
INSTITUT FÜR INFORMATIK

Softwaretechnik und Programmiersprachen

Universitätsstr. 1 D–40225 Düsseldorf

An Event-B Backend for lisb

Bachelorarbeit
im Studiengang Informatik

zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)

vorgelegt von
Peter Jakob Julius Armbrüster

Beginn der Arbeit: 14. April 2023
Abgabe der Arbeit: 14. Juli 2023

Erstgutachter: Prof. Dr. Michael Leuschel
Zweitgutachter: Dr. Jens Bendisposto

ii

iii

Selbstständigkeitserklärung

Hiermit versichere ich die vorliegende Bachelorarbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus
den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, den 14. Juli 2023
Peter Jakob Julius Armbrüster

iv

v

Abstract

In the context of system specifications, the Rodin platform has proven to be a valuable tool
for complex proofs. However, constructing formal specifications within Rodin is primarily a
manual endeavor. This thesis addresses this limitation by exploring the programmatically-
driven transformation of the Event-B specification language. To accomplish this, we extend
lisb, an existing embedding of the B language in Clojure, to include support for Event-B.

Clojure, a modern Lisp dialect designed for the Java Virtual Machine (JVM), presents
an ideal choice for this task. Its underlying philosophy treats programs as data, enabling
powerful metaprogramming capabilities. Notably, Clojure’s macro system empowers the
implementation of domain-specific languages (DSLs) with relative ease.

Building on lisb’s foundation and the ProB Java API, this thesis seeks to automate and
streamline the transformation of Event-B specifications. Clojure’s data-centric approach is
compelling for manipulating and generating Event-B specifications programmatically. We
aim to simplify and enhance the process of developing tools for Event-B, promoting the
adoption of formal methods in practical applications.

vi

Contents

1 Introduction 1

2 Background 2

2.1 Clojure . 2

2.2 lisb . 3

2.3 Event-B . 3

2.4 Tool support for the B-Method . 6

3 Components 7

3.1 ProB Event-B Model . 7

3.2 IR for Event-B . 8

3.3 Event-B DSL . 10

3.4 Generating a ProB Model . 11

3.5 Retranslation from ProB Model . 12

4 Translation: Classical B to Event-B 13

4.1 Operations to Event-B . 14

4.2 Substitutions to Events . 15

4.3 Parallel Composition . 17

4.4 Inclusion in Event-B . 17

4.5 Comparison to manual translation . 19

5 Related Work 20

6 Future Work 20

7 Conclusion 21

References 22

Appendix A Phones Example 23

Appendix B Automotive lighting 24

List of Figures 32

List of Listings 32

vii

viii CONTENTS

1

1 Introduction

Event-B [Abr10] is a formal language and method for designing and verifying systems;
it greatly simplifies many features of its predecessor, Classical B. On the one hand, it is
advantageous because it simplifies proofs and makes the language more scalable, allowing
large systems to be modeled and verified using Event-B. But on the other hand, it can be
cumbersome to write large models, as it leads to code repetition. For example, Event-B has
no substitution if-then-else, so the behavior has to be modeled with two different events,
one with the condition as a guard and the other with the negated condition as in the guard.
But this often leads to code duplication, especially when the events have many substitutions
in common.

Experimenting with new features Event-B often involves manipulating the toolchain. Rodin,
for example, offers a plugin system for which already many plugins were already developed.
For instance, Camille [Ben+11] and CamilleX [Hoa+21] both try to resolve the lack of
a textual representation in Rodin. A plugin for ProB [LB08] allows for model checking
directly in Rodin. Still, creating a plugin for Rodin is often extreme and requires much
effort. An embedding of Event-B into a programming language like Clojure can simplify
the process of extending Event-B, especially in the prototyping phase.

The thesis aims to create an embedding of Event-B in Clojure by extending lisb [KM22],
an embedding of Classical B in Clojure. The ProB Java API [Kör+20] will be used as
the backbone, integrating it with the ProB animator and model-checker. We also hope to
join the toolchain of Classical B and Event-B. Often, there are different ways to translate
between Classical B and Event-B, depending on the intention of the user. lisb can be used to
analyze and transform the model programmatically. For example, to create transformations
between Classical B and Event-B in particular situations, as demonstrated manually in
[LMW20].

The target audience for this thesis is tool developers for Event-B, modeling experts, and
interested parties with expertise in formal methods and safety-critical systems.

Section 2 will begin with a summary of the technologies used in this thesis. We are starting
with an outline of Clojure. After that, we describe the current state of lisb. Then, we give
a brief comparison of classical B and Event-B. The Section is closed with a review of the
different Classical B and Event-B tools.

In Section 3, we outline the components of our implementation. First, we describe the ProB
Event-B Model as the backbone of our embedding. Then we present the extensions made to
the internal representation to support Event-B. Next, we define a DSL for writing Event-B
in a Clojure-Style. After that, we explain how we generated a ProB Event-B Model from
the internal representation.

In Section 4, we use lisb to create a translation from Classical B to Event-B, beginning with
operations. Following with a translation of substitutions. Then we describe two ways of

2 2 BACKGROUND

converting inclusion into Event-B. The Section is wrapped up with a comparison to manual
translation from classical B to Event-B.

We complete the thesis with some related work, summarizing the most important results
and referring to this thesis’s goals. Last but not least, the thesis is finalized with prospects
to lisb.

2 Background

First, we illustrate the necessary background information for this thesis to create a uniform
understanding of Clojure, lisb, and Event-B. We will begin with Clojure because it is the
host language of lisb and is not very popular amongst programmers. Then, we examine the
current state of lisb as an embedding of Classical B. We briefly discuss the main differences
between Classical B and Event-B. The following Section contains a summary of three
popular tools for Classical B and Event-B.

2.1 Clojure

Clojure [Hic08; Cloj] is a dynamic, functional programming language built for the JVM.
It combines the power and flexibility of Lisp programming with the robustness and in-
teroperability of Java. All Clojure data structures are immutable by default, simplifying
transformation and interaction with data. Most Clojure functions are pure, meaning they
do not modify any state of the system and only transform their input. Pure functions are
easy to reason about and to debug. An additional strength of Clojure is its rich macro
system, as it allows the language to be extended with new syntax. We will briefly introduce
critical concepts since Clojure is not a widely adopted programming language.

Clojure is a Lisp dialect, which means that the primary data structure is a list. Even
function calls are lists, then the first element of the list is the function and the rest are the
arguments. For example, the call (f a b) is equivalent to f(a, b) in Java. Every function
in Clojure is called this way in, also arithmetic operations. For instance, (+ 1 2 3) is the
same as 1 + 2 + 3 in infix notation. Newcomers to Clojure or other Lisps often find the
number of parentheses overwhelming. A benefit of the parenthesis is that they remove
the need for operator precedence, which is helpful for our DSL. Besides lists, Clojure also
supports other data structures, such as vectors, maps, and sets, which are all immutable.

A REPL allows for interactive programming and rapid prototyping in Clojure, especially
when experimenting and interacting with lisb.

In object-oriented languages like Java, Polymorphism is often achieved with interfaces or
inheritance, where subtypes overwrite methods of their supertype. Clojure uses a dynamic
and very flexible approach for polymorph functions called multimethods. Multimethods

2.2 lisb 3

allow for a dynamic dispatch on all parameters via a provided function, making it possible
to dispatch on complex structures and not only on the class of an object, for example. In
lisb, multimethods are used to implement an extensible for the implementation translations
between different representations.

2.2 lisb

lisb [KM22] is an embedding for B in Clojure, with the goal of facilitating the work of tool
developers treating the specification as data. It serves as an intermediate layer between a
user program and the ProB Java API [Kör+20] and allows for programmatic construction
and transformation of the B constraints and machines.

At the core of lisb is the internal representation (IR). It is a data-oriented representation
of the Classical B model. Scalar values such as boolean, numbers, and sets are denoted
using the appropriate Clojure data literals. Mathematical operators and B-specific machine
nodes, on the other hand, are represented by maps. Each of these maps includes a :tag
key for identification, as well as extra keys for their operands (see [KM22, Section 3.2]).

