arps (2018) extended
a part of the parser to use RRG and the tree composition operations described above,
which is the part focused on in this thesis.

7

3.1 Parsing algorithm

The algorithm used for RRG is proposed in Arps et al. (2019) based on Kallmeyer (2017a)
and is a bottom-up chart parsing algorithm. After the input sentence is scanned, the
parser moves up through all parse trees. Parse trees are computed by applying the tree
composition rules working with parse items holding details about the current derivation
step. Another similar form of the algorithm is described in Bladier et al. (2020), also
using deduction rules. If the parse is successful, one result is a goal item that spans the
entire input. The output of the parse, i.e. the derivation tree, the derived tree and all
elementary trees used in the parse and the derivation steps can be viewed either via a
graphical output or stored in an XML file.

3.1.1 Parsing techniques

The parsing techniques used are parsing as deduction and chart parsing, as described in
Kallmeyer (2010). Parsing in connection with deduction is explained in Pereira and War-
ren (1983) based on previous work on chart parsing by Kay (1986) using the Early context-
free parsing algorithm (Earley, 1970), a special case of chart parsing. Rather than using
pseudocode to describe the algorithm in detail and already imposing some implementa-
tional decisions, deduction rules are used to formalize it, making it usable for different
control and data structures. Deduction rules usually consist of three parts, the antecedent,
consequent and side conditions, and are represented as follows:

antecedents
consequents side conditions

All antecedents need to be present and all side conditions must be true, only then can the
consequent also be interpreted as true. In our case with TuLiPA, parse items make up
the antecedents and consequents, they are detailed further in section 3.1.2. Parse items
hold information about the current parse step and which node of which elementary tree
is being processed in that step. Let’s assume the current node being processed is done
and the parser wants to move up to the mother node for further analysis. As an example
the did tree from Figure 2 is used. Assuming the parser is currently looking at the did
node as antecedent item, processing it, and after that wants to move up to the mother
node OP as a consequent item. As a side condition, did can not have any sister nodes that
have not been processed yet. Since the condition is met and the node has been visited, all
constraints are true and therefore the consequent item [OP] can be build.

[did]

[OP]
did has no sister nodes

Rules that have no antecedents and can therefore usually be deduced at the beginning of
parsing are called axioms, and the wanted result for a successful parse is a goal item that
can be traced back recursively to the axiom.

The natural language domain has a lot of ambiguity and can often deduce more than one
parse tree for a given input sentence. A repercussion of that is that similar parse trees

8

are computed repeatedly and used at different stages of the parse. To avoid using the
same derivation step more than once, they are often stored in a chart and an agenda in the
form of parse items. As stated before, included in these items are information about the
current node and elementary tree of the derivation step, and which tree rewriting rule
was used to accomplish this parse tree. The agenda lists all items that have not yet been
examined during the parse and controls the flow of item deduction. At every derivation
step, the next item is removed from the agenda and deduction rules are applied to form
new items if possible. That process is repeated until the agenda is empty. More than
one deduction rule can be applied to the current item. The chart stores all new items
once they are deduced and doesn’t allow duplicates. When a new item is deduced, it is
checked if the item is already present in the chart. If not, it is added to both the chart and
the agenda to be looked at later. If it is, there might be different antecedents than the ones
stored and a new set of backpointers are added to the existing item and it is not added to
the agenda. Backpointers are storing all antecedents that were used to build an item to
allow for back tracking in later stages of the parse. For extraction of the resulting parse
trees, starting at the goal items, recursively go through the backpointers of every item
they are deduced from.

3.1.2 Parse items

To compactly represent all knowledge of the current derivation step and also see what
has already been derived, TuLiPA uses parse items. The standard information an item
holds is made up of:

• What part of the input sentence it covers

• The position in the derived tree, in this case that would be the Gorn address of the
node and the elementary tree it belongs to

Additional important information is attached to the item:

• Pointers to the items it was deduced from

• Any additional details specified in the parsing schema, e.g. a probability or weight
when working with statistical parsing algorithms

The input sentence w with |w| = n is indexed starting at 0:

w = 0 Obelix 1 always 2 snored 3

The first items in the parse are created from scanning the words in the input sentence and
collecting all elementary trees that have a fitting lexical item corresponding to the words.
From these trees, initial parse items are created that point to the lexical node in the tree
and are put into the chart at the position of the word they hold. At the beginning of every
derivation step, one item gets popped off the agenda and depending on the parse one or
more new items are added again.

9

The parse item looks as follows:

[γ, pt, i, j, ⟨⟨f1, g1, X1⟩, ...⟩, ws?]

• γ is the elementary tree

• p is the Gorn address of the node in γ, where the address (p · m) denotes the m-th
daughter of p. Root nodes are represented with ϵ.

• The subscript t ∈ {⊤,⊥} is referring to the position of the node. BOT position ⊥ items
consider the span below p, items in TOP position ⊤ also consider the span of all left
sisters of p

• ws? ∈ {yes, no} is a truth value and indicates whether wrapping substitution is still
possible at this node, avoiding double wrapping

• i and j are indices marking the start and end of the item’s span, where 0 ≤ i ≤ j ≤
|w| = n

• ⟨⟨f1, g1, X1⟩, ...⟩ is a list of gaps, where f1, g1 with i ≤ f1 ≤ g1 ≤ j are marking the start
and end span of the d-daughter of a wrapping operation and X1 is the node label

3.1.3 Deduction rules

This section closely follows Arps (2018). The axiom items are generated first with the
Scan-rule that takes no antecedents, as there are no items yet:

Scan:
[γ, p⊥, i, i+ 1, ⟨⟩, no]

label(γ, p) = wi+1

A node’s position can be changed from ⊥ to ⊤ if the node has no left sisters.

No-Left-Sister: [γ, (p · 1)⊥, i, j,Γ, ws?]

[γ, (p · 1)⊤, i, j,Γ, ws?]

To combine two sister nodes, the left node (p · m) must be in ⊤-position while the right
node (p · (m + 1)) is still in ⊥-position.

Combine-sisters: [γ, (p ·m)⊤, i1, i2,Γ1, no] , [γ, (p · (m+ 1))⊥, i2, i3,Γ2, no]

[γ, (p · (m+ 1))⊤, i1, i3,Γ1 ◦ Γ2, no]

When the rightmost daughter (p · m) is reached and the item is in ⊤-position, the parser
moves up to p. If p is a d-daughter, ws? is set to yes.

Move-up: [γ, (p ·m)⊤, i, j,Γ, no]

[γ, p⊥, i, j,Γ, ws?]
There is no node (p · (m+ 1));ws? = yes if p is a d− daughter

When reaching a root node, all substitution nodes with matching labels are considered
as candidates.

10

Substitution: [α, ϵ⊤, i, j,Γ, no]

[γ, p ↓⊥, i, j,Γ, no]
label(α, ϵ) = label(γ, p ↓); γ(p ↓) is a substitution node

To compute wrapping substitution triggered by a d-daughter, the parser first uses the
Predict-wrapping rule to create items from all matching substitution nodes of possible
target trees. A gap that holds the span and label of the d-daughter is added. The parser
moves up the target trees and once reaching a root node checks if it has the same label
as the mother of the d-daughter node. If so, the gap is closed by using the Complete-
wrapping (CW) rule and jumping back to the d-daughter.