On top of the IR, lisb provides an internal DSL designed for humans to write Classical B
machines with a syntax similar to Clojure. The internal DSL creates an abstraction of the
internal representation. Pure functions that generate IR are the basis of the internal DSL.
The complete set of operators and machine clauses of Classical B is available in the internal
DSL. Furthermore, internal DSL and IR can be mixed. So a user program may generate
internal DSL at one point and IR at another, combining them to complete the model.

The internal representation is then translated into a ProB AST for Classical B. This AST
can be used in the ProB Java API, allowing lisb to interact with the ProB to run constraint
solving and model checking on the model. A retranslation from ProB to lisb is also available,
translating a ProB AST into the internal DSL. The retranslation layer also converts the
results from model checking into Clojure data structures. Via ProB, lisb can also import
and export text-based models of Classical B.

2.3 Event-B

In this Section, we look at Event-B [Abr10], a formal method for systems modeling. It is
an evolution of the B-method, also known as Classical B. Event-B shares many similarities
with Classical B, e.g. both are state-based formalisms and rooted in predicate logic, set
theory, and arithmetic. We will briefly compare the key differences between Classical B
and Event-B, to understand what parts of lisb need extension.

In Event-B, a model is split into static parts and dynamic parts, as opposed to Classical B.
The concept of contexts was introduced by Event-B. Contexts contain the static information
of an Event-B model, such as sets (user-defined types), constants, axioms, and theorems.

4 2 BACKGROUND

Event-B machines include only the dynamic parts of a system, comprising variables,
invariants, and events. The variables define the states of the machine. The invariants
determine the types of variables and the rules that the variables must respect. A machine
can see contexts, allowing access to its information. Contexts often model characteristic
information about an environment. Ideally, this separation allows a machine to be reused
in multiple situations. Listing 1 shows an example of a machine in Event-B called m0. The
machine sees a context called c0, not shown here, which contains a set called PHONES and a
constant m.

Listing 1: Event-B machine example
machine m0 sees c0

variables phones
invariants

inv0: phones 2 PHONES
inv1: card(phones) m

events

event INITIALISATION then

init0 : phones := ?
end

event OpenPhones when

grd0: card(phones) 6= m
grd1: phones 6= PHONES
then

act0: phones : | phones ⇢ phones’ ^ card(phones0) m
end

event ClosePhones when

grd0: phones 6= ?
grd1: phones 6= PHONES
then

act0: phones : | phones’ ⇢ phones
end

Another simplification regards the inclusion mechanism. Classical B has a relatively complex
inclusion system, where a machine can include multiple other machines and many keywords
with different behavior: INCLUDES, EXTENDS, USES, SEES, and IMPORTS. In contrast, Event-B
follows a much simpler approach than Classical B. In Event-B, the only allowed mechanisms
to structure a model are:

• A context can extend multiple contexts.
• A machine can refine one machine and see multiple contexts.

The events are Event-B’s replacement of operations in Classical B and represent the behavior
of a machine. Events are similar to operations but simplify the notion significantly. Formally,
an event has the following form:

event e any t when G(v, t) then S(v, t, v0)

2.3 Event-B 5

The symbols v and v0 represent the variables before and after the execution of the event e.
The parameters of the event are denoted by the symbol t. The guard G(v, t) restricts the
parameters and disables the event when evaluating to false. All actions for the event are
contained in S(v, t, v0). There are three types of actions in Event-B:

• x := E, a deterministic action that assigns the value of the expression E to the
variable x,

• x :2 S, a non-deterministic action, which assigns non-deterministically a value of the
set S to x, and

• x1, x2, ..., xn : |BA, the most general form of an action in Event-B. The execution
of the action assigns x1, x2, ..., xn non-deterministically so that the values make the
before–after predicate BA true.

When the event is executed, it runs all actions contained simultaneously. All unassigned
variables remain unchanged. The guard of an event can be empty, which is equivalent to
the guard being truth (>). An empty action clause is also known as skip.

The concept of refinement differs significantly between events and operations. Classical B
is often used for software modeling. Therefore operations can be called directly and have
return values. An abstract machine serves as a specification for the available operations,
and refinement serves the purpose of generating an implementation corresponding to that
specification. Hence, the operations in the abstract machine and the refinement have a
one-to-one relationship. The signature of an operation can not change over the curse of
refinement, as it would be incompatible with the abstract specification.

In Event-B, events serve a different purpose. They model the abstract behavior of a system.
In this case, it makes sense to add new events, split into variations, or merge events. Hence,
we have to specify the abstract event that is refined, as there is no one-to-one relationship
between the events of an abstract machine and a refinement. Additionally, the signature
of an event can change between refinements. For instance, parameters can be removed,
changed, or new ones introduced. When changing the signature of an event, a witness
predicate has to be given. This predicate provides a relation between the old and the new
parameters.

The most general form of an event e0 is:

event e0 refines e any t0 with W (t, t0, v, v0) where G0(v, t0) then S0(v, t, v0)

Where e is the name of an event that is refined by e0. The witness W (t, t0, v, v0) gives a
connection between the old parameters t, new parameters t0, and non-deterministic variables.
For the event e0 to properly refine the event e, it has to be proven that from the old guard
follows the new guard.

6 2 BACKGROUND

This proof obligation is often referred to as guard strengthening. This behavior differs from
Classical B, where operations often have a precondition, which must be true for the operation
to have the desired behavior; otherwise, the output is not defined. The precondition must
be weakened to ensure that a refined operation is still callable. So the implication is the
other way around. From the new precondition follows the old precondition.

2.4 Tool support for the B-Method

In this Section, we look at the landscape of tools for the B-Method. Many tools support
Classical B and Event-B, but the features always differ. We concentrate on the three most
popular: Rodin, AtelierB, and ProB.

Rodin [Abr10] is an open-source platform based on Eclipse. It offers a range of tools
and features to support the entire development lifecycle of Event-B specifications. Rodin
provides a graphical editor for creating Event-B models, allowing developers to define
machines and contexts. It includes a powerful theorem prover that can automatically
discharge proof obligations and detect inconsistencies in the model. The Rodin platform
offers an extensible architecture via Eclipse’s plugin mechanism. The Event-B models are
stored in XML files, which makes it difficult for humans to read. However, there are some
plugins that resolve this issue, namely Camille [Ben+11] and CamilleX [Hoa+21].

AtelierB [Atel] is an IDE for Classical B developed and maintained by the company
CLEARSY. Atelier-B provides project management, static checking, proof obligation
generation, automatic and interactive proof, and code generation. It is widely used in
the industry. Originally AtelierB was designed only for Classical B, but today also has
support for a dialect of Event-B. The dialect [Bar20] of Event-B used by AtelierB has
some differences compared to Rodin (see [Leu21]). For example, it allows more complex
substitutions than Rodin.

ProB [LB08] is a model checker and animator with a kernel written in Prolog. ProB
supports different state-based formalisms, including Classical B and Event-B. It can be
used via the CLI or in a dedicated GUI with many additional features, i.e. visualization.
There is also a plugin for Rodin, so both animation and model checking of an Event-B
model are possible inside Rodin. This allows a user to explore the problem space before
proving the model.

Another way of using ProB is via its Java API [Kör+20]. It allows for a complete interaction
with ProB and gives a layer of abstraction to the lower-level API, which directly commu-
nicates with ProB’s kernel. All features available in the GUI, like animation, constraint
solving and model checking are also available in the ProB Java API. A large part of the
ProB Java API is the model abstraction that allows different formalisms to be represented
in ProB. Models in different formats can also be imported and exported using the ProB
Java API. There are already different implementations of the model abstraction for Classical
B, Event-B, TLA+, and CSP-M.

7

IR

B-DSL

B-AST

ProB Java API

Event-B DSL

Event-B Model

Figure 1: Architecture of lisb with our extension of Event-B

3 Components

We use a similar structure to the implementation for Classical B in lisb. In Figure 1, the
extended architecture of lisb is shown. The main components of our implementation for
Event-B in lisb are:

1. The Backbone of our implementation is the ProB Event-B Model.
2. The Internal representation is extended to capture the differences between Event-B

and Classical B, pointed out in Section 2.3.
3. We added a Domain Specific Language for writing Event-B by extending the existing

internal DSL
4. The Retranslation is adapted to handle the ProB Event-B Model

3.1 ProB Event-B Model

We use ProB’s Model Abstraction for Event-B as our translation target. From now on, we
will refer to Model Abstraction for Event-B as the ProB Model. In the ProB Model, the
smallest building blocks are predicates and expressions. They are represented as strings,
which are internally parsed to an AST. The syntax of these predicates and expressions is
the same as in Rodin.

More complex semantics of machines and contexts are represented as a tree of Java objects,
where the root node is an EventBModel. An EventBModel consists of EventBMachine,
EventBContext and a DependencyGraph. The DependencyGraph describes the relationship
between the machines and contexts. Possible relationships are: SEES, REFINES, and EXTENDS.
However, an EventBMachine also contains direct references to the abstract machine and
extended contexts. Similarly, the objects Event and Context have direct references to other
Event or Context objects. All in all, the object graph of an Event-B ProB Model can

8 3 COMPONENTS

Figure 2: ProB Event-B Model structure

get very complex. Figure Figure 2 shows the structure of an EventBModel. Besides the
dependencies, most nodes and their relationship shown in Figure 2 are self-explanatory, as
they directly capture the semantics of Event-B.

3.2 IR for Event-B

This section describes how we represent an Event-B model in the internal representation
(IR) of lisb. We will discuss what parts of the IR we could reuse and where we had to extend
the IR. By reusing the existing IR, we are essentially translating Event-B into Classical B,
so we try to reuse as much IR as possible. Furthermore, we used the detailed comparison
of Classical B and Event-B by Leuschel [Leu21] as a guideline.

Predicates and expressions are the basis of Event-B. Event-B differentiates predicates
from expressions at a syntactic level. In lisb, however, we blur the line a little, and
expressions and predicates are more or less the same.

The mathematical sub-language in the IR is not specific to Classical B and thus can mostly
be reused by Event-B. lisb’s IR also resolves some syntax differences between Classical
B and Event-B. For example, in Classical B, the minus - and multiplication * operators
are overloaded, with set difference and cartesian-product, respectively. Event-B resolves
these ambiguities by using different operators for these operations. lisb’s IR is more explicit
and has distinct operators for all operations. However, an operator called cart-or-mult
still exists, which is generated when loading a Classical B model in ASCII form to lisb.
But, direct use of cart-or-mult in lisb is not advised. In Table 1, the difference between
operators in Classical B and Event-B is summarized.

For the new operators finite and partition in Event-B, we added IR nodes even though
technically they could be represented in Classical B. Because, in the generation phase (see
Section 3.4), it would be difficult to recognize the patterns.

3.2 IR for Event-B 9

Expression Classical B Event-B IR Tag
integer difference A�B A�B :sub
set difference A�B, A\B A\B :set-
integer multiplication A ⇤B A ⇤B :mult
cartesian-product A ⇤B A ⇤ ⇤B :cartesian-product

Table 1: Comparison of operators between Classical B, Event-B and lisb

Contexts were introduced with Event-B; they only hold static information of a model.
Representing an Event-B context in IR is straightforward because every clause in a context
has a corresponding clause in Classical B. We introduced a new tag :context. Carrier
sets and constants are the same for Classical B and Event-B. Therefore, we can reuse
the existing :sets and :constants clauses. Axioms and theorems are stored in the
:properties and :assertions clauses, respectively. We reuse the :extends clause to
represent the relationship between different contexts.

Machines in Event-B model only dynamic behavior. In the IR, they are represented
by the :machine tag, a name, and machine clauses. If the machine is a refinement, the
:refinement clause is applied, which additionally contains the name of the refined machine.
So the representation of an Event-B machine is very similar to that of a Classical B machine.
Existing machine clauses allowed in an Event-B machine are:

• :sees contains references to contexts that are included in the machine,
• :variables contains a list of variables represented as Clojure keywords,
• :invariants contains a list of predicate representing the invariants,
• :assertions contains a list of predicate representing the theorems.

We include two new machine clauses: First, the :variant contains an expression representing
the variant of the machine. Second, we create an :events clause instead of reusing the
existing :operations clause for events.

Events are one of the main differences between Classical B and Event-B. Instead of trying
to reuse the existing IR for operations and adapting it to events, we decided to create a
new IR node with the :event tag. The map representing an event contains a :name and a
list of :clauses. The new event clauses are:

• :status containing the convergence type of the event, if it is :ordinary, :convergent
or :anticipated.

• :event-reference holds a reference to an event of the refined machine. Its type can
be :refines or :extends.

• :args consists of the arguments to the event.
• :guards contains a list of guards for the event.

10 3 COMPONENTS

• :witnesses comprises a list of witnesses. A witness consists of a name and a predicate.
• :actions includes the actions of the event.

Actions in Event-B are significantly simpler than in Classical B. There are only three
allowed substitutions in an event, all of which already have corresponding IR nodes:

• :assignment for the deterministic assignment,
• :becomes-element-of for non-deterministic assignment to an element of a set,
• :becomes-such for the non-deterministic assignment using a before-after predicate.

The IR is quite verbose, making it great for processing the model, but writing it by hand can
be cumbersome. As an example, the IR for the machine in Listing 1 is given in Appendix A.

3.3 Event-B DSL

We developed an Event-B DSL similar to the internal DSL for classical B. Since the IR is
not intended for humans to write directly, a DSL gives users of lisb more syntactic sugar.
The Event-B DSL allows users to write complete models in Clojure. But one can also mix
IR and DSL because we implemented the Event-B DSL as pure functions that generate the
appropriate IR. This flexibility allows simple extensions to lisb without much boilerplate.

For predicates and expressions, we reused the existing functions from the Classical B DSL,
where the function has a b prefixed to the operator name, to prevent name collisions with
Clojure symbols. For Event-B-specific behavior, we added functions; these functions have
an eventb prefixed. Most of the DSL functions directly correspond to the newly added IR
nodes we described in the previous Section. For instance, the function eventb-context
takes a name and any number of clauses.

The DSL function names for the event clauses do not correspond to the IR tag. They are
more similar to clauses in Rodin:

• eventb-status yields the IR for :status
• eventb-refines generates an :event-reference with type :refines
• eventb-extends generates an :event-reference with type :refines
• eventb-any returns the IR for :args
• eventb-when returns the IR for :guards
• eventb-with takes an even number of arguments, where a name followed by the

corresponding predicate is expected. Then the functions generates the individual
witness maps and wraps them in a :witnesses clause.

• eventb-then returns the IR for :actions

3.4 Generating a ProB Model 11

We also added a macro called eventb to simplify the DSL, as there are now different
prefixes, which can be confusing. So inside the macro, one can omit both the b and eventb
prefix. Listing 2 shows the same machine as in Listing 1, but in the Event-B DSL.

(machine :m0
(sees :c0)
(variables :phones)
(invariants
(subset? :phones :PHONES)
(<= (card :phones) :m))

(init
(assign :phones #{}))

(events
(event :OpenPhones

(when
(not= (card :phones) :m)
(not= :phones :PHONES))

(then
(becomes-such [:phones] (and

(subset? :phones :phones ’)
(<= (card :phones ’) :m)))))

(event :ClosePhones
(when

(not= :phones #{})
(not= :phones :PHONES))

(then
(becomes-such [:phones]

(subset? :phones ’ :phones))))))))

Listing 2: Machine in Event-B DSL

Theoretically, it is possible to use all functions that are present in the DSL for Classical
B. However, some IR nodes generated by these functions are not valid Event-B seen in
Section 3.2 and therefore not exportable to ProB or Rodin. In Section 4, we show how we
used lisb to translate some features of Classical B to Event-B. For instance, allowing one to
use the if substitution in the DSL and then translate it to valid Event-B. Other DSLs and
translations could be added to lisb in the future.