Predict-wrapping: [α, p⊥, i, j,Γ, yes]

[γ, p ↓⊤, i, j, ⟨⟨i, j, label(γ, p ↓)⟩⟩, no]
label(α, p) = label(γ, p ↓)

Complete-wrapping: [γ, ϵ⊤, i, j,Γ1◦⟨⟨f1, f2, Y ⟩⟩◦ Γ2, ws?] , [α, (p·m)⊥, f1, f2,Γ3, yes]

[α, (p·m)⊥, i, j,Γ1◦ Γ3◦ Γ2, no]

label(α, p) = label(γ, ϵ);

label(α, (p·m)) = Y

Using wrapping substitution with an interior node instead of the root of the wrapped
tree is a bit more complex and requires a different composition rule. The mother of the
d-daughter node needs to be the root of the wrapping tree, so it can be added via sister
adjunction. A backpointer is added to the consequent item, pointing to the antecedent
target item. This backpointer serves as a jump back to the target tree after jumping to the
wrapping tree and reaching the root node, for that the Jump-back after Generalized CW
rule is used.

Generalized CW: [γ, q⊤, i, j,Γ1◦⟨⟨f1, f2, Y ⟩⟩◦ Γ2, ws?] , [α,m⊥, f1, f2,Γ3, yes]

[α,m⊥, i, j,Γ1◦ Γ3◦ Γ2, no, [γ, q⊤, i, j,Γ1◦⟨⟨f1, f2, Y ⟩⟩◦ Γ2, ws?]]

label(α,m) = label(γ, q);

label(α,m) = Y

α(m) is a daughter ofα(ϵ)

Jump-back after Generalized CW: [α, ϵ⊤, i, j,Γ1, no, [γ, q⊤, k, l,Γ2, ws?]]

[γ, q⊤, i, j,Γ1, no]

Sister adjunction is handled by two rules displaying two cases, depending on whether
the auxiliary tree should be added as the leftmost daughter or further right. The Left-
adjoin rule adds an auxiliary tree β as a left sister to the node γ(p ·1) and extends the item’s
span to the left. Whenever β is sister adjoined to the right of at any node γ(p · m > 1), the
Right-adjoin rule is used. The span of the auxiliary tree is added to the adjoined sister
item, expending it to the right.

Left-adjoin: [γ, (p· 1)⊤, i2, i3,Γ1, no] , [β, ϵ⊤, i1, i2,Γ2, no]

[γ, (p· 1)⊤, i1, i3,Γ1◦ Γ2, no]

label(β, ϵ) = label(γ, p);

β is an auxiliary tree

Right-adjoin: [γ, (p·m)⊤, i1, i2,Γ1, no] , [β, ϵ⊤, i2, i3,Γ2, no]

[γ, (p·m)⊤, i1, i3,Γ1◦ Γ2, no]

label(β, ϵ) = label(γ, p);

β is an auxiliary tree

At the end of parsing there should be at least one goal item, meaning the parse was
successful.

Goal item: [α, ϵ⊤, 0, |w| = n, ⟨⟩, no] α must not be an auxiliary tree.

11

3.1.4 Parse path

Working with TWG, most elementary trees have a frontier node that is marked for an-
choring, commonly with a diamond shape next to it. Before the actual parsing starts,
these anchor nodes are fitted with a daughter that is the lexical item of the tree, anchor-
ing the tree. After checking the input words, the parser looks for elementary trees which
can anchor those as lexical items. Chart and agenda are created and start out empty, the
size of the chart corresponding to the number of words in the input sentence.

Starting at the lexical anchor, the parser processes each daughter from left to right and, if
applicable, uses one or more of the tree composition operations to form new parse items.
When the rightmost daughter of a node is reached, the parser moves up to that node and
repeats the same path as before. When a root node is reached, the next step depends on
the node type. An auxiliary tree root node marked with a star would trigger the search for
an item suitable for sister adjunction. A standard root node is still a possible substitution
candidate and substitution would be performed at all substitution nodes with a match-
ing label. An example of wrapping substitution can be seen in 5, taken from Kallmeyer
(2017a). When reaching a d-daughter node Cd in tree α1, all possible substitution nodes
are found and the parser continues deducing up from C ↓ in the wrapped tree γ. The same
procedure applies to d-daughter node Bd in tree α2. The added subtree is kept track of
with gaps, which store span and label of Cd and Bd in each parse item traversing up to the
root of tree γ. Once reaching the root X in γ, the parser jumps back to d-daughter Cd and
continues the path to the root of the wrapping tree, closing the gaps during this step.

Figure 5: Example of wrapping substitution for dabc

3.2 Example chart

Table 1 shows an example chart that depicts the parse from Figure 6 for input sentence
Obelix always snored, as seen already in section 2.2. Items 1-3 are scans of the input words,
followed by all items changing their position to ⊤ in 4-6, as none of the terminal nodes has
a left sister. The parser now applies all rules used to traverse up the single elementary
trees until reaching the root node in the Obelix tree in item 10. There substitution is
applied and the substitution node of the snored trees is build in item 13. Now usually
the next step would be to perform Combine-sister with item 15, seeing as the nodes are
sisters in the elementary trees, but as we haven’t adjoined the auxiliary tree always yet, the

12

spans don’t match up. Once the root of always is reached and the node is right-adjoined,
it extends the span of item 18 holding the left sister, allowing for the Combine-sisters rule
being applied in the next step building item 19. Now the parser simply moves up to the
root of the snored tree. Item 23 is the goal item, being in a root in ⊤-position spanning the
whole input.

Figure 6: Simple example of substitution and sister adjunction for Obelix always snored

3.3 Expected benefits of factorizing

The parser has its own structure sharing, meaning one elementary tree can be used in
different contexts without being computed again, but it doesn’t realize structure sharing
with subtrees between different elementary trees. This means when using bigger gram-
mars with a lot of similarly structured syntactic trees, many irrelevant parse items are
computed and enlarge chart size and parse time. Taking again the example trees from
Figure 6, assume there is a second tree that is anchored by snored and has a slightly dif-
ferent syntactic structure. For the sake of explanation imagine the CO node has a third,
rightmost daughter X↓. As the different structure appears higher up in the tree, during
chart parsing both trees are traversed node for node, each one building a separate parse
item. Once the NUC node is reached, no new items could be deducted in the tree with X,
as the input sentence Obelix always snored has no more words to form the missing daugh-
ter substitution tree. Still, many redundant and useless items are build until that point,
expanding the chart size.

Using equivalence classes instead of the single node and elementary tree can improve
both. An equivalence class is in essence the compact representation of a syntactic subtree
structure shared by more than one node. Because one equivalence class can hold multiple
nodes, which would all have been different parse items due to the lack of subtree sharing
in the parser, there are less items after factorizing and therefore a smaller chart. Hav-
ing less items to process also shortens the parse time when parsing long or very nested
sentences.