3.4 Generating a ProB Model

The ProB Java API takes expressions and predicates as strings and then internally parses
them, so we had to create a pretty printer for Event-B predicates, and expressions. This
pretty printer is implemented as two multimethods for predicates and expressions called

12 3 COMPONENTS

user=> (require [lisb.translation.eventb.util]
:refer [eventb ir->prob-model prob-model->rodin])

user=> (def c1 (eventb (context :c1 ...)))
user=> (def m1 (eventb (machine :m1 (sees :c1) ...)))
user=> (def model (ir->prob-model m1 c1))
user=> (prob-model->rodin model "model-name" "/path/to/model")

Listing 3: Generating ProB Model from IR and saving it as Rodin project

ir-pred->str and ir-expr->str. The strings are constructed recursively.

The nodes described in Section 3.2 are used for more specific Event-B semantics. De-
pending on the :tag, the multimethod ir->prob generates all these nodes except an
EventBModel. When constructing nodes for axioms, invariants, and actions, we generate
labels automatically, as we don’t have support for user-defined labels.

To combine multiple machines and contexts into an EventBModel, we created the function
prob-model. It takes any number of machines and contexts as ProB Model nodes and then
generates a ProB Model with a correct DependencyGraph. For convenience, we combined
the functions ir->prob and prob->model into the function ir->prob-model, which directly
accepts IR.

In the ProB Model, refinements have direct references to their abstract version. In the
IR, however, we only save the names of referenced machines and contexts. Therefore, we
decided to create an empty machine or context every time we found a reference in the IR.
For exporting to Rodin, this is fine, as it also uses names referencing other machines. When
model checking, the correct machines or contexts have to be added manually.

In Listing 3, we see how one may create some machines and contexts using the DSL and
generate a ProB Model with them. The model can then be exported as a Rodin project.

3.5 Retranslation from ProB Model

In this Section, we show how we implemented a retranslation for Event-B similar to that
for Classical B. In lisb, a ProB AST for Classical B can be loaded and converted into
the internal DSL; this step is called retranslation and allows for a complete cycle. In the
original paper [KM22], they claim that passing a Classical B AST through lisb yields the
same AST and does not change the model

Instead of an AST, we generate the Event-B DSL from a ProB Event-B Model, which
we have discussed in Section 3.1. Compared to an AST, an EventBModel is structured
differently, capturing the semantics of Event-B. So we could not reuse the existing ast->lisb
function for EventBModel. Similar to the previous Section, we created a multimethod called
eventb-prob->lisb, which recursively walks the model. We implemented a dispatch for

13

user=> (require [lisb.translation.eventb.util]
:refer [rodin->lisb])

user=> (rodin->lisb "/path/to/machine_or_context")
[(context :c0 ...)
(machine :m0 (sees :c0) ...)
...]

Listing 4: Loading a Rodin project and generating a Event-B DSL

all the nodes shown in Figure 2. Therefore, one can start at any node in the model, but the
root node is an EventBModel. Luckily, the strings generated in Section 3.4 are parsed by
ProB internally, and the underlying can be accessed using the .getAst method, which most
nodes in the ProB Event-B Model provide. With some extensions, the existing ast->lisb
function can translate this AST to the DSL.

In Listing 4, the ProB Java API is used to load an Event-B machine from a Rodin model,
which is then converted to the Event-B DSL. A user can evaluate this DSL to IR or interact
in any other kind. For example, the DSL of the model could be saved to a file, serving as
an alternative to CamilleX.

A problem with the import of the ProB Java API is that many example files for ProB
are available only as .eventb files. However, these files don’t generate static information
when they are loaded using the ProB Java API [BCL]. Thus, the ProBModel is empty. So
.eventb files can, unfortunately, not be imported into lisb yet.

4 Translation: Classical B to Event-B

Leuschel et al. [LMW20] used a workflow for systems modeling that involved Classical B
and Event-B. The modeling process was divided into three distinct phases:

Phase 1, the exploratory phase, heavily focuses on editing and animation. In this phase,
Classical B was preferred because its rich substitution language allowed for quick changes
in the model. Additionally, having a textual representation simplified editing, collaboration,
and versioning (for example, with git).

In phase 2, the functionality of the individual subcomponent has stabilized, but the
integration of the components needs some experimentation. For this phase, they again
used Classical B, as the powerful inclusion mechanism allows for exploring different ways
to combine the system. A refinement-based approach like Event-B requires deciding on a
specific refinement order for component integration, which can be challenging and tedious
to change. Safety invariants start to be defined during this phase to ensure proper system
functioning. Verification in this stage primarily relied on model checking and animation.

14 4 TRANSLATION: CLASSICAL B TO EVENT-B

Listing 5: Operation of the BlinkLamps machine from [LMW20]
SET_BlinkersOn(direction,rem) =
PRE direction:BLINK_DIRECTION &

rem:BLINK_CYCLE_COUNTER &
rem /= 0
THEN

active_blinkers := {direction} ||
remaining_blinks := rem ||
IF direction=right_blink THEN

blinkLeft := lamp_off ||
blinkRight := cycleMaxLampStatus(onCycle)

ELSE

blinkLeft := cycleMaxLampStatus(onCycle) ||
blinkRight := lamp_off

END

END;

The final phase is predominantly focused on proof. For this, the Rodin platform is used
because of the simplicity of Event-B’s proof obligations. With the system decomposition
now stabilized, the inclusion can be liberalized into a refinement hierarchy. This translation
was done by hand and involved turning machine inclusion into machine refinement or
in-lining the machine. Additionally, all substitutions had to be translated into actions
supported by Event-B. All of that is very tedious and error-prone, not ideal when dealing
with safety critical systems.

In Listing 5, we see the operation SET_BlinkersOn of the BlinkLamps1 machine. Manual
translation to Event-B yields two events: SET_RightBlinkersOn and SET_LeftBlinkersOn
one for each case of the if substitution. This leads to a considerable amount of code
duplication because all substitutions outside the if-then-else have to be mirrored across
the two events. In the next Section, we use lisb to translate operations with complex
substitutions to Event-B by creating multiple events that emulate the same behavior.

4.1 Operations to Event-B

In software modeling, a notion of operations that can be called and can return values is
very useful. We focus on general system modeling for which events are more useful. Events
cannot be called and don’t return any values. Clark [Cla16] created a translation from
an Algorithm Description Language (ADL) to Event-B. With this ADL, one can create a
procedure and translate it to Event-B. Operations could be translated similarly, but this is
out of the scope of this thesis.

1All machines from the original paper [LMW20] can be found at https://github.com/hhu-stups/
abz2020-models

https://github.com/hhu-stups/abz2020-models
https://github.com/hhu-stups/abz2020-models

4.2 Substitutions to Events 15

We only concentrate on operations without return values. We handle operations essentially
like events. Operation calls are supported but are translated differently than in the ADL;
they are described in Section 4.4. The function op->events is responsible for converting
operations to events. It takes the IR of an operation and returns a list of events also in
IR. The function creates a base event representing the operation. Basic attributes of the
operation, like name and arguments, are copied to this base event. This base event together
with the body of the operation is passed into the function sub->events, which splits the
event into multiple events, depending on the substitutions contained in the body of the
operation. Based on the operation name and the substitutions unique event names are
generated. The function op->events can be used like in Listing 6.

user=> (def op (b (op :foo [:a] (assign :x :a))))
user=> (op->events op)
[{:tag :event, :name :foo, :clauses (

{:tag :args, :values (:a)},
{:tag :actions, :values (

{:tag :assignment, :id-vals (:x :a)})})}]

Listing 6: Simple Operation to Event with op->events

4.2 Substitutions to Events

In this Section, we discuss how to translate substitutions of Classical B into an equivalent
construct in Event-B. Most substitutions can be represented using a before-after predicate.
This model could be animated using ProB, but this method of translation would make
refinement of the generated events very difficult. So if animation and model checking are
the only goals, Classical B could have been used directly.