13

Item Rules
1 [Obelix, 1⊥, 0, 1, ⟨⟩, no] Scan(Obelix)
2 [always, 1.1⊥, 1, 2, ⟨⟩, no] Scan(always)
3 [snored, 1.2.1.1⊥, 2, 3, ⟨⟩, no] Scan(laughs)
4 [Obelix, 1⊤, 0, 1, ⟨⟩, no] NLS(1)
5 [always, 1.1⊤, 1, 2, ⟨⟩, no] NLS(2)
6 [snored, 1.2.1.1⊤, 2, 3, ⟨⟩, no] NLS(3)
7 [Obelix, ϵ⊥, 0, 1, ⟨⟩, no] Move-up(4)
8 [always, 1⊥, 1, 2, ⟨⟩, no] Move-up(5)
9 [snored, 1.2.1⊥, 2, 3, ⟨⟩, no] Move-up(6)
10 [Obelix, ϵ⊤, 0, 1, ⟨⟩, no] NLS(7)
11 [always, 1⊤, 1, 2, ⟨⟩, no] NLS(8)
12 [snored, 1.2.1⊤, 2, 3, ⟨⟩, no] NLS(9)
13 [snored, 1.1⊥, 0, 1, ⟨⟩, no] Substitute(10)
14 [always, ϵ⊥, 1, 2, ⟨⟩, no] Move-up(11)
15 [snored, 1.2⊥, 2, 3, ⟨⟩, no] Move-up(12)
16 [snored, 1.1⊤, 0, 1, ⟨⟩, no] NLS(13)
17 [always, ϵ⊤, 1, 2, ⟨⟩, no] NLS(14)
18 [snored, 1.1⊤, 0, 2, ⟨⟩, no] Right-adjoin(17+16)
19 [snored, 1.2⊤, 0, 3, ⟨⟩, no] Combine-sister(18+15)
20 [snored, 1⊥, 0, 3, ⟨⟩, no] Move-up(19)
21 [snored, 1⊤, 0, 3, ⟨⟩, no] NLS(20)
22 [snored, ϵ⊥, 0, 3, ⟨⟩, no] Move-up(21)
23 [snored, ϵ⊤, 0, 3, ⟨⟩, no] NLS(22)

Table 1: Parsing "Obelix always snored"

4 Implementing equivalence classes

To factorize the elementary trees used in RRG, all nodes are analyzed after anchoring
and put into a corresponding equivalence class. This section shows how the classes are
computed and which criteria are used to determine a nodes equivalence class. After that,
the necessary changes to parse items and deduction rules are formalized.

4.1 The equivalence algorithm

In terms of changing the algorithm idea not much is altered from Arps (2018) concern-
ing the anchoring and parse path. The factorizer is an additional part of the parser, sit-
ting between anchoring and the beginning of deduction. There, all equivalence classes
are built and nodes are sorted. The factorizer itself stores a list of both types of classes,
BOT(bottom) and TOP classes, both modeling the ⊥(bottom)- and ⊤(top)-position of a node
during parsing. The path through the elementary trees has three main parts:

(i) Starting at the root, find the leftmost leaf by traversing down from mother to first
daughter. (Top-down, depth-first search)

14

(ii) Sort node into either fitting existing equivalence classes or create new ones.

(iii) When all daughters of a node p are sorted, move up to p. Otherwise repeat step (i)
with p as root and search for lowest unvisited node. (Bottom-up sort)

This is further detailed in Section 4.1.3, before that the elements needed for the algorithm
are introduced. First, an overview of the two equivalence class categories which encap-
sulate two different views of the node, TOP and BOT is given, followed by the criteria for
classifying the nodes and the attributes used.

4.1.1 TOP and BOT classes

The division into TOP and BOT (bottom) equivalence classes is in line with the idea of
bottom-up left to right parsing, both representing a different view of the node and what
part of the tree was already processed. The BOT class looks at everything below a node,
meaning when a parse item is created that holds the BOT class (CBOT), all daughter classes
(C ·m) have been parsed, as well as their daughter classes and so on. A TOP class adds to
that by also taking all left sisters of the node it encapsulates into account. When a parse
item holding a TOP class is created, it means not only all daughters but also all left sister
classes have been parsed.

As seen in Figure 7 every BOT class stores their respective TOP classes, which in turn
inherits all attribute fields and adds a few more. Table 2 shows which properties are
reserved for TOP classes. The equivalence classes doesn’t maintain easily accessible in-
formation about the elementary tree structure, since the main idea is to break down trees.
Nodes assigned to a class C are stored in factorizedTrees with the elementary tree
they were in and their address, but trying to access details about for example its mother
node would be hard to get. This however is a crucial knowledge for parse operations,
such as the Move-up rule. To compensate for that loss of information, every TOP class
stores its mother class during the sorting. When a new node is added to a class, if the
mother is not already saved it is added to possibleMothers. The BOT class of the
mother node is stored as well as a truth value indicating whether the current node is the
rightmost daughter. This is also important for the Move-up rule, as the parser needs to
know whether all daughters of a class have been processed. Although the map of factor-
ized trees is present in both class types they can hold different nodes and are therefore
not always equal. Two nodes can share a BOT class, but one might have a left sisters
while the other has not, so they would be in different TOP classes and not sharing a map.

4.1.2 Attributes that are compared

As seen in table 2, defining characteristics of a node are considered during sorting. The
basic label, which also represents the category of the node, e.g. "V", is the biggest divisor.
The lists storing a node’s daughters and left sisters allow for duplicate classes and are or-
dered collections, meaning the order of nodes is maintained. This is especially important
for rules applying to sister classes. There are a few additional attributes to be taken into
account when sorting TOP classes, as the view of the node it stores also involves com-
paring all left sisters. Some attributes were needed for the tree composition operations

15

Figure 7: UML diagram of top and bottom equivalence classes

performed during the actual parse, e.g. substitution has to know whether the current
equivalence class holds a root item, which is only relevant to TOP classes. Types are also
important in both classes for certain deduction rules, a class of type STAR for example is
needed to trigger sister adjunction. An exemplary sorting of two trees α and β can be seen
in table 3, the trees are shown in Figure 8. The first column lists the built BOT classes in
the form:

⟨C, T, ⟨⟨γ, (p ·m)⟩, ...⟩, ⟨D1, D2, ...⟩⟩

where

• C is the category of the class

• T is the node type, e.g. STD for standard nodes or SUBST for substitution nodes

• ⟨⟨γ, (p ·m)⟩, ...⟩ is the list of nodes this class encapsulates. γ is the elementary tree and
(p ·m) the Gorn address

• ⟨D1, D2, ...⟩ is the list of daughter BOT classes

The second column lists the built TOP classes next to their respective BOT class in the
form:

⟨· · · , ⟨LS1, LS2⟩, ⟨⟨M1, rightmost?⟩, ...⟩, ⟨⟨γ, (p ·m)⟩, ...⟩, root?⟩

where

• · · · is a placeholder for all attributes inherited from the BOT class: category, type and
daughters.

16

• ⟨LS1, LS2⟩ are the left sister TOP classes

• ⟨⟨M1, rightmost?⟩, ...⟩ is a map of possible mother classes, with Mi being the mother BOT
class and rightmost? is a flag marking the rightmost daughter class

• ⟨⟨γ, (p ·m)⟩, ...⟩ is a map of the nodes encapsulated by this TOP class, the elements are
described above

• root? is a flag marking a root node

The lexical items are processed first, both nodes b being sorted into the same BOT and
TOP class, as they both have no daughters or left sisters and are of the same node type
LEX. The substitution node A has no counterpart in tree β so the BOT and TOP class only
hold one node of type SUBST with no daughters and left sisters.The mother nodes B are
in the same BOT class, because they both have one daughter class b and are of type ANCH
as they are anchoring the lexical item. However, they are not in the same TOP class seeing
as node Bα has a left sister A and Bβ has no left sisters. Once the mother nodes are sorted,
their class is added to the daughter classes b map of possible mothers. The truth value
set to yes as they are the rightmost daughters. The root nodes of both trees do have the
same label, i.e. category X, and it could indicate sorting them into the same class. Seeing
as Xα has two daughters and additionally Xβ is an auxiliary tree root node of type STAR,
they are neither in the same BOT nor the same TOP class. As they are both root nodes,
they have no possible mother classes and the root? flag is set to yes.