Alternatively, we have decided to split branching substitution into multiple events. This
approach makes the refinement of individual paths through the system possible. The
function sub->event takes an event and a substitution. It generates the events for the
provided substitution. If multiple events are generated, a different string is appended to the
name of each generated event. Otherwise, the name does not change. All guards and actions
are copied to the new events. If the substitution is a deterministic or non-deterministic
assignment it is just added as an actions. Substitutions inside other substitutions are
translated recursively, by splitting the resulting event further. Following are the rules for
translating substitutions to events. In the code listings, we only show the differences that
have to be added to the new events.

The PRE clause creates a precondition. We model preconditions as guards, so the event is
not split, but only the predicate is added to the guards of the event.

PRE P THEN S event name when P then S

16 4 TRANSLATION: CLASSICAL B TO EVENT-B

The IF substitution consists of a predicate P and two substitutions: S and T . The condition
S is only executed when the condition P is true otherwise, T is executed. In Event-B a
similar behavior can be achieved with two events. One event for the branch where the
condition P is true. In this case, condition P is added as a guard, and the substitution S
is applied to the event by calling sub->events. Similarly, for the other branch, with the
negation ¬P of the condition as a guard and the substitution T .

IF P
THEN S
ELSE T

event name_then
when P then S

event name_else
when ¬P then T

The SELECT substitution takes n guarded substitutions. A substitution Si in a branch of
the select is only executed if the corresponding guard Pi is true. If multiple guards are true,
one of the corresponding substitutions is selected non-deterministically and executed. The
nearest construct to a select substitution in Event-B are individual events for every branch.

SELECT P1 THEN S1

WHEN P2 THEN S2

...
WHEN Pn THEN Sn

event name_select1
when P1 then S1

...
event name_selectn

when Pn then Sn

A select substitution can also contain an optional else clause, which is executed when all
other cases are false. Therefore, an event with a negation of all other guards has to be
created.

SELECT P1 THEN S1

...
WHEN Pn THEN Sn

ELSE Selse

event name_select1
when P1

then S1

...
event name_selectelse

when

¬P1

...
¬Pn

then Selse

The CASE substitution is similar to a select substitution, but an expression E is provided
and case-matched against n different literal values li. Again, the case substitution can
contain an else clause, which is executed if E /2 {l1, . . . , ln}, i.e. when no literals are
matched.

4.3 Parallel Composition 17

CASE E of

EITHER l1 THEN S1

WHEN l2 THEN S2

...
WHEN ln THEN Sn

ELSE Selse

event name_l1
when E = l1 then S1

event name_l2
when E = l2 then S2

...
event name_ln

when E = ln then Sn

event name_caseelse
when E /2 {l1, . . . , ln} then Selse

4.3 Parallel Composition

Events execute all their action in parallel. So the parallel composition of actions supported
by Event-B can be translated into a single event. It is more complex when other substitutions
are involved. But a parallel composition of the branching substitutions can be reduced to
the simple form of actions. The reduction of two substitutions S and T executed in parallel,
is done by applying T to all the branches of S same time. For example, the if substitution
can be reduced as follows:

(IF P THEN S1 ELSE S2) k T () IF P THEN S1 k T ELSE S2 k T

Reductions for the other substitutions are similar. For more details, see [Sch01, Section
10.4].

4.4 Inclusion in Event-B

Event-B lacks an inclusion system like Classical B; the only way to structure components
is by refinement. In the paper [LMW20], they use Classical B’s inclusion mechanism
to experiment with different arrangements of components, where operation calls serve
as the communication between components. In this section, we want to give two ways
for translation machine inclusion into Event-B: Either by in-lining the complete or by
representing them as a refinement.

A machine in Classical B may include any number of other machines. By an included
machine, we mean a machine that is referenced in the INCLUDES or EXTENDS clause.
An example of a machine created in phase 2 [LMW20] is shown in Listing 7. This machine
includes two other machines, and we will use it as a running example throughout this
section. In the following, we describe some properties of the inclusion in Classical B. More
details about the different types of inclusion can be found in [Sch01]. Let’s consider a single
machine M0, which is included by a machine M1.

18 4 TRANSLATION: CLASSICAL B TO EVENT-B

Listing 7: Operation with two call operation calls from [LMW20]
MACHINE PitmanController
INCLUDES BlinkLamps, Sensors
...
OPERATIONS
ENV_Turn_EngineOn = BEGIN

SET_EngineOn() ||
IF pitmanArmUpDown :PITMAN_DIRECTION_BLINKING &

hazardWarningSwitchOn = switch_off THEN

SET_BlinkersOn(pitman_direction(pitmanArmUpDown),continuousBlink)
END

END;

• All sets and constants of M0 can be seen by M1.
• The machine M1 has read access to all variables of M0. To ensure consistency of M0

variables in M0 may only be modified by operations of M0.
• The machine M1 is permitted to call any of M0 ’s operations. It has to be ensured

that the precondition of the called operation is met.
• The state of all included machines of M1 is initialized first, followed by the statements

in the parent’s initialization.
• Machine M1 makes operations of M0 available to its interface by listing the operation

in the promotes clause of M1.
• A machine listed in the extends clause is a special case of inclusion, where all operations

become part of the interface.

When in-lining the inclusion, we copy all sets, constants, variables, properties, and invariants
of the included machine M0 into M1. For sets and constants, copying them is essentially
the same behavior as including would yield because they are read-only nonetheless. The
variables ,however, are now part of the machine M1, so operations in M1 can now modify
them. But as the invariants of M0 are also copied, the state of the whole machine stays
consistent. Operations of M0 are only copied to M1 if they are listed in the promotes clause
of M1. For operation calls, the expressions used as arguments are substituted in the body.
Then the body is in-lined into the calling operation. The function inclusions->inline
performs this in-lining process. The first argument is the parent machine, and the second
is the machine to be included.

So far, so good, but in-lining all included machines is not desirable as it would lead to a very
large machine. It would be questionable why to translate it to Event-B, when not utilizing
the refinement structure to simplify proofs. So we also want to translate an inclusion into a
refinement.

We created the function inclusions->refinement, which also takes the parent machine
and the included machine as arguments and converts the inclusion into a refinement. When
a machine inclusion is represented as a refinement, we only have to copy the variables

4.5 Comparison to manual translation 19

Listing 8: Automatic translation of ENV_Turn_EngineOn
event ENV_Turn_EngineOn_then_1 extends SET_BlinkersOn_else

where
@grd0 engineOn=FALSE^keyState=KeyInsertedOnPosition
@grd1 pitmanArmUpDown2PITMAN_DIRECTION_BLINKING ^

hazardWarningSwitchOn=switch_off
@grd2 direction=pitman_direction(pitmanArmUpDown)
@grd3 rem=continuousBlink

then

@act0 engineOn :=TRUE
end

from the included machine M0 to M1. All operation calls then become event extensions.
However, most certainly, an operation in the included machine will be split into multiple
events, one for each path of execution. So for every operation call in the refinement, we
have to create as many events as the operation produced that was called. The arguments
to the operation call are added to the guards as equations.

Now we have two ways of converting inclusions. But finding an optimal refinement
chain and combing the two functions is still up to the user. The machine in Listing 7
contains an operation that calls two other operations. The operation SET_EngineOn will
be in-lined, and SET_BlinkersOn will be extended. As we have seen in Listing 5, the
operation SET_BlinkersOn contains an if-then-else and therefore generates two events.
So ENV_Turn_EngineOn has to be split into two events, which extend the two cases of
SET_BlinkersOn. Listing 8 presents one of the two generated events as they are identical
except for their name and the extended event.

After resolving all inclusions with the functions described above, the resulting IR can be
split into a context and a machine. For this, we created the functions extract-context
and extract-machine. The first extracts the static parts of the machine. The second
extracts the dynamic parts from the machine and converts the operation to events using
the function op->events described in Listing 6.

In the next section, we compare the result from the automatic translation to manual
translation performed in the paper.

4.5 Comparison to manual translation

Our translation is very close to the manual translation created in Phase 3. Listing 9
shows the manual translation [LMW20] of the operation ENV_Turn_EngineOn, where the
direction is left_blink. It is nearly the same event as compared to the automatically
generated event. However, there are two differences. First, the generated name may
not be very readable because it just represents the path of execution. Second, in the

20 6 FUTURE WORK

Listing 9: Manual translation of ENV_Turn_EngineOn by [LMW20]
event ENV_Turn_EngineOn_BlinkLeft extends SET_LeftBlinkersOn
when

@grd11 engineOn=FALSE ^keyState =KeyInsertedOnPosition
@grd12 pitmanArmUpDown 2PITMAN_DIRECTION_BLINKING
@grd13 pitman_direction(pitmanArmUpDown)=left_blink
@grd14 hazardWarningSwitchOn =switch_off
@grd15 rem =continuousBlink

then

@act11 engineOn :=TRUE
end

manual translation, the value for the parameter direction is in-lined. But we naively
copy all arguments of operation to all generated events even though they could be in-lined,
resulting in uniquely specified parameters. In Appendix B, the complete machines that
were generated are listed.

5 Related Work

The ProB Java API itself has many of the same goals as lisb. It provides an abstraction to
ProB’s internals and therefore allows building models. This enables other programs to use
ProB as a backbone, as we have seen in this work.

The Rodin plugin CamilleX [Hoa+21] is similar to lisb, as it provides an intermediate
representation. On top, a text representation of Event-B is given, which can be extended
with new features. For example, Hoang et al. created an inclusion mechanism for Event-
B using CamilleX. The intermediate representation of CamilleX uses Eclipse Modelling

Framework and is integrated directly into Rodin, which makes it difficult for other programs
to interact with.

As we have seen, the translation from an algorithm description language [Cla16] to Event-B
has a similar goal of automatic Event-B generation for Rodin. The ADL is designed for
expressing sequential programs. On the other hand, lisb provides just a framework for
programmatic transformation.

6 Future Work

The extensions to lisb developed in this thesis enable Event-B models to be written in
Clojure and programmatically transformed. In the future, the following features can be
implemented to improve the support for Event-B in lisb further:

21

• Support for user-defined labels in the Event-B DSL and IR.

• Add a way to include models in .eventB files.

• Integrating lisb into other tools, for example, Rodin.

• The existing translations from classical B could be improved. For example, generating
better names.

• More translations from classical B to Event-B could be added.

• Translations from Event-B to Classical B.

• More complex static analysis and constraint solving could be used to create optimiza-
tions for the translations.

7 Conclusion

In this thesis, we have extended the existing implementation of lisb by the formalism of
Event-B. We have created a DSL that is very similar to the Camille Event-B. The DSL
generates a pure data representation of Event-B which can be transformed programmatically.
Then this representation is converted into a ProB. The unrestrained nature of the internal
representation makes it great for prototyping new features.

Another side effect of translating Event-B into Clojure data structures is that the model
can be saved in .edn files, which is a text representation of the Clojure data structures.
The .edn format can be versioned using git, for example. Both the DSL and the IR can be
saved this way, depending on the verbosity needed.

We used lisb to translate machine inclusion and some substitutions to Event-B so that a
model can be proven in Rodin. But we have seen that a fully automatic translation from
Classical B to Event-B is difficult as there are multiple ways of translation.

Concluding with a discussion about some design decisions. The separation between Event-
B and Classical B in the IR made it possible for a lossless representation of Event-B.
But the two formalisms are still separated. A conversion between the different internal
representations is needed. We have implemented some transformations from Classical B
to Event-B. But not the other way around. Another approach to the architecture would
be to completely reuse the lisb IR for Classical B and translate this IR directly to an
Event-B ProB Model. The representation of Event-B is probably not lossless, but the
overall architecture is cleaner, where lisb provides a common IR with different front- and
backends.

22 REFERENCES

References

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. New York,
NY, USA: Cambridge University Press, May 2010.

[Atel] Atelier B, User and Reference Manuals. ClearSy. url: http://www.atelierb.
eu (visited on 07/13/2023).

[Bar20] H. R. Barradas. Event-B: Syntax and Proof Obligations in Atelier B. Oct. 21,
2020.

[BCL] J. Bendisposto, J. Clark, and M. Leuschel. ProB 2.0 Java API Documentation.
url: https://stups.hhu-hosting.de/handbook/prob2/prob_handbook.
html (visited on 07/13/2023).

[Ben+11] J. Bendisposto et al. “Developing Camille, a text editor for Rodin”. In: Software:

Practice and Experience 41 (Jan. 2011), pp. 189–198.
[Cla16] J. Clark. “An Algorithm Description Language for Event-B”. MA thesis. Heinrich

Heine Universität Düsseldorf, 2016.
[Cloj] The Clojure Programming Language. Cognitec Inc. url: https://clojure.org

(visited on 07/13/2023).
[Hic08] R. Hickey. “The Clojure programming language”. In: Proceedings of the 2008

symposium on Dynamic languages. ACM. 2008.
[Hoa+21] T. S. Hoang et al. “The CamilleX Framework for the Rodin Platform”. In:

Rigorous State-Based Methods. Springer, 2021, pp. 124–129.
[KM22] P. Körner and F. Mager. “An Embedding of B in Clojure”. en. In: Proceedings

of the 25th International Conference on Model Driven Engineering Languages

and Systems: Companion Proceedings. ACM, Oct. 2022.
[Kör+20] P. Körner et al. “Integrating formal specifications into applications: the ProB

Java API”. In: Formal Methods in System Design 58.1-2 (Oct. 2020), pp. 160–
187.

[LB08] M. Leuschel and M. Butler. “ProB: An Automated Analysis Toolset for the B
Method”. In: International Journal on Software Tools for Technology Transfer

10 (Mar. 2008), pp. 185–203.
[Leu21] M. Leuschel. “Spot the Difference: A Detailed Comparison Between B and Event-

B”. In: Logic, Computation and Rigorous Methods. Springer, 2021, pp. 147–
172.

[LMW20] M. Leuschel, M. Mutz, and M. Werth. “Modelling and Validating an Automotive
System in Classical B and Event-B”. In: Rigorous State-Based Methods. Springer,
2020, pp. 335–350.

[Sch01] S. Schneider. The B-method an Introduction. Cornerstones of computing. New
York, NY, USA: Palgrave, 2001.

http://www.atelierb.eu
http://www.atelierb.eu
https://stups.hhu-hosting.de/handbook/prob2/prob_handbook.html
https://stups.hhu-hosting.de/handbook/prob2/prob_handbook.html
https://clojure.org

23

Appendices

A Phones Example

In Listing 10 the internal representation for the machine in Listing 2 is show.

Listing 10: IR for a Event-B machine
1: {:tag :machine , :name :m0, :machine -clauses
2: ({: tag :variables , :values (: phones)}
3: {:tag :invariants , :values
4: ({: tag :subset , :sets (: phones :PHONES)}
5: {:tag :less -equals , :nums (
6: {:tag :cardinality , :set :phones} :m)})}
7: {:tag :init , :values (
8: {:tag :assignment , :id-vals (: phones #{})})}
9: {:tag :events , :values

10: ({: tag :event ,
11: :name :OpenPhones ,
12: :clauses
13: ({: tag :guards , :values
14: ({: tag :not -equals ,
15: :left {:tag :cardinality , :set :phones},
16: :right :m}
17: {:tag :not -equals , :left :phones , :right :PHONES })}
18: {:tag :actions , :values
19: ({: tag :becomes -such ,
20: :ids [: phones], :pred
21: {:tag :and ,
22: :preds
23: ({: tag :subset , :sets (: phones :phones ’)}
24: {:tag :less -equals ,
25: :nums ({: tag :cardinality , :set :phones ’} :m)})}})})}
26: {:tag :event ,
27: :name :ClosePhones ,
28: :clauses
29: ({: tag :guards , :values
30: ({: tag :not -equals , :left :phones , :right #{}}
31: {:tag :not -equals , :left :phones , :right :PHONES })}
32: {:tag :actions , :values
33: ({: tag :becomes -such ,
34: :ids [: phones],
35: :pred {:tag :subset , :sets (: phones :phones ’)}})})})})}

24 B AUTOMOTIVE LIGHTING

B Automotive lighting

Listings 11 to 14 contain the automatically generated Event-B context and machine, from
the B machines Sensors.mch BlinkLamps_v3.mch and PitmanController_v6.mch.