Attributes Formalization
Category String; Example: "V",

"NP", "John"
Category of the node, can relate
to lexical item V (Verb), NP (noun
phrase) or to structure and for ar-
guments CL (clause), Periphery

Node Type RRGNodeType ∈ {STD,
SUBST, ANCH, LEX,
STAR, DDAUGHTER}

STD (Standard), SUBST (substi-
tution leaf node), ANCH, LEX,
STAR (root node of a tree used for
sister adjunction), D-Daughter (d-
daughter for wrapping substitu-
tion, marks the d-edge)

Daughter nodes List of BOT classes Tree structure below this node
needs to be equal

Additional attributes of TOP classes
Left sisters List of TOP classes All left sister classes need to be

equal
Root Truth value Indicates whether this node is a

root node

Table 2: Criteria for equivalence class sorting

17

Figure 8: Initial and auxiliary tree to be sorted into classes

BOT classes TOP classes
b b
⟨”b”, LEX, ⟨⟨α, (2.1)⟩, ⟨β, (1.1)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨B, yes⟩⟩, ⟨⟨α, (2.1)⟩, ⟨β, (1.1)⟩⟩, no⟩

A A
⟨”A”, SUBST, ⟨⟨α, (1)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨Xα, no⟩⟩, ⟨⟨α, (1)⟩⟩, no⟩

B Bα

⟨”B”, ANCH, ⟨⟨α, (2)⟩, ⟨β, (1)⟩⟩, ⟨b⟩⟩ ⟨· · · , ⟨A⟩, ⟨⟨Xα, yes⟩⟩, ⟨⟨α, (2)⟩⟩, no⟩
Bβ

⟨· · · , ⟨⟩, ⟨⟨Xβ , yes⟩⟩, ⟨⟨β, (1)⟩⟩, no⟩

Xα Xα

⟨”X”, STD, ⟨⟨α, ϵ⟩⟩, ⟨A,B⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨α, ϵ⟩⟩, yes⟩

Xβ Xβ

⟨”X”, STAR, ⟨⟨β, ϵ⟩⟩, ⟨B⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨β, ϵ⟩⟩, yes⟩

Table 3: Equivalence classes for example trees

4.1.3 Implementation strategy

The core sorting and implementing is done in the class FactorizingInterface as
seen in detail in Figure 9. During anchoring, the elementary trees are already filtered, the
only trees that are passed on to the factorizer either:

(i) have a lexical item that matches a word in the input sentence or

(ii) have no anchors and no lexical nodes

The factorizer loops through the anchoredTrees and each tree γ is given over to the
method checkDaughters. Starting at γ(ϵ) as the current node, the method collects all
child nodes. If daughter node (ϵ · 1) also has children, continue with that as the current
node until getting to a leaf (p · 1). Leaves can be either lexical nodes from anchoring or
substitution nodes. The method checkLeafClasses compares the leaf with all existing
BOT classes, considering the attributes mentioned above, and either adds the node to a
class or creates a new one. Once the BOT class bc is established, the current node is
compared against bc’s list of already stored TOP classes. Since the factorizer is going
from left to right, existing left sisters would have already been processed and are used to
sort the node into a TOP class or establish new one and add it to bc. (p · 1) is now stored in
two views, TOP and BOT. The factorizer now classifies all other daughters (p · (m > 1)) of
p to move up to p and with the list of daughters sort it into a BOT class. Because of our

18

Figure 9: Classes and methods involved in factorizing

left-to-right factorizing schema, p has to be the first or only daughter of its mother node
(t · p), meaning there are no left sisters to use while deciding on a TOP class. Figure 10
shows the path of the factorizer, the dotted lines meaning no sorting is done and the next
unvisited node is tracked.

Starting in tree α at the root Aα, the checkDaughters collects all child nodes and contin-
ues with the first daughter C. Since this node is not a leaf, the method is called recursively
with C as the new current node and all children are collected again. As the only daugh-
ter and leaf node c is given over to checkLeafClasses. As there are no BOT or TOP
classes built yet, new ones are created, presently only holding c. This was the only daugh-
ter node, so the factorizer can move up to C and also create new BOT and TOP classes. C
can not be added to bα’s classes, they do not share the same category and have different
daughters. Now it is not possible to move up to Aα before also processing the nodes other
daughters. First, the next child Bα is analysed and all child nodes are looked at. The only
daughter and leaf bα is handled exactly the same as the first leaf node, building new BOT
and TOP classes. Same goes for the mother node Bα and once that is sorted, the root node
Aα can also be put into newly built classes. When handling the second tree β is where the
criteria of sorting the nodes into classes is really visible. Again starting at the root Aβ and
recursively going down to bβ , the node is sorted into the existing BOT and TOP class of
bα. They share the same label, daughter and sister nodes are both empty. Moving up to
Bβ , the node is added to the BOT class of bα. A new TOP class has to be built however,

19

Figure 10: Equivalence class sorting path

as bβ has no left sister in contradiction to bα. The BOT and TOP classes of the root Xβ are
clearly also new when compared to Xα, e.g. considering daughters.

4.2 Necessary changes to the parser

This is where the integration of the new equivalence classes into the existing RRG parser
happens. As the classes are used to identify a derivation step instead of the single node
and elementary tree, the parse items and deduction rules need to be adapted.

4.2.1 New parse items

Most of the elements explained in section 3.1.2 are kept in the new parse items.

[Ct, i, j, ⟨⟨f1, g1, X1⟩, ...⟩, ws?]

Visibly the only change to the items is the elementary tree and nodes Gorn address being
replaced by an equivalence class C with t ∈ TOP,BOT . The class itself contains all neces-
sary details like node type for deciding on the ws?-flag. The form of the classes and the
elements they hold is detailed in section 4.1.2.

4.2.2 New deduction rules

Changing the parse items means changing all antecedent and consequent items of the
deduction rules. The position of the item needs to be known to the parser right at the
beginning, deciding over the subset of deduction rules applicable, e.g. a BOT class cannot
be an antecedent of the Move-up rule. When trying to use a deduction rule with the
current item, there are two major parts:

20

• Checking the requirements of the deduction rule and comparing antecedents with
the current item

• Applying the deduction rule and deducting new consequent parse items

Figure 11 is a snippet taken out of Arps (2018) showing the core classes from TuLiPA
involved in parsing RRG. Most changes needed to be done in RequirementFinder
and Deducer, which perform the two derivational operations mentioned above.

RequirementFinder checks if the current item fits an antecedent item of a deduction
rule, as well as fulfilling all side conditions only relying on the antecedent. Some condi-
tions have restrictions that can only be verified when a consequent candidate is present,
e.g. label equality. All requirements like that concerning attributes of the equivalence
class in the item are used as filters. A subset of classes is used to form model items mir-
roring real parse items. The benefit of a model is that not all elements an item is made
up by need to be present. Looking again at the Combine-sister rule in section 3.1.3, the
span of both antecedent items is restricted, but only the end span of the left and the
start span of the right sister are specified. The span of the right sister could extend far
to the right, but the rule would still be applicable. When examining a rule possessing
two antecedents from which on fits the current item, the chart is searched for the second
antecedent represented by a model and can return multiple candidate items. Only when
all antecedents are found and all side conditions are met the Deducer is triggered. It
takes the antecedent item candidates and applies the chosen deduction rule, returning
one or more new parse items. The parser then adds the items to chart and agenda or just
appends a new backpointer, depending on the novelty of the items. For readability the
elementary tree and Gorn address ⟨[γ, pt⟩] in the old parse items are denoted as ∆. As seen
in the section before, C denotes the equivalence class of an item.