Listing 11: Context generated from BlinkLamps
context BlinkLamps_v3_ctx

sets DIRECTIONS

constants

BLINK_DIRECTION
LAMP_STATUS
lamp_on
lamp_off
continuousBlink
BLINK_CYCLE_COUNTER
cycleMaxLampStatus
left_blink right_blink neutral_blink

axioms

@axm0 partition(DIRECTIONS,{left_blink},{right_blink},{neutral_blink})
@axm1 BLINK_DIRECTION={left_blink,right_blink}
@axm2 LAMP_STATUS={0,100}
@axm3 continuousBlink=�1
@axm4 lamp_off=0
@axm5 lamp_on=100
@axm6 BLINK_CYCLE_COUNTER=�1..3
@axm7 cycleMaxLampStatus2(BOOL)!LAMP_STATUS
@axm8 cycleMaxLampStatus={FALSE7!lamp_off,TRUE 7!lamp_on}

end

Listing 12: Machine generated from BlinkLamps
machine BlinkLamps_v3 sees BlinkLamps_v3_ctx

variables active_blinkers remaining_blinks onCycle blinkLeft blinkRight

invariants

@inv0 active_blinkers✓BLINK_DIRECTION
@inv1 remaining_blinks2BLINK_CYCLE_COUNTER
@inv2 blinkLeft2LAMP_STATUS
@inv3 blinkRight2LAMP_STATUS
@inv4 onCycle2BOOL
@inv5 remaining_blinks=0^blinkLeft=lamp_off^blinkRight=lamp_off,active_blinkers=?
@inv6 blinkRight 6=lamp_off)right_blink2active_blinkers
@inv7 blinkLeft6=lamp_off)left_blink2active_blinkers
@inv8 active_blinkers=BLINK_DIRECTION)blinkLeft=blinkRight
@inv9 onCycle=FALSE)blinkLeft=lamp_off^blinkRight=lamp_off

25

@inv10 onCycle=TRUE^active_blinkers6=?)¬(blinkLeft=lamp_off^blinkRight=lamp_off)

events

event SET_AllBlinkersOff
then

@act0 active_blinkers :=?
@act1 remaining_blinks :=0
@act2 blinkLeft,blinkRight :=lamp_off,lamp_off

end

event SET_AllBlinkersOn
then

@act0 active_blinkers :=BLINK_DIRECTION
@act1 remaining_blinks :=continuousBlink
@act2 blinkLeft :=cycleMaxLampStatus(onCycle)
@act3 blinkRight :=cycleMaxLampStatus(onCycle)

end

event SET_BlinkersOn_then
any direction rem
where

@grd0 direction2BLINK_DIRECTION
@grd1 rem2BLINK_CYCLE_COUNTER
@grd2 rem 6=0
@grd3 direction=right_blink

then

@act0 active_blinkers :={direction}
@act1 remaining_blinks :=rem
@act2 blinkLeft :=lamp_off
@act3 blinkRight :=cycleMaxLampStatus(onCycle)

end

event SET_BlinkersOn_else
any direction rem
where

@grd0 direction2BLINK_DIRECTION
@grd1 rem2BLINK_CYCLE_COUNTER
@grd2 rem 6=0
@grd3 ¬(direction=right_blink)

then

@act0 active_blinkers :={direction}
@act1 remaining_blinks :=rem
@act2 blinkLeft :=cycleMaxLampStatus(onCycle)
@act3 blinkRight :=lamp_off

end

event SET_RemainingBlinks
any rem
where

26 B AUTOMOTIVE LIGHTING

@grd0 rem2BLINK_CYCLE_COUNTER
@grd1 rem 6=0
@grd2 remaining_blinks 6=0

then

@act0 remaining_blinks :=rem
end

event TIME_BlinkerOn_then_then_then
where

@grd0 blinkLeft=lamp_off^blinkRight=lamp_off^remaining_blinks6=0
@grd1 left_blink2active_blinkers
@grd2 right_blink2active_blinkers
@grd3 remaining_blinks>0

then

@act0 onCycle :=TRUE
@act1 blinkLeft :=lamp_on
@act2 blinkRight :=lamp_on
@act3 remaining_blinks :=remaining_blinks�1

end

event TIME_BlinkerOff_then
where

@grd0 ¬(blinkLeft=lamp_off^blinkRight=lamp_off)
@grd1 remaining_blinks=0

then

@act0 blinkLeft,blinkRight :=lamp_off,lamp_off
@act1 onCycle :=FALSE
@act2 active_blinkers :=?

end

event TIME_Nothing
any newOnCycle
where

@grd0 blinkLeft=lamp_off^
blinkRight=lamp_off^
active_blinkers=?^newOnCycle=FALSE

then

@act0 onCycle :=newOnCycle
end

end

Listing 13: Context generated from PitmanController
context PitmanController_v6_ctx extends BlinkLamps_v3_ctx

sets PITMAN_POSITION SWITCH_STATUS KEY_STATE

constants

pitman_direction
PITMAN_DIRECTION_BLINKING

27

PITMAN_TIP_BLINKING
Neutral Downward5 Downward7 Upward5 Upward7
switch_on switch_off
NoKeyInserted KeyInserted KeyInsertedOnPosition

axioms

@axm0 partition(PITMAN_POSITION,{Neutral},{Downward5},
{Downward7},{Upward5},{Upward7})

@axm1 partition(SWITCH_STATUS,{switch_on},{switch_off})
@axm2 partition(KEY_STATE,{NoKeyInserted},{KeyInserted},{KeyInsertedOnPosition})
@axm3 pitman_direction={

Upward77!right_blink,Downward77!left_blink,
Downward57!left_blink,Upward57!right_blink,
Neutral7!neutral_blink}

@axm4 PITMAN_TIP_BLINKING={Downward5,Upward5}
@axm5 PITMAN_DIRECTION_BLINKING={Upward7,Downward7}

end

Listing 14: Machine generated from PitmanController
machine PitmanController_v6 refines BlinkLamps_v3 sees PitmanController_v6_ctx

variables

active_blinkers
pitmanArmUpDown
remaining_blinks
onCycle
blinkRight blinkLeft
keyState hazardWarningSwitchOn engineOn

invariants

@inv0 hazardWarningSwitchOn=switch_off ^
remaining_blinks=continuousBlink
)active_blinkers={pitman_direction(pitmanArmUpDown)}

@inv1 hazardWarningSwitchOn=switch_on)remaining_blinks=continuousBlink
@inv2 hazardWarningSwitchOn2SWITCH_STATUS
@inv3 engineOn=FALSE^hazardWarningSwitchOn=switch_off)active_blinkers=?
@inv4 pitmanArmUpDown2PITMAN_DIRECTION_BLINKING ^

engineOn=TRUE){pitman_direction(pitmanArmUpDown)}✓active_blinkers
@inv5 hazardWarningSwitchOn=switch_on)active_blinkers=BLINK_DIRECTION
@inv6 pitmanArmUpDown2PITMAN_POSITION
@inv7 engineOn2BOOL
@inv8 pitmanArmUpDown2PITMAN_DIRECTION_BLINKING ^

engineOn=TRUE)remaining_blinks=continuousBlink
@inv9 keyState2KEY_STATE
theorem @thm0 pitman_direction2PITMAN_POSITION!DIRECTIONS

events

event ENV_Turn_EngineOn_then_0 extends SET_BlinkersOn_then
where

28 B AUTOMOTIVE LIGHTING

@grd0 engineOn=FALSE^keyState=KeyInsertedOnPosition
@grd1 pitmanArmUpDown2PITMAN_DIRECTION_BLINKING ^

hazardWarningSwitchOn=switch_off
@grd2 direction=pitman_direction(pitmanArmUpDown)
@grd3 rem=continuousBlink

then

@act0 engineOn :=TRUE
end

event ENV_Turn_EngineOn_then_1 extends SET_BlinkersOn_else
where

@grd0 engineOn=FALSE^keyState=KeyInsertedOnPosition
@grd1 pitmanArmUpDown2PITMAN_DIRECTION_BLINKING ^

hazardWarningSwitchOn=switch_off
@grd2 direction=pitman_direction(pitmanArmUpDown)
@grd3 rem=continuousBlink

then

@act0 engineOn :=TRUE
end

event ENV_Turn_EngineOff_then_0 extends SET_AllBlinkersOff
where

@grd0 engineOn=TRUE
@grd1 hazardWarningSwitchOn=switch_off

then

@act0 engineOn :=FALSE
end

event ENV_Pitman_DirectionBlinking_then_0 extends SET_BlinkersOn_then
any newPos
where

@grd0 newPos6=pitmanArmUpDown
@grd1 hazardWarningSwitchOn=switch_off^engineOn=TRUE
@grd2 direction=pitman_direction(newPos)
@grd3 rem=continuousBlink
@grd4 newPos2PITMAN_DIRECTION_BLINKING^newPos 6=pitmanArmUpDown

then

@act0 pitmanArmUpDown :=newPos
end

event ENV_Pitman_DirectionBlinking_then_1 extends SET_BlinkersOn_else
any newPos
where

@grd0 newPos6=pitmanArmUpDown
@grd1 hazardWarningSwitchOn=switch_off^engineOn=TRUE
@grd2 direction=pitman_direction(newPos)
@grd3 rem=continuousBlink
@grd4 newPos2PITMAN_DIRECTION_BLINKING^newPos 6=pitmanArmUpDown

then

29

@act0 pitmanArmUpDown :=newPos
end

event ENV_Pitman_Reset_to_Neutral_then_0 extends SET_AllBlinkersOff
where

@grd0 pitmanArmUpDown 6=Neutral
@grd1 hazardWarningSwitchOn=switch_off^remaining_blinks=continuousBlink

then

@act0 pitmanArmUpDown :=Neutral
end

event ENV_Pitman_Tip_blinking_short_then_0 extends SET_BlinkersOn_then
any newPos
where

@grd0 newPos2PITMAN_TIP_BLINKING
@grd1 newPos 6=pitmanArmUpDown
@grd2 newPos2PITMAN_TIP_BLINKING^newPos 6=pitmanArmUpDown
@grd3 hazardWarningSwitchOn=switch_off^engineOn=TRUE
@grd4 direction=pitman_direction(newPos)
@grd5 rem=3

then

@act0 pitmanArmUpDown :=newPos
end

event ENV_Pitman_Tip_blinking_short_then_1 extends SET_BlinkersOn_else
any newPos
where

@grd0 newPos2PITMAN_TIP_BLINKING
@grd1 newPos6=pitmanArmUpDown
@grd2 newPos2PITMAN_TIP_BLINKING^newPos 6=pitmanArmUpDown
@grd3 hazardWarningSwitchOn=switch_off^engineOn=TRUE
@grd4 direction=pitman_direction(newPos)
@grd5 rem=3

then

@act0 pitmanArmUpDown :=newPos
end

event TIME_Tip_blinking_Timeout_0 extends SET_RemainingBlinks
where

@grd0 pitmanArmUpDown2PITMAN_TIP_BLINKING ^
remaining_blinks>1 ^
active_blinkers={pitman_direction(pitmanArmUpDown)}

@grd1 rem=continuousBlink
end

event ENV_Hazard_blinking_select0_0 extends SET_AllBlinkersOn
any newSwitchPos
where

@grd0 newSwitchPos 6=hazardWarningSwitchOn

30 B AUTOMOTIVE LIGHTING

@grd1 newSwitchPos=switch_on
@grd2 newSwitchPos2SWITCH_STATUS^newSwitchPos 6=hazardWarningSwitchOn

then

@act0 hazardWarningSwitchOn :=newSwitchPos
end

event ENV_Hazard_blinking_select1_cond0_0 extends SET_AllBlinkersOff
any newSwitchPos
where

@grd0 newSwitchPos 6=hazardWarningSwitchOn
@grd1 newSwitchPos=switch_off
@grd2 pitmanArmUpDown=Neutral _engineOn=FALSE
@grd3 newSwitchPos2SWITCH_STATUS^newSwitchPos 6=hazardWarningSwitchOn

then

@act0 hazardWarningSwitchOn :=newSwitchPos
end

event ENV_Hazard_blinking_select1_cond1_0 extends SET_AllBlinkersOff
any newSwitchPos
where

@grd0 newSwitchPos 6=hazardWarningSwitchOn
@grd1 newSwitchPos=switch_off
@grd2 ¬(pitmanArmUpDown=Neutral _engineOn=FALSE)
@grd3 ¬(pitmanArmUpDown2PITMAN_DIRECTION_BLINKING)
@grd4 newSwitchPos2SWITCH_STATUS^newSwitchPos 6=hazardWarningSwitchOn

then

@act0 hazardWarningSwitchOn :=newSwitchPos
end

event ENV_Hazard_blinking_select1_condelse_0 extends SET_BlinkersOn_then
any newSwitchPos
where

@grd0 newSwitchPos 6=hazardWarningSwitchOn
@grd1 newSwitchPos=switch_off
@grd2 ¬(pitmanArmUpDown=Neutral _engineOn=FALSE)
@grd3 ¬(¬(pitmanArmUpDown2PITMAN_DIRECTION_BLINKING))
@grd4 direction=pitman_direction(pitmanArmUpDown)
@grd5 rem=remaining_blinks
@grd6 newSwitchPos2SWITCH_STATUS^newSwitchPos 6=hazardWarningSwitchOn

then

@act0 hazardWarningSwitchOn :=newSwitchPos
end

event ENV_Hazard_blinking_select1_condelse_1 extends SET_BlinkersOn_else
any newSwitchPos
where

@grd0 newSwitchPos 6=hazardWarningSwitchOn
@grd1 newSwitchPos=switch_off
@grd2 ¬(pitmanArmUpDown=Neutral _engineOn=FALSE)

31

@grd3 ¬(¬(pitmanArmUpDown2PITMAN_DIRECTION_BLINKING))
@grd4 direction=pitman_direction(pitmanArmUpDown)
@grd5 rem=remaining_blinks
@grd6 newSwitchPos2SWITCH_STATUS^newSwitchPos 6=hazardWarningSwitchOn

then

@act0 hazardWarningSwitchOn :=newSwitchPos
end

end

List of Figures

1 Architecture of lisb with our extension of Event-B 7
2 ProB Event-B Model structure . 8

List of Listings

1 Event-B machine example . 4
2 Machine in Event-B DSL . 11
3 Generating ProB Model from IR and saving it as Rodin project 12
4 Loading a Rodin project and generating a Event-B DSL 13
5 Operation of the BlinkLamps machine from [LMW20] 14
6 Simple Operation to Event with op->events 15
7 Operation with two call operation calls from [LMW20] 18
8 Automatic translation of ENV_Turn_EngineOn 19
9 Manual translation of ENV_Turn_EngineOn by [LMW20] 20
10 IR for a Event-B machine . 23
11 Context generated from BlinkLamps . 24
12 Machine generated from BlinkLamps . 24
13 Context generated from PitmanController 26
14 Machine generated from PitmanController 27

32

	Introduction
	Background
	Clojure
	lisb
	Event-B
	Tool support for the B-Method

	Components
	ProB Event-B Model
	IR for Event-B
	Event-B DSL
	Generating a ProB Model
	Retranslation from ProB Model

	Translation: Classical B to Event-B
	Operations to Event-B
	Substitutions to Events
	Parallel Composition
	Inclusion in Event-B
	Comparison to manual translation

	Related Work
	Future Work
	Conclusion
	References
	Appendix A Phones Example
	Appendix B Automotive lighting
	List of Figures
	List of Listings