Scan and Goal item These two largely remain unchanged, only now holding equiva-
lence class C with t = BOT and t = TOP replacing ∆ respectively. The Scan rule
builds items based on the label of C fitting one of the input words. The goal item
requires C to be a root TOP class.

No-Left-Sister (NLS) Here the parser can utilize the stored list of possible classes con-
tained inside each BOT class. In the antecedent BOT class, a subset of all possible
TOP classes that have an empty list of left sisters is determined as consequent can-
didates.

Combine-sisters This rule is a bit trickier, since the parser can no longer simply use ∆

to determine if two items hold sister classes. There are two cases that need to be
considered:

(i) The current item i is the left sister antecedent with equivalence class CTOP . As
only left sisters are stored inside the class, the parser can not access any right
sister directly. Instead, a subset M = ⟨m1,m2, ...⟩ is computed from all possible
mothers of CTOP where the truth value is no, indicating the class has at least
one right sister RSBOT . Next, all immediate right sisters RSi

BOT ∈ mi are col-
lected and put into model items with which a fitting right sister antecedent is

21

searched in the chart. If one is found, the parser proceeds as before and builds
a consequent item holding RSTOP with a span extended to the left.

(ii) The current item i is the right sister antecedent with equivalence class CBOT .
Since in a BOT class, the left sisters are again not directly accessible and need
to be extracted from the possible TOP classes of CBOT . These are filtered by
checking whether their stored list of left sister classes has at least one sister
LSTOP . Next, all immediate left sisters LS1

TOP , LS2
TOP , ... are collected and put

into model items with which a fitting left sister antecedent is searched in the
chart. If one is found, the parser proceeds as before and builds a consequent
item holding CTOP with a span extended to the left.

Move-up This is where the truth value stored with every possible mother in a TOP class
is very useful. The list is filtered and all mother classes where the current class is
the rightmost daughter are used to build a new item.

Substitution Since the antecedent item holds a TOP class, the parser can easily deduce
whether it is a root class and substitution is applicable. The factorizer has many
methods for filtering all existing TOP and BOT equivalence classes, in this case all
classes of type SUBST with a category matching the current class are gathered and
from them new consequent items are build.

Predict-wrapping Basically operating the same as the Substitution rule, all fitting sub-
stitution classes are collected by the factorizer. Only this time the current class need
not be a root class, but a d-daughter (i.e. of type DDAUGHTER), and of course as
before a gap is added to the consequent item corresponding to the d-daughter item.

Complete-wrapping and Generalized Complete-wrapping The gap element in the
parse items remains largely unchanged, simply holding an adapted parse item. The
only different requirement to the target antecedent item between the two wrapping
cases is whether the TOP class is a root or an interior class. Both are working with
the same search from RequirementFinder to find either antecedent item in the
chart. Finding a filler item for the gap is more complex as again the mother class
needs to be accessed to compare labels. The following steps are taken to find filler
items:

1) In the chart, find all items that have a span and label that matches the gap and
hold a BOT class

2) Get all possible mothers from all TOP classes of the BOT class

3) Filter and collect the mothers for root classes and matching label to the target
root

Jump-back after generalized CW Since this rule is only applied to TOP classes, finding
root classes is simple, as well as checking for a jump back item. When building the
consequent item, the only change is using the equivalence class instead of ∆.

Left- and Right-adjoin Both rules need to first determine whether the current item is the
root antecedent or the sister antecedent it adjoins at.

22

i) The current item class is the root of an auxiliary tree, meaning a TOP root class
of type STAR. With a model item constraining the span to either start where
the root item ends or vice versa, find all possible sister class candidates in the
chart it could left- or right-adjoin to and filter for TOP classes. To assure sister
adjunction is applicable, there has to be a mother class of the sister candidate
sharing a category with the root class. Since the candidates are TOP classes,
mothers are easily accessible and can be compared to the root. Once that con-
dition is met and there is still a suitable sister candidate left, the consequent
item is build holding the sister TOP class and depending on the placement of
the root item, the span is extended by the root span to either the left or the
right.

ii) The current item is a possible sister antecedent. Seeing as the only requirement
is not being a d-daughter or root and a TOP class, many items are tried for ad-
joining, this is however necessary as the root item could have been built before
and was removed from the agenda. The RequirementFinder searches for
possible root candidates for both left- or right-adjunction in much the same
way as it does for sister candidates described above. Modeling an item with
the right span to find suitable root items marked for sister adjunction and com-
pare the candidates to the current item’s possible mother classes. With both an-
tecedent items found apply left- or right-adjunction and built the consequent
item.

Figure 11: Part of the classes used for parsing RRG in TuLiPA.

4.3 Example chart comparison

The elementary trees used for this example are shown in Figure 12. The two trees with
the lexical item laughs hold almost the same syntactic structure except for an extra substi-
tution node as the rightmost daughter of the root, for example adding "at"-prepositions
e.g. "Mary always laughs at Obelix". Parsing the example sentence "Mary always laughs"
using parse items holding elementary tree and node address is seen in table 4. Items 1-4
are scans of the input words, followed by all items changing their position to ⊤ in 5-8, as
none of the terminal nodes has a left sister. Since both laughs-trees have a fitting lexical
anchor and the parser does not concern itself with the full structure of the tree yet, both

23

Figure 12: Elementary trees for the chart example

Figure 13: TOP and BOT equivalence classes for the chart example

items are build. The parser now applies all rules used to traverse up the single elemen-
tary trees until reaching the root node in the Mary tree, where substitution is applied to
both substitution nodes of the laughs trees in items 15 and 16. Now usually the next step
would be to perform Combine-sister with items 11 and 12, seeing as the nodes are sis-
ters in the elementary trees, but since we haven’t sister adjoined the auxiliary tree always
yet, the spans don’t match up. Once the root of always is reached and the node is left-
adjoined, it extends the span of both items 20 and 21, allowing for the Combine-sisters
rule being applied and items 24 and 25 being build. Here the parser tries to move up to
the root node, but it only works for laughsa as laughsb is still needing another right sister to
complete all daughters of the root. Item 27 is the goal item, being in a root in ⊤-position
spanning the whole input. Some parse items like 11 and 12 never lead to a goal item and
some derivation steps are redundant, especially for both laughs trees, but in this example
they do not blow up the chart exponentially.

There is still a visible difference to table 5 in which the parser is using the new form of
parse items including equivalence classes. Figure 13 shows all equivalence classes for

24

Item Rules
1 [Mary, 1⊥, 0, 1, ⟨⟩, no] Scan(Mary)
2 [always, 1.1⊥, 1, 2, ⟨⟩, no] Scan(always)
3 [laughsa, 2.1⊥, 2, 3, ⟨⟩, no] Scan(laughs)
4 [laughsb, 2.1⊥, 2, 3, ⟨⟩, no] Scan(laughs)
5 [Mary, 1⊤, 0, 1, ⟨⟩, no] NLS(1)
6 [always, 1.1⊤, 1, 2, ⟨⟩, no] NLS(2)
7 [laughsa, 2.1⊤, 2, 3, ⟨⟩, no] NLS(3)
8 [laughsb, 2.1⊤, 2, 3, ⟨⟩, no] NLS(4)
9 [Mary, ϵ⊥, 0, 1, ⟨⟩, no] Move-up(5)
10 [always, 1⊥, 1, 2, ⟨⟩, no] Move-up(6)
11 [laughsa, 2⊥, 2, 3, ⟨⟩, no] Move-up(7)
12 [laughsb, 2⊥, 2, 3, ⟨⟩, no] Move-up(8)
13 [Mary, ϵ⊤, 0, 1, ⟨⟩, no] NLS(9)
14 [always, 1⊤, 1, 2, ⟨⟩, no] NLS(10)
15 [laughsa, 1⊥, 0, 1, ⟨⟩, no] Substitute(13)
16 [laughsb, 1⊥, 0, 1, ⟨⟩, no] Substitute(13)
17 [always, ϵ⊥, 1, 2, ⟨⟩, no] Move-up(14)
18 [laughsa, 1⊤, 0, 1, ⟨⟩, no] NLS(15)
19 [laughsb, 1⊤, 0, 1, ⟨⟩, no] NLS(16)
20 [always, ϵ⊤, 1, 2, ⟨⟩, no] NLS(17)
21 [laughsa, 2.1⊤, 1, 3, ⟨⟩, no] Left-adjoin(20+7)
22 [laughsb, 2.1⊤, 1, 3, ⟨⟩, no] Left-adjoin(20+8)
23 [laughsa, 2⊥, 1, 3, ⟨⟩, no] Move-up(21)
24 [laughsb, 2⊥, 1, 3, ⟨⟩, no] Move-up(22)
25 [laughsa, 2⊤, 0, 3, ⟨⟩, no] Combine-sisters(23+15)
26 [laughsb, 2⊤, 0, 3, ⟨⟩, no] Combine-sisters(24+16)
27 [laughsa, ϵ⊥, 0, 3, ⟨⟩, no] Move-up(25)
28 [laughsa, ϵ⊤, 0, 3, ⟨⟩, no] NLS(27)

Table 4: Parsing "Mary always laughs" without equivalence classes

the example elementary trees. The double circled classes are the main ones, the others
are either daughter or left sister classes. All nodes from the original elementary trees
are put into equivalence classes and here TOP and BOT classes have the same quantity.
Here is where the factorizing is utilized, as all nodes with a matching label leading up to
S from the laughs trees are put into the same equivalence class. Only Sa and Sb are in a
different class as they have different daughters. Even in this small example the benefits
of factorizing is already visible in the shortened chart. Some items present in the old
chart holding nodes from the laughs-trees are combined, as the nodes processed there are
sharing the same equivalence classes in the new chart. The following list shows which

25

Item Rules
1 [Mary⊥, 0, 1, ⟨⟩, no] Scan(Mary)
2 [always⊥, 1, 2, ⟨⟩, no] Scan(always)
3 [laughs⊥, 2, 3, ⟨⟩, no] Scan(laughs)
4 [Mary⊤, 0, 1, ⟨⟩, no] NLS(1)
5 [always⊤, 1, 2, ⟨⟩, no] NLS(2)
6 [laughs⊤, 2, 3, ⟨⟩, no] NLS(3)
7

[
NP r

⊥, 0, 1, ⟨⟩, no
]

Move-up(4)
8 [ADV P⊥, 1, 2, ⟨⟩, no] Move-up(5)
9 [V P⊥, 2, 3, ⟨⟩, no] Move-up(6)
10

[
NP r

⊤, 0, 1, ⟨⟩, no
]

NLS(7)
11 [ADV P⊤, 1, 2, ⟨⟩, no] NLS(8)
12 [NP⊥ ↓, 0, 1, ⟨⟩, no] Substitute(10)
13 [V Pbot∗, 1, 2, ⟨⟩, no] Move-up(11)
14 [NP⊤ ↓, 0, 1, ⟨⟩, no] NLS(12)
15 [

V Ptop∗, 1, 2, ⟨⟩, no
] NLS(13)

16 [laughs⊤, 1, 3, ⟨⟩, no] Left-adjoin(15+6)
17 [V P⊥, 1, 3, ⟨⟩, no] Move-up(16)
18 [V P⊤, 0, 3, ⟨⟩, no] Combine-sisters(17+14)
19 [Sa, ϵ⊥, 0, 3, ⟨⟩, no] Move-up(18)
20 [Sa, ϵ⊤, 0, 3, ⟨⟩, no] NLS(19)

Table 5: Parsing "Mary always laughs" with equivalence classes

items from the old chart correspond to which items in the new chart:

1 −→ 1 15 + 16 −→ 12

2 −→ 2 17 −→ 13

3 + 4 −→ 3 18 + 19 −→ 14

5 −→ 4 20 −→ 15

6 −→ 5 21 + 22 −→ 16

7 + 8 −→ 6 23 + 24 −→ 17

9 −→ 7 25 + 26 −→ 18

10 −→ 8 27 −→ 19

11 + 12 −→ 9 27 −→ 20

13 −→ 10

14 −→ 11

5 Evaluation

To evaluate whether the introduction of equivalent classes into the parser has enhanced
the process, a small example grammar will be used. First, the grammar is detailed and all

26

elementary trees are shown. Next, the equivalence classes build for the single nodes are
explained and in the end two charts are compared, one using trees and one using classes.

5.1 Toy Grammar

The toy grammar used for this example consists of eleven elementary trees, covering the
following sentences:

• Obelix snored

• who snored

• Obelix always snored

• who always snored

• Obelix ate boar

• who ate boar

• Obelix always ate boar

• who always ate boar

• Obelix wanted to eat boar

• what did Obelix want to eat

To suitably show an improvement in chart size, the longest sentence is chosen for parsing:

w = 0 what 1 did 2 Obelix 3 want 4 to 5 eat 6

Once the input is passed to the parser, the grammar is searched for trees that can anchor
all words from the sentence. The elementary trees which are passed on for parsing are
shown in Figure 14. The sub- and superscript correspond to the nodes BOT and TOP
equivalent class respectively, as numbered in table 6 in the next section. Before the parse
the structure of the possible result tree is not known, so there are four trees that have
"eat" as a lexical item.

5.2 Toy grammar equivalence classes

Table 6 shows the equivalent classes for the toy grammar trees in the format known from
section 4.1.2:

BOT class: ⟨Category, Type, ⟨⟨tree, (p ·m)⟩, ...⟩, ⟨Daughter1, D2, ...⟩⟩

TOP class: ⟨· · · , ⟨Left Sister1, LS2⟩, ...⟨⟨Possible Mother1, rightmost?⟩, ...⟩, ⟨⟨tree, (p ·m)⟩, ...⟩, root?⟩

27

Figure 14: Trees for parsing Toy Grammar example "What did Obelix want to eat?"

As the grammar is quite small, most classes are unique and the only structure sharing is
between the five trees holding a predicate, mostly between the eat-trees. The substitution
nodes RP ↓ of all five trees can be sorted into the same BOT equivalence class, as they
all do not have daughters and share label and type. However there are three separate
TOP classes, representing the variety of left sister classes from zero to two. Almost every
node with label CO is already put in a different BOT class considering the diversion in
daughters, except the one from trees eatβ and eatδ sharing the exact same daughter classes.
The benefit of factorization comes into play when looking at the nucleus layer of the eat-
trees, which shows a perfect example of subtree sharing in the corresponding equivalent
classes. Except for the NUC node in tree eatγ , which has an extra left sister, all nodes eat,
V and NUC share a BOT and TOP class.

Table 6: Equivalence classes for toy grammar

BOT classes TOP classes
Obelix1 Obelix1

⟨”Obelix”, LEX, ⟨⟨Obelix, (1)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨RP1
BOT , yes⟩⟩, ⟨⟨Obelix, (1)⟩⟩, no⟩

RP1 RP1

⟨”RP”, ANCH, ⟨⟨Obelix, (ϵ)⟩⟩, ⟨Obelix⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨Obelix, (ϵ)⟩⟩⟩, yes⟩

what1 what1
⟨”what”, LEX, ⟨⟨what, (1)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨RP2

BOT , yes⟩⟩, ⟨⟨what, (1)⟩⟩, no⟩

RP2 RP2

⟨”RP”, ANCH, ⟨⟨what, (ϵ)⟩⟩, ⟨what1BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨what, (ϵ)⟩⟩⟩, yes⟩

did1 did1

⟨”did”, LEX, ⟨⟨did, (1.1)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨OP1
BOT , yes⟩⟩, ⟨⟨did, (1.1)⟩⟩, no⟩

Continued on next page

28

Table 6 – continued from previous page
BOT classes TOP classes
OP1 OP1

⟨”OP”, ANCH, ⟨⟨did, (1)⟩⟩, ⟨⟩did1BOT ⟩ ⟨· · · , ⟨⟩, ⟨⟨CO1
BOT , yes⟩⟩, ⟨⟨did, (1)⟩⟩, no⟩

CO1 CO1

⟨”CO”, STAR, ⟨⟨did, (ϵ)⟩⟩, ⟨OP1
BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨did, (ϵ)⟩⟩⟩, yes⟩

to1 to1

⟨”to”, LEX, ⟨⟨to, (1.1)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨CLM1
BOT , yes⟩⟩, ⟨⟨to, (1.1)⟩⟩, no⟩

CLM1 CLM1

⟨”CLM”, ANCH, ⟨⟨to, (1)⟩⟩, ⟨⟩to1BOT ⟩ ⟨· · · , ⟨⟩, ⟨⟨CO2
BOT , yes⟩⟩, ⟨⟨to, (1)⟩⟩, no⟩

CO2 CO2

⟨”CO”, STAR, ⟨⟨to, (ϵ)⟩⟩, ⟨CLM1
BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨to, (ϵ)⟩⟩⟩, yes⟩

want1 want1
⟨”want”, LEX, ⟨⟨want, (1.2.1.1)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨V 1

BOT , yes⟩⟩, ⟨⟨want, (1.2.1.1)⟩⟩, no⟩

V1 V1

⟨”V ”, ANCH, ⟨⟨want, (1.2.1)⟩⟩, ⟨want1BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨NUC1
BOT , yes⟩⟩, ⟨⟨want, (1.2.1)⟩⟩, no⟩

NUC1 NUC1

⟨”NUC”, STD, ⟨⟨want, (1.2)⟩⟩, ⟨V 1
BOT ⟩⟩ ⟨· · · , ⟨RP3

TOP ⟩, ⟨⟨CO3
BOT , yes⟩⟩, ⟨⟨want, (1.2)⟩⟩, no⟩

RP3 RP3

⟨”RP”, SUBST, ⟨⟨want, (1.1)⟩, ⟨· · · , ⟨⟩, ⟨⟨CO3
BOT , no⟩, ⟨PRCS1

BOT , yes⟩, ⟨CO7
BOT , no⟩⟩,

⟨eatα, (1.1)⟩, ⟨eatβ , (2)⟩, ⟨eatγ , (1.1)⟩, ⟨eatγ , (1.3)⟩, ⟨⟨want, (1.1)⟩, ⟨eatα, (1.1)⟩, ⟨eatγ , (1.1)⟩,
⟨eatδ , (1.1)⟩, ⟨eatδ , (2.2)⟩⟩, ⟨⟩⟩ ⟨eatδ , (1.1)⟩⟩, no⟩

RP4

⟨· · · , ⟨NUC3
TOP ⟩, ⟨⟨CO6

BOT , yes⟩⟩, ⟨⟨eatβ , (2)⟩, ⟨eatδ ,
(2.2)⟩⟩, no⟩
RP5

⟨· · · , ⟨RP3
TOP , NUC2

TOP ⟩, ⟨⟨CO7
BOT , yes⟩⟩, ⟨⟨eatγ ,

(1.3)⟩⟩, no⟩

CO3 CO3

⟨”CO”, STD, ⟨⟨want, (1)⟩⟩, ⟨RP3
BOT , NUC1

BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨CL1
BOT , no⟩⟩, ⟨⟨want, (1)⟩⟩, no⟩

CO4 CO4

⟨”CO”, SUBST, ⟨⟨want, (2)⟩⟩, ⟨⟩⟩ ⟨· · · , ⟨CO3
TOP ⟩, ⟨⟨CL1

BOT , yes⟩⟩, ⟨⟨want, (2)⟩⟩, no⟩

CL1 CL1

⟨”CL”, STD, ⟨⟨want, (ϵ)⟩⟩, ⟨CO3
BOT , CO4

BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨want, (ϵ)⟩⟩, yes⟩

eat1 eat1
⟨”eat”, LEX, ⟨⟨eatα, (2.1.1.1)⟩, ⟨eatβ , (1.1.1)⟩, ⟨· · · , ⟨⟩, ⟨⟨V 2

BOT , yes⟩⟩, ⟨⟨eatα, (2.1.1.1)⟩, ⟨eatβ , (1.1.1)⟩,
⟨eatγ , (1.2.1.1)⟩, ⟨eatδ , (2.1.1.1)⟩⟩, ⟨⟩⟩ ⟨eatγ , (1.2.1.1)⟩, ⟨eatδ , (2.1.1.1)⟩⟩, no⟩

V2 V2

⟨”V ”, ANCH, ⟨⟨eatα, (2.1.1)⟩, ⟨eatβ , (1.1)⟩, ⟨eatγ , (1.2.1)⟩, ⟨· · · , ⟨⟩, ⟨⟨NUC2
BOT , yes⟩⟩, ⟨⟨eatα, (2.1.1)⟩, ⟨eatβ , (1.1)⟩,

⟨eatδ , (2.1.1)⟩⟩, ⟨eat1BOT ⟩⟩ ⟨eatγ , (1.2.1)⟩, ⟨eatδ , (2.1.1)⟩⟩, no⟩

NUC2 NUC2

⟨”NUC”, STD, ⟨⟨eatα, (2.1)⟩, ⟨eatβ , (1)⟩, ⟨eatγ , (1.2)⟩, ⟨· · · , ⟨RP3
TOP ⟩, ⟨⟨COBOT7, no⟩⟩, ⟨⟨eatγ , (1.2)⟩⟩, no⟩

⟨eatδ , (2.1)⟩⟩, ⟨V 2
BOT ⟩⟩ NUC3

⟨· · · , ⟨⟩, ⟨⟨COBOT5, yes⟩, ⟨COBOT6, no⟩⟩, ⟨⟨eatα,
(2.1)⟩, ⟨eatβ , (1)⟩, ⟨eatδ , (2.1)⟩⟩, no⟩

Continued on next page

29

Table 6 – continued from previous page
BOT classes TOP classes
CO5 CO5

⟨”CO”, DDAUGHTER, ⟨⟨eatα, (2)⟩⟩, ⟨NUC2
BOT ⟩⟩ ⟨· · · , ⟨PRCS1

TOP ⟩, ⟨⟨CL2
BOT , yes⟩⟩, ⟨⟨eatα, (2)⟩⟩, no⟩

PRCS1 PRCS1

⟨”PCRS”, STD, ⟨⟨eatα, (1)⟩, ⟨eatδ , (1)⟩⟩, ⟨RP3
BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨CLBOT2, no⟩, ⟨CLBOT4, no⟩⟩, ⟨⟨eatα, (1)⟩,

⟨eatδ , (1)⟩⟩, no⟩

CL2 CL2

⟨”CL”, STD, ⟨⟨eatα, (ϵ)⟩⟩, ⟨PRCS1
BOT , CO5

BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨eatα, (ϵ)⟩⟩, yes⟩

CO6 CO6

⟨”CO”, STD, ⟨⟨eatβ , (ϵ)⟩, eatδ , (2)⟩⟩, ⟨NUC2
BOT , ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨eatβ , (ϵ)⟩⟩, yes⟩

RP3
BOT ⟩⟩ CO8

⟨· · · , ⟨PRCS1
BOT ⟩, ⟨⟨CLBOT4, yes⟩⟩, ⟨eatδ , (2)⟩⟩, no⟩

CO7 CO7

⟨”CO”, STD, ⟨⟨eatγ , (1)⟩⟩, ⟨RP3
BOT , NUC2

BOT , RP3
BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟨CLBOT3, yes⟩⟩, ⟨⟨eatγ , (1)⟩⟩, no⟩

CL3 CL3

⟨”CL”, STD, ⟨⟨eatγ , (ϵ)⟩⟩, ⟨CO7
BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨eatγ , (ϵ)⟩⟩, yes⟩

CL4 CL4

⟨”CL”, STD, ⟨⟨eatδ , (ϵ)⟩⟩, ⟨PRCS1
BOT , CO6

BOT ⟩⟩ ⟨· · · , ⟨⟩, ⟨⟩, ⟨⟨eatδ , (ϵ)⟩⟩, yes⟩

5.3 Chart comparison

The difference in parse time is negligible when working with such a minimal grammar,
but when comparing the charts of both unfactorized and factorized parses there is a visi-
ble improvement, i.e. a shortened chart missing redundant items. As the structure shar-
ing between elementary trees is incorporated into the equivalence classes and therefore
the parse items, all individual derivation steps moving up the nucleus layer of the four
eat-trees are packed into the new parse items. A comparison between the charts is seen
in table 7, even with this small grammar, the chart size is reduced by 15 items. Since the
charts are still quite large, they are not printed fully. The goal item is the desired result for
a successful parse and both charts end up holding one spanning the entire input |w| = 6.

Old chart New chart
Chart size 94 79
Goal item [α, ϵ⊤, 0, 6, ⟨⟩, no]

[
CL2

TOP , 0, 6, ⟨⟩, no
]

Table 7: Comparison of charts

30

6 Conclusion

The main goal of this thesis was to enhance a chart parser by adding a factorizing step be-
fore deduction, reducing the input grammar used. The example comparison in the previ-
ous section indicates a successful improvement to the parsing environment, proving the
efficiency of the factorizing idea proposed in this paper. The chart storing all parse items
representing deduction steps is noticeably smaller after factorizing. The factorizer takes
a tree-based grammar and introduces structure sharing via equivalent classes. Subtrees
sharing a structure are packed into the same class, minimizing the parse items built and
reducing the size of the parse chart. The factorizer extension was added to the TuLiPA
parsing environment, based on Role and Reference Grammar formalized and composed
using Tree Writing Grammar.

The approach proposed in this paper provides a basis for future research aiming at im-
proving grammar theories. For further development, additional constraints could be in-
troduced into single trees by using feature structures. This would fasten the addition of
operators and modifiers via sister adjunction, reducing the redundant parse items even
more. Extraction of the derived trees from the goal items might become more compli-
cated when using factorized trees, as the original elementary tree structure is no longer
retained. Adding extraction to a factorized grammar is also a point for further consider-
ation.

31

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig verfasst habe. Ich habe
dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Düsseldorf, den 21. Dezember 2022
Julia Block

References

David Arps (2018). “Parsing Role and Reference Grammar”. Bachelor thesis. Heinrich-
Heine-Universität.

David Arps, Tatiana Bladier, and Laura Kallmeyer (2019). “Chart-based RRG parsing for
automatically extracted and hand-crafted RRG grammars”. In: University at Buffalo,
Role and Reference Grammar RRG Conference.

Tatiana Bladier, Jakub Waszczuk, and Laura Kallmeyer (Dec. 2020). “Statistical Pars-
ing of Tree Wrapping Grammars”. In: Proceedings of the 28th International Conference
on Computational Linguistics. International Committee on Computational Linguistics,
pp. 6759–6766.

Jay Earley (Feb. 1970). “An Efficient Context-Free Parsing Algorithm”. In: Commun. ACM
13.2, pp. 94–102.

Aravind K Joshi and Yves Schabes (1997). “Tree-adjoining grammars”. In: Handbook of
formal languages. Springer, pp. 69–123.

Laura Kallmeyer (2010). Parsing beyond context-free grammars. Springer Science & Business
Media.

Laura Kallmeyer (2017a). “RRG Parsing”. Unpublished article.
Laura Kallmeyer (2017b). Tomita’s Parser: Generalized LR Parsing. Lecture notes, Heinrich-

Heine-Universität.
Laura Kallmeyer, Timm Lichte, Wolfgang Maier, Yannick Parmentier, Johannes Dellert,

and Kilian Evang (2008). “TuLiPA: Towards a multi-formalism parsing environment
for grammar engineering”. In: Proceedings of the Workshop on Grammar Engineering
Across Frameworks GEAF.

Laura Kallmeyer and Rainer Osswald (2017). “Combining predicate-argument structure
and operator projection: Clause structure in Role and Reference Grammar”. In: Pro-
ceedings of the 13th international workshop on tree adjoining grammars and related for-
malisms, pp. 61–70.

Laura Kallmeyer, Rainer Osswald, and Robert D. Van Valin (2013). “Tree wrapping for
role and reference grammar”. In: Formal Grammar. 17th and 18th International Confer-
ences, FG 2012 Opole, Poland, August 2012, Revised Selected Papers. Ed. by Glyn Morrill
and Mark-Jan Nederhof. Springer, pp. 175–190.

M Kay (1986). “Algorithm Schemata and Data Structures in Syntactic Processing”. In:
Readings in Natural Language Processing. Morgan Kaufmann Publishers Inc., pp. 35–
70.

Fernando CN Pereira and David HD Warren (1983). “Parsing as deduction”. In: 21st an-
nual meeting of the association for computational linguistics, pp. 137–144.

Masaru Tomita (1987). “An efficient augmented-context-free parsing algorithm”. In: Com-
putational linguistics 13, pp. 31–46.

Robert D. Van Valin (Jan. 1993). “Role and reference grammar”. In: Work Papers of the
Summer Institute of Linguistics, University of North Dakota Session 37.1.

Robert D Van Valin, Robert D Van Valin Jr, Randy J LaPolla, et al. (1997). Syntax: Structure,
meaning, and function. Cambridge University Press.

Robert D. Van Valin Jr. (2005). Exploring the Syntax-Semantics Interface. Cambridge Univer-
sity Press.

33

	List of Figures
	List of Tables
	Introduction
	Introducing basic theories
	RRG: Role and Reference Grammar
	TWG: Tree Wrapping Grammar for RRG
	Structure sharing

	The parsing environment: TuLiPA
	Parsing algorithm
	Parsing techniques
	Parse items
	Deduction rules
	Parse path

	Example chart
	Expected benefits of factorizing

	Implementing equivalence classes
	The equivalence algorithm
	TOP and BOT classes
	Attributes that are compared
	Implementation strategy

	Necessary changes to the parser
	New parse items
	New deduction rules

	Example chart comparison

	Evaluation
	Toy Grammar
	Toy grammar equivalence classes
	Chart comparison

	Conclusion
	Erklärung
	References

